Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальта комплексные соединения аммония

    Образование комплексных соединений кобальта. Соединения с комплексным катионом. 1. К 0,5 мл раствора хлорида кобальта (II) прилейте сначала 0,5 мл раствора хлорида аммония, а затем 0,5 мл 20 %-го раствора аммиака. Образуется осадок основной соли кобальта (II), который растворяется в избытке аммиака. [c.283]

    Выполнение работы. К 3—4 каплям раствора соли кобальта (II) прибавлять по каплям 25%-ный раствор аммиака до выпадения осадка гидроксида кобальта (II) и его дальнейшего растворения вследствие образования комплексного соединения, в котором кобальт имеет координационное число, равное 6. Полученный раствор разлить в две пробирки. В одной из них тщательно перемешать раствор стеклянной палочкой до изменения окраски вследствие окисления полученного комплексного соединения кобальта (II) в комплексное соединение кобальта (III). Почему аммино-комплексный ион Со (II) окисляется кислородом воздуха, тогда как аквакомплекс Со (II) удается окислить лишь пероксидом водорода Во вторую пробирку добавить 2—3 капли 3%-ного раствора пероксида водорода. Объяснить изменение окраски. Затем прилить в обе пробирки по 2—3 каплу раствора сульфида аммония. Объяснить, почему выпадает осадок. [c.218]


    Роданидные комплексные соединения получаются при прибавлении к раствору соли кобальта (II) избытка роданида калия или аммония  [c.376]

    Подобно железу и кобальту, никель образует комплексные соединения. Например, действием избытка гидроксида аммония на сульфат никеля (II) получают аммиакаты  [c.431]

    С солями двухвалентного кобальта в аммиачном растворе комплексное соединение фиолетового или розового цвета. Фиолетовую окраску, образующуюся при взаимодействии реагента с гидроокисью аммония, устраняют прибавлением ацетата аммония и этанола. При определении кобальта к анализируемому раствору прибавляют 1,5 мл концентрированного раствора гидроокиси аммония, 2 мл 0,1%-ного этанольного реактива, 20 мл 95%-ного этилового спирта, мл N раствора ацетата аммония и измеряют оптическую плотность с синим светофильтром. Закон Бера соблюдается вплоть до концентрации кобальта ..мкг/мл, окраска устойчива 10 мин. Мешают магний, свинец, [c.152]

    Карбонилирование диолов можно проводить в присутствии водорода или воды. В первом случае предлагается использовать в качестве катализаторов комплексное соединение галогенида кобальта с органическими соединениями аммония или фосфора [c.96]

    Двухвалентное железо и двухвалентный кобальт также мешают определению, поэтому их предварительно окисляют до трехвалентного состояния персульфатом аммония, а затем связывают в растворимые комплексные соединения винной кислотой и избытком диметилглиоксима [c.306]

    Выполнение работы. К 3—4 каплям раствора соли кобальта в пробирке прибавлять по каплям 25%-ный раствор аммиака до выпадения осадка гидрата закиси кобальта и его дальней-щего растворения вследствие образования комплексного соединения, в котором кобальт имеет координационное число, равное шести. Полученный раствор разделить на две пробирки, В одной из них тщательно перемешать раствор стеклянной палочкой до изменения окраски вследствие окисления полученного комплексного соединения двухвалентного кобальта в комплексное соединение трехвалентного кобальта. Затем прилить 2—3 капли раствора сернистого аммония. Объяснить, почему выпадает осадок. [c.250]

    Э. А. Остроумов и Б. Н. Иванов-Эмин предлагают осаждать гидроокись бериллия слабым органическим основанием а-пиколином в присутствии хлорида аммония. В рекомендуемых авторами условиях осаждения в растворе устанавливается pH = 7. При этом происходит количественное отделение бериллия от кальция, стронция, бария, магния и щелочных металлов, а также от марганца, кобальта, никеля, цинка, образующих растворимые комплексные соединения с а-пиколином. Доп. перев.  [c.583]


