Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача при реакции в жидкости

    При высокой активности катализатора, т. е. при к кс, общая скорость реакции будет равна скорости массопередачи из жидкости к поверхности гранулы. Для этого случая уравнение скорости сведется к виду  [c.111]

    Теория макрокинетики каталитических реакций в газовой фазе разработана довольно подробно существуют надежные методы определения макрокинетического режима протекания реакции в различных условиях. Однако экспериментальные методы определения макрокинетического режима при осуществлении жидкофазных реакций должны отличаться от применяемых при газофазных процессах. При осуществлении контактных реакций в жидкой фазе можно ожидать более существенных затруднений с процессами переноса, чем в случае реакций в газовой фазе. Это связано с тем, что коэффициенты диффузии и массопередачи в жидкости значительно меньше, чем в газах. Кроме того, скорость реакции может лимитироваться скоростью растворения газообразного реагента. [c.422]


    При проведении химических реакций часто применяют контактирование газов или жидкостей с твердыми частицами. В наиболее распространенных случаях твердое вещество является катализатором. Обычно твердое вещество гранулируют для улучшения его реакционной способности или когда оно используется в нагревателях в качестве твердого теплоносителя. Такие процессы чаще всего проводят в потоке, и течение сопровождается падением давления по направлению потока. Кроме того, обычно наблюдаются значительные тепловые эффекты, а иногда сам процесс лимитирует скорость диффузионной массопередачи. Нередко все эти явления сопутствуют друг другу. [c.241]

    Если, например, абсорбционный процесс попадает в режим мгновенной реакции , то метод непригоден, так как коэффициент ускорения не зависит от (см. раздел V-3). Желательно, а может быть и необходимо, подбирать такую комбинацию газа и жидкости, чтобы скорость абсорбции была одной и той же во всех точках колонны и не зависела от количества абсорбированного газа. Кроме того, лучше не иметь дела с системами, в которых имеется заметное сопротивление массопередаче в газовой фазе. [c.211]

    О влиянии гидродинамической обстановки у поверхности жидкость— газ на массопередачу, сопровождаемую химической реакцией второго порядка. [c.282]

    Принимая, что сопротивление массопередаче из газа в жидкость сосредоточено только в жидкой пленке, химическая реакция [c.240]

    Гетерогенная модель. Если скорость процесса массопередачи мала или сравнима со скоростью реакции Гел, то равновесие между газом и жидкостью не достигается нигде в объеме аппарата. Поэтому для расчета степени превращения уравнения (5.13) и (5.14) должны быть решены одновременно. В этом случае конверсия строго зависит от величины межфазной поверхности а, и выбор условий проведения процесса более сложен, чем в первом случае. Типичными примерами таких ситуаций являются процессы абсорбции, сопровождающиеся химической реакцией абсорбируемого компонента в жидкой фазе. [c.241]

    Как это ни парадоксально, но при расчете химических реакторов жидкость — жидкость или жидкость — газ гораздо чаще приходится сталкиваться с обычной физической массопередачей, чем с массопередачей, осложненной химической реакцией. Этот факт является следствием физической природы и механизма влияния химической реакции на скорость процессов переноса. [c.226]


    В системе жидкость — жидкость лимитирующее сопротивление реакционной фазы — явление чрезвычайно редкое. Реакция, как правило, протекает в сплошной фазе. Если коэффициенты молекулярной диффузии переходящего компонента в фазах не сильно отличаются по величине, то коэффициент массоотдачи в сплошной фазе в 6—10 раз больше, чем коэффициент массоотдачи в дисперсной фазе [6]. Лимитирующее сопротивление сплошной фазы в этих условиях имеет место при величине коэффициента распределения <0,1. Если при этом учесть увеличение скорости массопередачи в сплошной фазе под воздействием химической реакции, то становится очевидным, что лимитирующее сопротивление реакционной фазы может иметь место лишь при очень малых значениях коэффициента распределения (г ) 10 ). Столь низкие значения коэффициентов распределения в системе жидкость — жидкость встречаются сравнительно редко. [c.227]

