Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан в присутствии ниобия

    Имеется два метода термической обработки для предупреждения МКК — закалка, обеспечивающая полное растворение карбидов хрома или уменьшение влияния сегрегирующих примесей и стабилизирующий отжиг. Для большинства аустенитных сталей обычно принят режим закалки, состоящий в быстром охлаждении (в воде или на воздухе) после нагрева при 1020—1060 °С. Для низкоуглеродистых сталей, особенно в присутствии добавок бора и для молибденсодержащих сталей, предназначенных для работы в окислительных средах, температура закалки должна быть повышена [1.361. Стабилизирующий отжиг проводится обычно в интервале 850—950 °С при продолжительности 2—4 ч. Наиболее эффективен стабилизирующий отжиг для сталей с титаном или ниобием. В этом случае в процессе стабилизирующего отжига происходит более полное связывание углерода стабилизирующими добавками, а также образование крупных разобщенных карбидов хрома. При последующем провоцирующем нагреве не происходит опасное образование пограничных карбидов и МКК отсутствует. Стабилизирующий отжиг применим для повышения стойкости против МКК и нестабилизированных сталей, однако полное устранение склонности к МКК в этом случае невозможно из-за сохранения значительного пересыщения твердого раствора углеродом. Следует иметь в виду, что при стабилизирующем отжиге могут повышаться прочностные свойства и снижаться пластичность стали, а также могут образовываться избыточные фазы (например, сг-фаза), снижающие стойкость, особенно в окислительных средах. [c.70]


    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]

    Элементы ЫЬ и Т1 вводят в сплав для повышения стойкости к сенсибилизации, поскольку они образуют карбиды. Однако присутствие таких добавок уменьшает стойкость против КР в хлоридных средах [66, 67, 81, 82, 89]. Установлено [94], что в малых количествах как ниобий, так и титан уменьшают ЭДУ нержавеющей стали. В то время как малые добавки титана снижают стойкость против КР [81, 82, 87], введение 2% Ti дало положительный эффект [91]. Таким образом, может существовать некоторое значение его концентрации, при котором стойкость против КР достигает минимума. Как и в случае кремния, положительное влияние больших добавок титана может быть связано со стабилизацией б-феррита. В работах [66, 91] для объяснения положительного влияния больших добавок Т1, 51, V и А1 предполагается, что уже 5%-ная объемная доля б-феррита способна вызывать притупление трещин, распространяющихся в аустените. Этот вопрос будет рассматриваться в дальнейшем, а здесь еще раз следует отметить, что титан и ниобий в таких количествах, которые заведомо остаются в растворе, отрицательно влияют на стойкость сталей. [c.73]

    Переработка титано - тантало-ниобиевых концентратов. Минералы лопарит, пирохлор, коппит и другие обладают невысокой химической прочностью и сравнительно легко разлагаются. Основная трудность — сложно отделить титан от ниобия и тантала. Ti, Та, Nb, присутствуя совместной оказывая друг на друга взаимное влияние, несколько теряют характерные индивидуальные свойства. [c.70]

    В присутствии ниобия и железа результаты оказываются слегка завышенными, необходимо вводить поправку. Молибден даже в небольших количествах мешает анализу и должен быть отделен. Медь, алюминий и никель при содержании каждого из этих элементов до 5%, ванадий — до 0,5% и вольфрам — до 0,2% не оказывают заметного влияния на определение 2—7% тантала. Цирконий также не-мешает анализу, но титан в количествах, превышающих 0,01 %, влияет на результаты анализа. [c.151]