    Рубеановодородная кислота образует с кобальтом, железом и многими элементами сероводородной группы и группы сульфида аммония окрашенные комплексные соединения (см. рис. 15). Это используется для совместного определения никеля, кобальта и меди этим реагентом в водном растворе [7881. Полосы максимального поглощения (рис. 16) находятся для меди при 385 ммк, для кобальта при 370 ммк или 440 ммк, для никеля при 640 ммк (табл. 45). [c.117]

    Использование комплексонов в полярографии обещает многое. Исходя из того, что комплексоны образуют прочные комплексные соединения со многими катионами, можно ожидать существенных изменений в ходе восстановления отдельных катионов, из которых некоторые, связанные в комплекс, могут восстанавливаться только вне области поляризации капельного электрода, т. е. могут полярографически совсем не открываться, например никель, кобальт, марганец и цинк, связанные в комплекс с комплексоном И1, в среде аммиака и хлорида аммония восстанавливаются при потенциале более отрицательном, чем ион аммония [80]. Для характеристики отдельных комплексонов необходимо знать потенциалы выделения отдельных комплексных соединений металлов при различных pH. В этом направлении были исследованы, и то не полностью, нитрилотриуксусная кислота, этилендиаминтетрауксусная кислота и 1,2-диаминоциклогексан-1Ч, N, N, N -тетрауксусная кислота. [c.144]

    К 1 мл раствора соли кобальта (И) прилить 3—4 ял насыщенного раствора роданида аммония ЫН,СЫ5 (или роданида калия) и 1—2 мл амилового спирта. Смесь в пробирке взболтать. Дав ей отстояться, наблюдать синее окрашивание слоя амилового спирта вследствие образования комплексного соединения кобальта (КШ,)2[Со(СЫ5),], лучше растворимого в органическом растворителе, чем в воде. [c.193]

    Гидроокиси цинка, кобальта и никеля растворимы в гидроокиси аммония с образованием комплексных соединений (аммиакатов) [c.176]

    Фосфаты алюминия, цинка и хрома, гидроокиси которых растворимы в едких щелочах, также растворяются в щелочах с образованием алюминатов, цинкатов и хромитов. Фосфаты цинка, никеля и кобальта, способные давать комплексные соединения с аммиаком, растворимы в гидроокиси аммония. [c.218]

    Роданид кобальта-ртути. Очень разбавленные растворы солей кобальта реагируют с роданидом калия-ртути Hg( NS)4K2, образуя комплексное соединение синего цвета. Реакция протекает очень медленно, но в присутствии малого количества цинка сразу дает синий осадок из-за его каталитического действия. Железо дает красную окраску, которую можно замаскировать, промыв во фториде аммония, а медь дает зеленый осадок. [c.74]

    Так возникло обыкновение рассматривать аммиачные комплексные соединения как замещенные аммонии, и это представление достигло известной законченности в так называемой аммонийной теории Гофмана который уже дал определенные формулы для ряда комплексных соединений различных металлов, и в частности для солей кобальта, рассмотренных в главе I. [c.82]

    Использование комплексонов в полярографии обещает многое. Образование прочных комплексных соединений с различными катионами сопровождается сдвигом потенциалов полуволн к отрицательным значениям. Некоторые комплексы восстанавливаются вне области поляризации капельного электрода, т. е. полярографически вообще не проявляются. Примером могут служить катионы никеля, кобальта, марганца и цинка, которые, будучи связаны в комплекс с комплексоном, восстанавливаются при потенциале, более отрицательном, чем ион аммония [1]. [c.221]