    В подавляющем большинстве двухфазных жидкостных реакторов жидкость—жидкость или жидкость—газ химическое взаимодействие происходит в сплошной фазе. Поэтому наибольший интерес при расчете скорости массопередачи, осложненной химической реакцией, представляет случай, когда процесс массопередачи лимитируется сопротивлением сплошной реакционной фазы. [c.237]

    При оценке величины Ки здесь использована эмпирическая зависимость фактора массопередачи числа Ке (см. раздел 111.1). Примерно такая же оценка получается для поправки к коэффициенту теплопередачи, если заменить в уравнении (VI. 141) на а/ и диффузионные числа Ки и Рг на тепловые. Безразмерный фактор формы а1 —величина порядка нескольких единиц (о/ = п для простой кубической упаковки шаров ж а1 А для объемно-центрированной упаковки). Из формулы (VI. 141) видно, что при обычных скоростях потока (Ке > 10 ) поправки к коэффициентам переноса незначительна для жидкостей (Рг >1). Для газов (Рг 1) относительная поправка может составлять при Ке — 10 30—40% с увеличением числа Ке эта величина уменьшается, хотя и довольно медленно. Легко заметить, что величина рах характеризует максимальную степень превращения исходного вещества в одной ячейке, достижимую, когда реакция протекает в диффузионном режиме. Так как Ро8< 1, в кинетическом режиме (А < Р) степень превращения в одной ячейке всегда мала. [c.250]

    Здесь X — координата вдоль реактора 81 и Бз — доли сечения реактора, занимаемые газом и катализатором — линейные скорости потока в жидкости и газе О — эффективный коэффициент продольной диффузии в жидкой фазе Р1 — коэффициент массопередачи между фазами а — поверхность раздела фаз в единице объема реактора г[з — обратное значение коэффициента Генри — удельная внешняя поверхность катализатора в пересчете на единицу длины реактора и единицу сечения /) — эффективный коэффициент диффузии в капиллярах катализатора 5 — координата по радиусу зерна Р ц — внутренняя поверхность зерна катализатора р — скорость реакции по компоненту А в пересчете на единицу внутренней поверхности катализатора ус — стехиометрические коэффи- [c.302]

    Гомогенная реакция в одной и более фазах Гетерогенная реакция на границе раздела двух фаз Гомогенная реакция с удалением продукта (например, экстракция жидкости жидкостью, стр. 157) Реакция на поверхности твердого катализатора (стр. 171) Массопередача с химической реакцией(например, химическая абсорбция газа, стр. 160) Реакции в слое псевдо-ожиженного твердого тела (например, сжигание углерода, стр. 181) [c.153]

    Такое положение наблюдается также для умеренно быстрых реакций, когда достаточно интенсивна наружная массопередача (при высокой скорости движения жидкости через частицы), а сопротивление диффузии внутри частицы довольно мало (при высокой внутренней пористости и малом диаметре частицы). Если скорость химической реакции велика по сравнению с физическим транспортом вещества, то реакция будет происходить во внешнем слое частицы. В предельном случае, когда реакция мгновенна, она протекает только на наружной поверхности частицы при этом внутренняя поверхность никакой роли не играет и как бы отсутствует. [c.172]

    Кривые показывают, что степень использования внутренней поверхности катализатора снижается по мере увеличения скорости химической реакции и физического сопротивления движению реагента. Кроме того, видно, что в данной системе реагенты — катализатор увеличение фактора эффективности связано с размером частицы и в меньшей степени — с коэффициентом массопередачи р [последний приблизительно нронорционален Изменение этих двух параметров в опытах по исследованию превращения позволило установить, что физический перенос влияет на полную скорость превращения. Таким образом, если на скорость превращения не влияет скорость движения жидкости, то можно утверждать, что торможение внешней массопередачей отсутствует внутренняя диффузия, однако, может быть ограничивающим фактором. Чтобы получить окончательное решение, исследуют влияние диаметра частиц. [c.177]