    Экстракция купфероната циркония хлороформом. Такие элементы, как алюминий, магний, бериллий, цинк и другие, нельзя определить фотометрическими методами без отделения Циркония, так как большинство применяемых реагентов либо образует окрашенные соединения и с цирконием, либо максимум оптической плотности с этими реагентами достигается в слабокислой или слабощелочной среде, когда цирконий подвергается гидролизу и осаждается. Наиболее целесообразно разделять эти элементы экстракцией купфероната циркония хлороформом. При этом вместе с цирконием экстрагируются железо, титан, ванадий, ниобий, тантал и др. Купферонат циркония относили к плохо экстрагируемым в хлороформе элементам [645]. Такие элементы, как тантал, ниобий, цирконий и другие, легко осаждающиеся купфероном в кислой среде, нелегко растворяются в органических растворителях [466], а цирконий умеренно растворяется в этилацетате. Основанием для таких выводов могло служить то обстоятельство, что при экстракции купфероната циркония хлороформом расслаивание фаз происходит медленно, а на границе раздела органической и водной фаз, за счет продуктов разложения купфероната в кислой среде, образуются белесые пленки, препятствующие четкому разграничению фаз. Для нахождения оптимальных условий экстракционного разделения циркония и других элементов Елинсон, Победина и Мирзоян [100] изучали распределение циркония между водным сернокислым раствором и хлороформом в присутствии купферона и показали, что наиболее полное отделение циркония достигается в том случае, если сернокислый (1 Л/) водный раствор купферона предварительно экстрагируется хлороформом, а экстракция циркония производится хлоро4юрмным раствором купферона. При этом быстрее достигается расслаивание органической и водной фаз, а на границе раздела фаз не появляются твердые пленки. Кроме того, при таком способе экстракции в хлороформ переходит чистый нитрозофенилгидроксиламин, а продукты разложения купферона, [c.85]

    Ниобий и тантал всегда сопровождают кремнекислоту и иногда они переходят в осадок почти количественно . Оба эти элемента остаются в виде пятиокисей в остатке после обработки фтористоводородной и серной кислотами. Если эти элементы первоначально присутствовали в значительных количествах, остается большой нелетучий остаток, что является некоторым указанием на возможное присутствие в анализируемом материале тантала и ниобия. Определение кремния в присутствии ниобия и тантала см. гл. Ниобий и тантал (стр. 679). Титан и цирконий не сопровождают кремнекислоту в заметной степени, если при обработке раствора не создаются условия, благоприятные для гидролиза их солей, и в растворе не содержатся значительные количества фосфатов. При. выпаривании со смесью фтористоводородной и серной кислот потерь титана и циркония не наблюдается [c.756]

    В опытах по отделению титана от ниобия при различных их соотношениях было замечено следующее. Титан, взятый в отдельности, сорбируется при концентрации НС1 в растворе, равной 0,7 N, но в присутствии ниобия обнаруживает, хотя и незначительный, проскок в фильтрат. [c.381]

    Как уже отмечалось выше, присутствие азота в сталях, стабилизированных титаном или ниобием, может ухудшать их стойкость против МКК. Связывая титан и ниобий в малорастворимые нитриды, азот тем самым выводит эти элементы из взаимодействия с углеродом, что требует введения избыточного количества титана или ниобия. Количество свяванного в нитриды титана определяется соотношением Ti/N = 3,3, а ниобия — Nb/N 6,64. [c.55]

    Отделение титана. Двуокись титана трудно отделить от окисей ниобия и тантала. Если двуокиси титана немного, то ее обычно не отделяют, а определяют содержание ее колориметрическим методом. Если же титан присутствует в значительном количестве, то большую его часть можно отделить, осаждая таннином из фторо-боратного раствора или в присутствии аскорбиновой кислоты [c.922]

    В присутствии ниобия титан восстанавливают металлическим железом и титруют сульфатом железа (III) по Бишофу . Описание этого метода см. ниже. [c.142]

    Руду разлагают сплавлением со щелочью и перекисью натрия. Плав выщелачивают водой и в аликвотной части определяют вольфрам, как описано выше. Этим методом можно определить от 0,003 до 1,5% Ш в присутствии до 10% Аз, до 3—6<Уо 5Ь, до 0,5—3% Мо, до 0,3% Сг и до 0,1 % V, 5е и Те. Фтор, титан, фосфор, ниобий, тантал, медь и драгоценные металлы, за исключением рения, определению вольфрама по этому методу не мешают. [c.199]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    В настоящей работе были предприняты поиски такого органического реактива, который давал бы с ниобием и танталом в присутствии титана или, наоборот, с титаном в присутствии ниобия и тантала кристаллическое, трудно растворимое соедине- ние в таких растворах, где отсутствуют коллоидные частицы. [c.110]