    Соли кобальта (II) розово-красного цвета. Со является комплек-сообразователем с координационным числом 4 или 6 и образует комплексные соединения с различными лигандами НгО, NH3, N", NS" и т. д. Например, с роданид-ионами образуется темно-синий тетраро-дано-(Н) кобальтат калия или аммония, устойчивый в среде с малой диэлектрической постоянной  [c.135]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Полученный раствор разлеР5те в две пробирки. В одной нз них тщательно перемешайте раствор стеклянной палочкой и наблюдайте за изменением окраски вследствие окисления полученного комплексного соединения кобальта (П) в комплексное соединение кобальта (П1) (координационное число остается равным 6). Прилейте две капли раствора сульфида аммония. Почему вьшадает осадок Во вторую пробирку добавьте 2—3 капли 3%-ного раствора пероксида водорода. Почему изменяется окраска  [c.195]


    Все карбонаты и оксикарбона ы растворимы в органических и минеральных кислотах. Оксикарбонат цинка растворяется в растворе NaOH, образуя при этом циикат. Оксикарбонаты цинка, кобальта и никеля растворяются в растворе NH4OH с образованием комплексных соединений — аммиакатов. В растворах солей аммония растворимы только карбонаты и оксикарбонаты цинка, железа (И), кобальта н никеля. [c.264]

    В щелочной среде в присутствии окислителя (персульфата аммония, иода или бромной воды) диметилглиокси-мат никеля растворяется и окрашивает раствор в красный цвет. Молярный коэффициент погашения диметилглиоксимата никеля в этих условиях составляет 1,3-10 при Ятах = = 470 нм (рис. 8). Высокий молярный коэффициент погашения растворов комплексного соединения никеля с диметилглиоксимом позволяет применять при фотометриче-ско г определении небольшие навески. Допустимы значительные количества меди и кобальта. [c.79]

    Установлена возможность разделения платины и кобальта с использованием в качестве электролитов растворов хлорида калня, хлорида аммония, соляной кислоты, роданида калия и винной кислоты [1111]. Разделены электрофоретически смеси мышьяк — висмут — кобальт, мышьяк — кадмий — кобальт, мышьяк — свинец — кобальт с электролитом — 0,1 N раствором цитрата натрия и смеси сурьма — серебро — кобальт и сурьма — мышьяк—кобальт с фосфорной кислотой в качестве электролита [1110]. Изучалась электрофоретическая подвижность катионов серебра, свинца, ртути, висмута, кадмия, меди, железа, марганца, никеля и кобальта на бумаге в растворах нитрата калия различной концентрации [1073]. Исследовалось разделение различных комплексных соединений трехвалентного кобальта методом электрохроматографии [1026] и другими методами [1112]. [c.84]

    Последнюю можно рассматривать как пятиосновную кислоту, диссоциирующую ступенчато с образованием анионов, окрашенных в различный цвет. При pH ниже 9 индикатор окрашен в красно-фиолетовый цвет, при pH от 9 до 11—в фиолетовый цвет и при pH выше 11 — в синий цвет. Комплексное соединение кобальта с мурексидом окрашено в желтый цвет. Мурексид можно применять для прямого титрования кобальта раствором комплексона П1 при pH около 9—10, которое создают раствором гидроокиси аммония. Слишком большой избыток аммиака разрушает мурексидный комплекс кобальта кроме того, в этом случае кобальт окисляется до трехвалентного кислородом воздуха. В точке эквивалентности окраска переходит из желтой (цвет комплекса кобальта с мурексидом) в фиолетовую (цвет свободного красителя). Кобальт титруют раствором комплексона 1П в присутствии мурексида после отделения тиоаце-тамидом [717] (железо можно замаскировать тайроном) или ар-саниловой кислотой [1114]. Не мешают щелочноземельные металлы, однако все тяжелые металлы должны быть отделены. Кобальт можно также титровать раствором НТА [928]. [c.120]

    Переходы окраски его связаны со ступенчатой диссоциацией и образованием анионов различного состава. При pH 1—7 образуются двухзарядные анионы, окрашенные в желтый цвет, при pH 7,4—10 в растворе находятся трехзарядные анионы фиолетового цвета, а при pH выше 10 — четырехзарядные анионы синего цвета. Комплексное соединение кобальта с пирокатехи-новым фиолетовым образуется при pH от 8 до 10 и окрашено в синий цвет. Титрование комплексоном ведут в буферном растворе, состоящем из смеси 1 N растворов гидроокиси аммония и хлорида аммония, до перехода окраски из синей в фиолетовую. Изучались взаимодействие ионов кобальта с индикатором, состав образующихся комплексов, их оптические свойства и константы нестойкости [572]. [c.120]