    Кинетическое уравнение для гетерогенного процесса описывает его суммарную скорость. Это заставляет нас выяснить, как включать скорости процессов переноса для отдельных стадий в общее выраже--ние скорости. Проблема нахождения скорости сложных процессов встречается при исследовании теплопередачи путем теплопроводности через слои различных материалов, конвективной тепло- и массопередачи от одной жидкости к другой через неподвижные пограничные слои, а также при изучении сложных реакций. Однако во всех указанных случаях суммарная скорость характеризуется скоростями процессов одного типа. [c.324]

    Указанные коэффициенты, приводимые обычно в литературе, относятся к чистым процессам массопередачи при отсутствии химической реакции и, следовательно, отражают перенос вещества только через пленку газа или жидкости. Связь между величинами и Сд для систем газ—жидкость выражается коэффициентом распределения, или при равновесных условиях константой Генри  [c.372]

    Точное выражение для определения выхода целевого продукта в данном случае еще неизвестно. Однако по аналогии с очень быстрой реакцией между двумя жидкостями, описанной в главе X, можно ожидать, что чем больше влияние процессов массопередачи на скорость реакции, тем меньше С/5, В предельном случае для бесконечно быстрых реакций вероятность отвода Я от поверхности без дальнейшего его превращения ничтожна. Таким образом, когда лимитирующей является диффузия через пленку, находим  [c.438]

    Если катализатор — жидкость, а реагенты находятся в газовой или в жидкой фазе, несмешивающейся с фазой катализатора, то, как и в случае реакций на твердом катализаторе, кинетика процесса может определяться кинетикой реакции или массопередачей. Обычно реакция протекает в фазе катализатора и катализатор нерастворим в газовой или жидкой фазе, в которой находятся реагенты, а реагенты и продукты реакции мало растворимы в катализаторе. Предельными случаями в зависимости от соотношения скоростей реакции и массопередачи являются следующие. [c.156]

    Роторные пленочные аппараты, применяемые в промышленности для упаривания растворов, могут успешно использоваться и для проведения химических реакций между газом и вязкими жидкостями. Основа конструкции такого аппарата (рис. 9) содержит традиционные элементы кожух /, заключенный в рубашку, вал 2 с лопастями 3 и распределитель жидкости 4. Лопасти могут быть как жестко закрепленными, так и подвешенными на шарнирах. При обработке очень вязких жидкостей (паст) хорошо зарекомендовали себя винтовые жестко закрепленные лопасти. В отличие от аппаратов других типов в роторном пленочном реакторе свободная поверхность жидкости из-за воздействия лопастей непрерывно обновляется. Это приводит к существенной интенсификации процесса массопередачи. [c.16]

    Анализируя уравнение (11.68), следует отметить вытекающую из него независимость коэффициента массопереноса от размеров газового пузыря, что подтверждается и экспериментальными данными. Это положение несколько облегчает задачу расчета массообмена в барботажных реакторах, однако остается неопределенность относительно поверхности контакта фаз, для нахождения которой до сих пор нет надежных рекомендаций. Поэтому при описании кинетики газожидкостных реакций часто пользуются объемным коэффициентом массопередачи характеризующим собой количество вещества В, прореагировавшего в 1 м реакционного объема аппарата. В связи с этим следует вернуться к уравнению (И.55), в котором скорость реакции зависит от газосодержания системы. Появление в нем объясняется тем, что удельная поверхность а отнесена к реакционному объему аппарата Ур, т. е. к объему газожидкостной смеси. Если отнести поверхность контакта фаз к объему жидкости, участвующей в массообмене, то уравнение (И.55) не будет содержать параметра 1 — фр. Из этого следует, что для исключения 1 — ф из эмпирических уравнений, характеризующих объемный коэ ициент массопередачи, его нужно относить к объему жидкости, находящейся в реакционной зоне аппарата. [c.41]

    При увеличении скорости потока газа (или жидкости) транспорт веществ к зоне реакции ускоряется и при определенных условиях внешняя массопередача становится быстрее внутренней, и эта последняя оказывается лимитирующей. [c.256]