    Для определения магния в его ниобате лучшим методом, по-видимому, является комплексонометрический [1], но в присутствии нио бия он не применим, так как последний блокирует металлохромные индикаторы, поэтому его предварительно отделяют [1—2]. В связи с этим представлял интерес метод прямого определения магния в присутствии ниобия. Ранее нами было показано [3], что титан, цирконий и алюминий удается надежно маскировать винной кислотой в охлажденных растворах. Такой метод, как показали наши опыты, оказался эффективным и для маскирования ниобия. При содержании окиси магния в образцах 13% относительная ошибка составляет 0,4%. Для определения ниобия был. использован дифференциальный спектрофотометрический метод с перекисью водороду [4]. При содержании пятиокиси ниобия - 87% относительная ошибка определения составляет 0,4% . [c.189]

    Итак, стабилизированные стали должны содержать достаточное по отношению к углероду количество карбидобразующего элемента (достаточная стабилизация), который должен связать углерод в специальные карбиды и этим сделать невозможным выпадение карбидов хрома. В этом случае стали ведут себя приблизительно так, как если бы они почти совсем не содержали углерода. Напомним (см. 4.1), что стабилизация стали 1Х18Н9 титаном и ниобием в соответствии с эмпирическими формулами, приведенными выше (табл. 18), в большинстве случаев полностью подавляет склонность к межкристаллитной коррозии того типа, который проявляется у нестабилизированных сталей после сварки (см., например, рис. 31). Изделия, изготовленные с применением сварки из правильно стабилизированных сталей [226, 244], оказываются и без последующего отжига стойкими к межкристаллитной коррозии в зонах, подвергшихся термическому влиянию. Однако, нри более длительных выдержках в условиях критических температур и стабилизированные таким образом стали становятся также в различной мере склонными к межкристаллитной коррозии в зависимости от степени стабилизации. Действительно, ранее было установлено, что растворяющий отжиг при температуре 1150° С уже может оказать влияние на стойкость стали с более низким содержанием титана и ниобия. При этой температуре еще не может произойти значительный рост зерна, поэтому увеличение количества карбидов хрома, выделяющихся но границам зерен в зоне термического влияния сварного соединения, нельзя в этом случае объяснить только уменьшением всей поверхности границ за счет роста зерна. Точно так же гипотеза о значительной поверхностной активности углерода по отношению к хромоникелевому аусте-ниту, основанная на современных представлениях о роли поверхностных слоев кристаллов твердого раствора при термообработке поликристаллических веществ и очень хорошо описывающая распределение углерода в аустените, не объясняет процесс освобождения связанного в специальном карбиде углерода во время растворяющего отжига при высоких температурах. Чтобы в поверхностных слоях аустенитных зерен могла повыситься концентрация углерода, прежде всего должна произойти диссоциация присутствующих в структуре карбидов титана, ниобия или тантала, а для этого углерод и карбидобразующий элемент должны перейти в твердый раствор. Реально ли это с термохимической точки зрения, можно вывести [c.128]

    К ниобию и танталу близки по химическим свойствам титан и цирконий, которые такн<е легко гидролизуются в нейтральной и слабокислой среде. В ряде случаев поведение ниобия и тантала отличается от поведения их в присутствии титана и циркония. Так, например, если гидролиз при одновременном присутствии ниобия, тантала и подчиненных количеств титана приводит почти к количественному выделению в осадок земельных кислот даже нри кислотности раствора, доходящей до 0,5 N, то в присутствии 10—20-кратных количеств титана последний частично соосаждается с земельными кислотами, а некоторое количество земельных кислот удерживается в растворе. [c.309]

    Второе, что помогло РЗМ выйти на авансцену техники,— присутствие других, притом высокоценных металлов во всех видах редкоземельного минерального сырья. В различных сочетаниях такими спутниками являются уран, торий, бериллий, цирконий, титан, тантал, ниобий. Ясно, что комплексная переработка руд делает попутное извлечение из них РЗМ более экономичным и перспективным. [c.144]

    Титан и ниобий. Титан, вероятно, вызывает слабое увеличение времени до растрескивания [19] от добавок ниобия никакого эффекта не установлено [2, 23]. Присутствие титана приводит к изменению влияния углерода это закономерно, поскольку образование стабильных карбидов (первичных выделений карбидов) понижает эффективную концентрацию углерода. [c.255]

    Из работ, заслуживающих внимания, следует упомянуть исследования Гохштейна [96], атакже Курбатова ио вопросу полярографии ниобия и тантала. Гохштейном [103] с помощью осциллографического полярографа было установлено, что титан и ниобий в 23 N Н28 04 дают волны при разных потенциалах, что делает возможным определение ниобия в присутствии больших количеств титана. [c.492]