    Немецкий химик Отто Эрдман в 1834 г., получая новые комплексные соединения кобальта, смешал растворы хлорида кобальта(П), нитрита натрия, хлорида аммония и аммиака, поместил смесь в колбу, а потом в течение полутора часов продувал через жидкость воздух. Из раствора начал выпадать осадок желтого цвета — мелкие кристаллики ромбической формы. Анализ осадка показал, что его состав отвечает брутто-формуле Со(М02)д МН МОд 2КНд. Это комплексное соединение стали называть солью Эрдмана. Впоследствии выяснилось, что во внешней сфере комплекса находятся только катионы аммония. Напишите формулу комплексной соли и дайте ей современное название. [c.255]

    Роданомеркуриат аммония (NH4)i[Hg( NS)4l прибавленный к раствору, содержащему ионы цинка и двухвалентной меди, выделяет те.мнофиолетовый кристаллическим ссадок комплексного соединения рода-нидов цинка, ртути и меди. Реакция однозначна в отсутствие солей жс-леза(З), никеля и кобальта. [c.155]

    Кобальт определяют фотометрическим методом, который основан на реакции образования комплексного соединения кобальта с нитро-зо-К-солью ° при pH 6. Для поддержания pH 6 рекомендуется либо ацетатный буферный раствор -, либо раствор, содержащий цитрат-, фосфат- и борат-ионы Но в связи с тем, что ортофосфаты титана мало растворимы в воде, лучше использовать ацетатный буферный раствор. Гидролиз солей титана предотвращается добавкой фторида аммония в качестве комплексующего агента, а чтобы избежать осаждения малорастворимого фтортитаната натрия, вместо ацетата натрия в качестве буферного раствора применяют раствор ацетата аммония. [c.39]

    МОЖНО определить лишь при достаточно высокой концентрации аммиака и особенно аммонийной соли. Это означает, что лутео-ион в рассматриваемых условиях устойчив. Указанный факт наводит на мысль, что металлический электрод и система комплексов кобальта (И) могут совместно катализировать установление равновесия в системе солей кобальта (III). Непосредственно это было доказано несколькими опытами. Так, розео-нитрат, растворенный в 1 н. растворе нитрата аммония, 2 н. по отношению к аммиаку, частично превращался в лутео-соль при добавлении ртути и небольшого количества соли кобальта (II) при перемешивании всей смеси в атмосфере азота. Однако сам раствор розеонитрата в отсутствие катализаторов вполне устойчив. Несколько капель коллоидного раствора палладия и небольшое количество соли кобальта (II) оказывают еще более сильное каталитическое действие, чем ртуть. Из нескольких предварительных опытов с такого рода каталитическими системами было установлено, что скорость образования лутео-соли возрастает с увеличением отношения концентрации аммиака к концентрации аммонийной соли, т. е. с увеличением pH. Можно предположить так же, что скорость образования лутео-соли возрастает с увеличением концентрации кобальта (П). Казалось бы, по существу характер процесса вдаь ной каталитической системе ясен. Однако указанные системы имели ограниченное значение для исследования состояния равновесия в растворах, содержащих комплексные соединения кобальта (III), по следующим причинам 1) взаимодействие в таких системах происходило довольно медленно 2) наличие кобальта (II) усложняло проведение опытов, например вызывало необходимость создания атмосферы азота и др. 3) присутствие в равновесных растворах коллоидного палладия затрудняло оптические исследования. Именно поэтому большое значение имело то обстоятельство, что активированный уголь оказался очень эффективным катализатором в указанных процессах. Было найдено, что равновесие между комплексными соединениями кобальта (III) в присутствии угля устанавливалось в течение нескольких часов даже без добавления соли кобальта (II). [c.245]