    При реакциях между флюидными фазами (газами и жидко-костями) и твердыми телами или газами и жидкостями при достаточно малых скоростях потока в движущейся фазе лимитирующим звеном оказывается внешняя массопередача (диффузия). При увеличении скоростей внешних потоков лимитирующей становится внутренняя диффузия. Естественно, что скорости внутридиффузионных процессов не зависят от скорости внешнего потока. [c.474]

    Рассматривая постепенное возрастание скорости растворения газа в химически реакционноспособной жидкости при постепенном повышении реакционной способности можно убедиться, что, как следует из табл. 8.1, на скорость растворения оказывает влияние несколько факторов. Во-первых, при исчезающе малых значениях константы скорости реакции жидкость становится насыщенной физически растворенным и непрореагировавшим газом тогда аппарат работает в условиях, когда химический процесс далек от завершения. Во-вторых, при промежуточных значениях скоростей реакции, приходящихся на единицу объема раствора, вся масса жидкости оказывается доступной для химического взаимодействия, в растворе накапливается небольшое количество непрореагнровавшего газа, и скорость абсорбции становится пропорциональной суммарному количеству жидкости, находящейся в аппарате. Наконец, при очень быстрых химических реакциях коэффициент массопередачи возрастает, поскольку процесс протекает вблизи границы раздела фаз, где диффузия носит критический характер в таком случае скорость растворения оказывается пропорциональной полной поверхности, развитой в аппарате, а не объему жидкости. [c.337]

    Литература по массопередаче с химической реакцией в системах твердое тело — жидкость очень обильна и здесь может быть дана только очень краткая аннотация. Этот вопрос детально рассмотрен в ряде книг [47—52], посвященных каталитическим реакциям. Недавно было представлено много работ по факторам эффективности пористых катализаторов [63—60]. Среди прочих в работах [51—64] обсуждены некаталитические реакции газ—твердое тело. Поверхностные реакции были теоретически исследованы в ряде статей [65—74]. Обзоры исследований в области массопередачн в пограничных слоях были представлены Кузиком и Хаппелем [75] и Вегером и Хельшером [76]. Тема обсуждалась в разделах 3.4, [c.165]

    Псевдогомогенная модель. Еслп скорость массопередачи велика по сравнению со скоростью реакции rgif, то по всему объему реактора устанавливается равновесие между газовой и жидкой фазами, и для расчета процесса в РВГЖП достаточно решить уравнение (5.13), дополняя его уравнением равновесия между газом и жидкостью 56  [c.241]

    Для расчета реакторов целесообразно подразделить реакции в жидкостях на две группы 1) очень быстрые реакции, скорость которых на поряд.чи превышает скорости процессов переноса, имеющих место в жидкостных системах 2) реакции, протекающие со скоростями, сравнимыми со скоростями указанных процессов. К первой группе относятся реакции между неорганическими молекулами, диссоциированными на ионы, ко второй — практически все реакции органических соединений. Скорость реакций первой группы не может быть лил1итирующей для всего реакторного процесса. Казалось бы, вид кинетического уравнения и значения самой скорости несущественны для расчета реактора. Действительно, это справедливо для достаточно грубых расчетов, не учитывающих влияния химической реакции на формальные значения коэффициентов массопередачи. Однако прп более точных расчетах, где указанные эффекты учиты- [c.27]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    Вопрос о коэффициенте межфазного массопереноса в случае катализсггора в виде утопленной насадки изучен недостаточно. Можно предполагать, что при достаточно малой толщине пленки жидкости на поверхности катализатора будет проявляться влияние химической реакции на коэффициент массопередачи, аналогично тому, как это показано в гл. 13 для двухфазного реактора. Однако поскольку доля такой поверхности в общей поверхности [c.189]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]

    Количественное исследование влияния этих параметров требует детального знания механизма собственно массопередачи, без химической реакции. При движении жидкости вдоль твердых поверхностей в дисперсной системе рассматривают главным образом стационарную диффузию через образовавшийся пограничный слой. Модель нестационарной диффузии, соответству-юш ая случаю потока по подвижной (мобильной) поверхности, удовлетворяет уравнениям пенетрационной теории. В ограниченных застойных зонах массопередача также происходит путем нестационарной диффузии. Окончательный коэффициент массопередачи р выражается безразмерным числом Шервуда ЗЬ, а порядок его величин для некоторых слзгчаев приводился выше (стр. 154). [c.162]