    Прнмесь титана к ниобию не оказывает какого-либо влияния на восстановление последнего амальгамой цинка в сернокислых растворах, хотя титан с ниобием в сернокислых растворах в присутствии сульфата аммония образует прочные комплексы. [c.161]

    Легированные стали маркируют буквами и цифрами. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры — легирующие элементы А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ю — алюминий. Цифры после букв указывают ориентировочное содержание легирующего элемента в целых процентах отсутствие цифры свидетельствует о том, что элемент присутствует в количестве не более 1,5%. [c.328]

    Переработка других видов сырья. РЗЭ, присутствующие в лопа-рите, пирохлоре, извлекают попутно при переработке этих минералов на титан, ниобий и тантал, для которых они являются важным сырьевым источником. Для разложения подобного сырья предложен ряд методов, но наиболее распространено хлорирование. Подробно переработку лопарита и пирохлора см. в технологии Ti, Nb и Та. Здесь укажем лишь на то, что при хлорировании РЗЭ остаются в зоне хлорирования в виде плава хлоридов, из которого их извлекают, обрабатывая водой. Из полученных растворов РЗЭ выделяют в виде гидроокисей аммиаком. Затем их очищают от примесей и разделяют с целью получения соединений индивидуальных РЗЭ методами, приведенными ниже. [c.104]

    Танин осаждает молибден, а также ванадий, титан, бериллий из слабокислого раствора в присутствии ацетата аммония, нитрата аммония и уксусной кислоты [395]. Шестивалентный молибден не осаждается танином из среды 2 N НС1 [1092]. Ниобий при таких условиях осаждается количественно. Однако разделять молибден и ниобий таким путем не удается, так как осадок ниобия всегда загрязнен молибденом. При pH 3,0 и 1,5 (ацетатный буферный раствор) танин осаждает соответственно 80 и 3% Мо [1092]. [c.45]

    Значительное содержание молибдена в стали при определенных условиях термической обработки способствует образованию, помимо феррита и ст-фазы, ряда интерметаллидов, снижающих коррозионную стойкость материала. Легирование хромоникель-молибденовых коррозионно-стойких сталей титаном или ниобием несколько повышает их стойкость против МКК в неокислительных средах, но малоэффективно в сильноокислительных. Следовательно, можно считать, что в большинстве случаев присутствие молибдена отрицательно влияет на стойкость основных типов хромоникелевых коррозионно-стойких сталей и сплавов в сильноокислительных средах. Исключением являются медьсодержащие стали и сплавы с высоким содержанием никеля. [c.56]

    Титан таклсе входит в состав минералов, включающих редкозе-.мельные элементы, тантал, ниобий, ванадий, например, в лопарит, хи.мическая формула которого (Са, Се, Na)s (Nb, Т1)20б . минерал содержит 32,22% ТЮг (полный хи.мический состав см. Ниобий и тантал ). Титан присутствует в осадочных породах — бокситах, глинах. [c.118]

    Для введения поправки на титан, присутствующий в техническом гидроксиде ниобия, осадок суммы земельных кислот сплавляют с 2 г пиросульфата калия при 900 °С до получения прозрачного плава. По охлаждении плав растворяют в 25—50 мл 4%-ного раствора оксалата аммония и определяют содержание титана по реакции с пероксидом водорода визуальным путем или с использованием фотоэлектроколирметра (см. Титан ). Из найденного содержания суммы земельных кислот вычитают содержание титана. [c.162]

    Коррозионная стойкость. В настоящей книге не представилось возможным детально изложить проблемы выбора материалов для сосудов давления, работающих в условиях воздействия многочисленных специфических коррозионных сред. Из литературы, посвященной этому вопросу [1—13], особое внимание следует обратить на книги Е. Ребальда Руководство по коррозии [6] и Г. А. Нельсона Коррозионные свойства [14], где имеются сведения о скорости коррозии различных металлов в многочисленных химически активных окружающих средах. В книге Г. А. Нельсона приведены также диаграммы выбора сталей [14], стойких при работе в неорганических кислотах и в газовых средах, таких, как водород (рис. 5.1). Присутствующий в этих сталях молибден повышает сопротивление коррозии в среде водорода в 4 раза больше, чем хром, и эквивалентен ванадию, титану и ниобию при содержании до 0,1%. Такие элементы, как кремний, никель и медь, не повышают сопротивление коррозии. [c.191]