    Пиридин-иодидный метод Сурьму III) определяют по желтому окрашиванию ее комплексного соединения- с пиридином и иодид-ионами, Py-HI Sblj, образующегося в кислых растворах. Это соединение удерживается в коллоидном состоянии добавлением гуммиарабика или желатины. Максимальная по интенсивности окраска получается в растворе, 6—8 н. по содержанию серной кислоты. Концентрация иодида калия после добавления всех реактивов должна быть равна 1%. Хлорид-ионы ослабляют окраску, а в больпшх количествах ее разрушают. Слишком большие количества пиридина также несколько ослабляют окраску. Мышьяк и олово в мадых количествах (десятые доли миллиграмма) не мешают определению сурьмы (большие количества мышьяка надо предварительно удалить гипофосфитом натрия). Висмут, никель, кобальт и цинк мешают, образуя осадки. Сурьму обычно предварительно выделяют на медной фольге (см. выше, стр. 324) или соосаждением с двуокисью марганца . От висмута сурьму отделяют сульфидом аммония. [c.329]

    Установлено , что гидроокись тория количественно выделяется пиридином в виде плотной модификации, обладающей незначительной адсорбционной способностью. Хлорид и нитрат аммония ускоряют коагуляцию и отстаивание осадка. Сульфаты мешают осаждению вследствие образования сульфатоториатов. Влияние небольших количеств сульфатов можно устранить введением избыточного количества хлорида аммония. При осаждении пиридином происходит отделение тория от марганца, никеля, кобальта, меди, цинка и кадмия, образующих растворимые комплексные соединения с осадителем. Благодаря тому что пиридин не образует прочных карбонатов и не поглощает двуокиси углерода из воздуха, метод удобен для отделёния тория от щелочноземельных металлов. Небольшая адсорбционная способность осадка обусловливает хорошее отделение тория от щелочных металлов. Доп. перев.  [c.606]

    Разбавленный водный раствор аммиака выделяет из концентрированных растворов солей никеля осадок основной соли свет-ло-зеленого цвета, растворимый в избытке аммиака с образованием комплексных соединений [N (N113)4] + и [Ni(NH3)e] +, окрашенных в синий цвет. Гексааммиакат никеля с КВг образует малорастворимое соединение [Ni(NHs)e]Br2 осадок окрашен в аметистовофиолетовый цвет перхлорат аммония выделяет осадок голубого цвета lNi(NH3)el( I04)2 [46]. Кобальт дает аналогичное соединение l o(NH3)в](0104)2 желто-красного цвета. [c.46]

    Соли кобальта в больших количествах осложняют обнаружение никеля. В этом случае к раствору соли никеля и кобальта приливают концентрированный раствор K N и 3%-ный раствор HgOa до растворения осадка. К раствору цианидов [Ni( N)4] " и [ o( N)e] добавляют растворы 40%-ного формальдегида и 1%-ного диметилдиоксима. В присутствии никеля выделяется осадок диоксимата никеля. Обнаруживать никель в присутствии кобальта можно также, переводя последний в аммиачной среде при достаточной концентрации хлорида аммония и диметилглиоксима в комплексное соединение [ o2NH3(HD)2]+. [c.49]

    Метод электролиза применяется в техническом анализе специальных сталей и сплавов как для определения, так и для отделения никеля. Лучше всего никель выделяется электролитически из аммиачного раствора, когда весь он находится в форме аммиачного комплексного соединения. Для повышения электропроводности раствора обычно добавляют сульфат аммония. Концентрация аммиака должна быть достаточной для предотвращения выделения гидроокиси никеля. Свободные минеральные кислоты (НС1 или HNO3), применяемые для растворения образца, удаляют выпариванием с H2SO4 в платиновой или кварцевой чашке, к остатку прибавляют воду, раствор нейтрализуют аммиаком и добавляют 3—5 г сульфата аммония. В растворе должны отсутствовать, кроме кобальта, ионы меди, цинка, серебра, также образующие аммиакаты они выделяются вместе с никелем. [c.81]

    Опыт 8. Получение гексааммино-кобальто-(11)хлорида. К раствору хлорида кобальта (II) прибавляют раствор хлорида аммония и избыток раствора аммиака. Образуется розово-красный раствор комплексного соединения [Со(МН8)б1С12. Напишите уравнение реакции в молекулярной и ионной форме. [c.108]

    Аммиачный метод анализа основан на первоначальном действии на катионы Н1 аналитической группы смеси избытка гидроокиси аммония и хлорида аммония. При этом выпадают в осадок гидроокиси, которые не растворяются в избытке КН ОН и КН4С1 в растворе остаются ионы кобальта, никеля и цинка в виде аммиакатов и ионы марганца. Появление в растворе аммиакатов объясняется тем, что гидроокиси кобальта, никеля и цинка растворяются в избытке ЫН ОН с образованием комплексных соединений. [c.238]

    Предварительное концентрирование примеси аминов проводят экстракцией четыреххлористым углеродом. Практически количественное извлечение третичных аминов (>90% отн.) и хорошее расслаивание фаз достигается путем введения нитрата аммония в исходный для экстракции раствор. При этом примеси неорганических веществ, присутствующих в анализируемых растворах, в органическую фазу практически не экстрагируются и последующему определению аминов не мешают. При определении сконцентрированных третичных аминов используют экстракционное извлечение комплексного соединения амин-роданид кобальта в СС14. Повышение чувствительности в 10—12 раз достигается при фотометрировании соединения кобальта с нитрозо-Р-солью в реэкстракте. [c.556]

    Все карбонаты и оксикарбонаты растворимы в органических и минеральных кислотах. Оксикарбонат цинка растворяется в NaOH, образуя при этом цинкат. Оксикарбонаты цинка, кобальта и никеля растворяются в NH OH с образованием комплексных соединений—аммиакатов. В растворах солей аммония растворимы только карбонаты и оксикарбонаты двухвалентных цинка, железа, кобальта и никеля. Оксикарбонат бериллия и уранилкар-бонат натрия растворяются в концентрированном растворе Na. Og. [c.287]

    Так же поступают и при определении ионов Со . Роданид аммония образует с ионами Со комплексное соединение — тетрарода-но-(Н) кобальтат аммония (КН4)г [Со(ЗСЫ)4] интенсивно-синего цвета, а с ионами Ре — роданид железа Ре (5СН)з, окрашенный в кроваво-красный цвет. Ионы железа мешают открытию кобальта, поэтому добавлением к исследуемому раствору фторида натрия связывают ионы железа в прочный комплекс N83 [РеРв], не реагирующий с роданидом аммония. [c.32]

    Качественное открытие элемента или иона методом растирания производится в присутствии других элементов и применяемые для этой цели реакции являются типично дробными. Следовательно, здесь совершенно исключаются обычные приемы разделения химических элементов, в силу чего анализ занимает весьма мало времени. Мешающее влияние сопутствующих элементов или ионов устраняется переводом их в другую валентность или связыванием в прочные комплексные соединения с помощью реакций маскировки. Примером может служить совместное открытие меди, окисного железа и кобальта действием роданида аммония. При растирании смеси USO4, Рег (804)3 и 0SO4 с несколькими кристалликами NH4 NS вся масса приобретает черную окраску от образовавшегося роданида меди. После добавления [c.44]


Смотреть страницы где упоминается термин Кобальта комплексные соединения аммония: [c.29]    [c.115]    [c.83]    [c.374]    [c.26]    [c.99]    [c.276]   
Лабораторные работы по химии комплексных соединений Издание 2 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аммоний соединения

Аммония кобальта

Кобальта идо-соединения

Комплексные соединения аммония



© 2025 chem21.info Реклама на сайте