    В присутствии ниобия предложено также восстанавливать титан металлическим железом, не восстанавливающим ниобий. Для этой цели 0,2 3 TiOa растворяют в 10 мл концентрированной серной кислоты, содержащих 4 г (N114)2804. По охлаждении раствор разбавляют 100 мл [c.660]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Прежде чем приступить к количественному анализу минералов, в данном случае, более чем когда-либо, важно провести сначала тщательное качественное исследование материала, если возможно спектрографическое. Полученные при этом сведения могут иметь существенное значение для выбора наиболее рациональных методов разложения про ы и разделения содержащихся в ней элементов. Нередко, однако. Имеющегося в наличии, количества материала недостаточно для исчерпывающих предварительных испытаний, что может явиться причиной возникновения серьезных затруднений в процессе анализа. Аналитическое исследование тантало-ниобиевых минералов сопряжено с большими трудностями, чем анализ любых других минералов. Простых методов для количественного разделения ниобия и тантала неизвестно. Не имеется также и точного метода для отдедсения этих элементов от титана. Титан, если он содержится в относительно небольших количествах, можно определить в присутствии ниобия и тантала колориметрическим методом. [c.664]

    Рассмотрение значений констант экстракции оксинатов показывает, что вместе с алюминием экстрагируются многие другие элементы. Медь, никель, цинк, кобальт и кадмий маскируются в присутствии 0,3 М раствора цианида [327] в качестве маскирующего агента была предложена также меркапто-уксусная кислота [1525]. Мешающее влияние желе-за(1П) можно устранить восстановлением и переводом в ферроцианид [327, 328], маскированием при помощи 1,10-фенантролина [352, 958, 1262], а также путем предварительной экстракции в виде роданида [953] или купфероната [189, 1094, 1157]. Торий маскируется 6 М раствором ацетата или 4-сульфобензол-арсоновой кислотой [616]. Экстракция циркония при pH 4,5 предотвращается добавлением хинализа-ринсульфокислоты [829]. Использовать нитрило-триуксусную кислоту в качестве маскирующего агента [333] не рекомендуется, поскольку сам алюминий при этом экстрагируется хуже [9731. Титан, ванадий, ниобий и уран можно маскировать при pH 7,5—8,5 перекисью водорода [485]. [c.125]

    Так, например, если гпдролиз при одновременном присутствии ниобия, тантала и подчиненных количеств титана приводит почти к количественному выделению в осадок земельных кислот даже при кислотности раствора, доходящей до 0,5 н., то в присутствии 10—20-кратного количества титана течение гидролиза резко меняется. С одной стороны, титан частично со-осаждается с земельными кислотами, с другой — некоторое количество земельных кислот остается в растворе с титаном. [c.271]

    Специфическое влияние может оказывать Присутствие метаста-бильных фаз с более высоким содержанием хрома или титана, образующихся при повышенных температурах и богатых также другими ферритобразующими элементами, включая титан и ниобий (эвтектика) [116, 193]. Среды, содержащие азотную кислоту и сильноокислительные примеси, разрушают эти фазы. Речь идет, прежде всего, о неравновесном феррите [143], содержание которого в зоне, прилегающей к нанлавленному металлу, увеличивается н который затем, при более низких температурах, распадается (рис, 63). [c.136]

    Широкое применение для определения тантала получил пирогал-ловый метод, впервые предложенный М. С. Платоновым и Н. Ф. Криво-щлыковым [62]. Тантал образует с пирогаллолом в кислой оксалатной среде комплекс, окрашенный в желтый цвет. Ниобий дает желтое окрашивание только в щелочной среде, что позволяет определять тантал в присутствии ниобия и наоборот. Титан в тех же условиях дает более интенсивное желтое окрашивание, мешают также и другие элементы. Пирогалловый метод определения тантала исследовался и совершенствовался многими авторами [44—46, 83, 90, 95] определение ниобия с пирогаллолом распространено значительно меньше исследованию его посвящена только одна работа [90], в которой установлено. взаимное влияние тантала и ниобия и показано, что точность определения повышается, если измерять оптическую плотность соединения тантала при 400 ммк, ниобия — при 410 ммк. [c.258]

    В присутствии ниобия предложено также восстанавливать титан металлическим железом, не восстанавливающим ниобий. Для этой цели 0,2 г ТЮз растворяют в 10 мл концентрированной серной кислоты, содержащих 4 г (NH4)2S04. По охлаждении раствор разбавляют 100 мл разбавленной (1 5) серной кислоты. В коническую колбу емкостью 750 мл  [c.603]

    Наилучшим способом разделения тантала и ниобия является, по всей вероятности, метод, основанный на различном поведении оксалатотанта-ловой и оксалатониобиевой кислот в разбавленных кислых растворах таннина . Оксалатотанталовая кислота не разлагается только в присутствии определенного количества свободной щавелевой кислоты. Ниобие-вое ко.мплексное соединение значительно более устойчиво. Танниновый осадок тантала окрашен в серно-желтый цвет. Ниобиевый осадок имеет яркую киноварно-красную окраску, которая достаточно интенсивна, чтобы обнаружить присутствие ниобия в осадке тантала. Титан , вольфрам и сурьма , но не цирконий , частично осаждаются и препятствуют разделению тантала и ниобия. Титан в количествах, не превышающих 2% по отношению к содержанию окиси тантала, не вызывает затруднений при проведении этой операции .  [c.622]

    Торий с ферроном (7-иод-8-оксихинолин-5-сульфокислота> образует при pH 2—3,5 труднорастворнмый, легко фильтрующийся осадок желтого цвета. Соединение, содержит две моле- лы феррона на атом тория ТЬ ( 9H464NSJ)2 [702]. Торий определяют в виде ТЬОг после прокаливания осадка. Большинство элементов не мешает определению тория ферроном среди них — р. 3. э., ванадий, ниобий, титан и др. Железо, серебро, ртуть и медь, напротив, соосаждаются вместе с торием. Установлено также [1760], что удовлетворительные результаты получаются в присутствии не более двухкратного избытка урана, в противном случае необходимо переосаждение. Сульфат-йоны мешают определению, так как в их присутствии не достигается полнота осаждения тория ферроном. Метод дает хорошие результаты. Максимальная ошибка 0,3%- [c.47]

    Газ для создания защитной атмосферы выбирают в зависимости от металлов, входящих в состав сплава. Часто применяют водород, однако не в тех случаях, когда присутствуют значительные количества щелочных, щелочноземельных и редкоземельных металлов, легко образующих гидриды. Применяют для этой цели и азот, за исключением тех случаев, когда среди металлов-присутствуют такие, которые образуют нитриды, как, например, литий, бериллий, магний, кальций, стронций, барий, редкоземельные металлы, актиноиды,, титан, цирконий, гафний, ванадий, ниобий и тантал. Если нет основания опасаться образования карбидов, то можно с успехом использовать и моноксид углерода, тогда как Oj и SOj при высоких температурах могут иногда оказывать на металлы окислительное действие. Инертные газы, преимущественно аргон, являются наилучшими, хотя и наиболее дорогими защитными газами. Защитный газ при высоких требованиях к его защитному действию должен быть хорошо очнщен, в особенности нежелательно присутствие в нем кислорода, даже в виде следов. Указания о способах очистки различных газов можио найти в соответствующих разделах настоящей книги [водород (гл. 1), азог (гл. 7), инертные газы]. Водород, азот и аргон высокой степени чистоты имеются в продаже или могут быть поставлены некоторыми заводами по желанию заказчика. [c.2147]

    Большое число элементов Периодической системы Д. И. Менделеева реагирует с комплексоном П1, т. е. сам комплексон как реагент для титрования не является селективным по отношению к какому-либо одному или нескольким элементам. Селективность методов комилексоно-метрического титрования повышается в присутствии реагентов, маскирующих мешающие элементы. Например, винная кислота в кислой среде маскирует олово (IV), сурьму, титан, цирконий, хром (III), ниобий, вольфрам и используется ири комплексонометрическом оиределении содержания меди, цннка, индия, галлия, свинца, висмута, железа (П1), никеля. [c.48]


Смотреть страницы где упоминается термин Титан в присутствии ниобия: [c.681]    [c.177]    [c.363]    [c.304]    [c.201]    [c.69]    [c.157]   
Количественный микрохимический анализ минералов и руд (1961) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Ниобий титана



© 2025 chem21.info Реклама на сайте