    Очевидно, что в приведенных выше условиях реакция полностью протекает в граничной с поверхностью раздела области. Следовательно, объемная концентрация А в жидкости равна нулю. Умножая коэффициенты массопередачи со стороны газа и со стороны жидкостн на фактор химического ускорения F , получим, согласно уравнению (V,4) для мольного потока  [c.170]

    XII1-5. Разберем очень быструю реакцию, описанную В примере ХИМ. С увеличением содержания кислоты в поглощающей жидкости достигается такая точка характеристики, выше которой дальнейшего увеличения скорости массопередачи не происходит. Высота колонны, соответствующая указанной точке, является наименьшей, Определить минимальную концентрацию кислоты, при которой обеспечивается максимальная скорость массопередачи. [c.407]

    N203 образует с водой азотистую кислоту, которая разлагается по уравнению (в). Оксиды азота N0 и N20 практически нерастворимы в воде. Абсорбция диоксида азота является хемосорб-ционным процессом массопередачи в системе газ — жидкость, к которому применимы все способы интенсификации подобных процессов, рассмотренных в ч. I, гл. II и VI. В зависимости от условий общую скорость процесса могут определять реакции или диффузия диоксида азота из газовой фазы. Диффузионный этап обычно лимитирует в конце процесса абсорбции при малых концентрациях N02 в газовой фазе. По мере протекания процесса абсорбции N02 концентрация получаемой азотной кислоты возрастает при этом увеличивается упругость оксидов азота над раствором азотной кислоты, т. е. снижается движущая сила про- [c.104]

    Эксперименты на пилотной установке проводят для того, чтобы определить наилучший тип мешалки и конструкцию сосуда, требующиеся для достижения определенных результатов процесса. Желаемыми результатами процесса могут быть суспензи-рование твердого вещества в жидкости, диспергирование или эмульгирование несмешивающихся жидкостей, завершение химической реакции или любой результат множества других процессов, причем некоторые из них могут включать тепло- или массопередачу. [c.50]

    Центробежные экстракторы обладают существенными достоинствами. Эти аппараты весьма компактны п сочетают значительную производительность с высокой интенсивностью массопередачи. В них можно эффективно обрабатывать жидкости с небольшой разностью плотностей. Вместе с тем центробежные экстракторы отличаются малой удерживающей способностью и коротким временем пребывания жидкостей в аппарате. Эта особенность центробежных экстракторов обусловливает их успешное применение для экстракции легко разлагаюии1хся вешеств, например антибиотиков (пенициллина и др.), чувствительных не только к нагреванию, но и к продолжительному пребыванию в растворе при нормальной температуре. Вместе с тем эти аппараты пе пригодны для экстракции, сопровождаемой химической реакцией, когда требуется длительное время контакта фаз. [c.546]

    Шулмен с сотр. [591 предположили, что при испарении чистых жидкостей вся смоченная поверхность является активной, а при абсорбции хорошо растворимого газа часть смоченной поверхности, соответствующая застойным зонам, неактивна, так как жидкость в данных зонах быстро насыщается поглощаемым газом. Этим можно объяснить, что при испарении активные поверхности и, следовательно, объемные коэффициенты массопередачи выше, чем при абсорбции. Повышение активности жидкости в застойных зонах можно ожидать и при абсорбции, сопровождаемой быстрой химической реакцией в жидкой фазе. В указанном случае при достаточно большой концентрации активной части поглотителя малоподвижная жидкость в застойных зонах становится активной. Активность застойных зон зависит от концентрации газа с увеличением концентрации поглощаемого компонента в газе жидкость в зонах быстрее насыщается газом и активная поверхность уменьшается.. [c.452]


Библиография для Массопередача при реакции в жидкости: [c.372]   
Смотреть страницы где упоминается термин Массопередача при реакции в жидкости: [c.166]    [c.93]    [c.280]    [c.283]    [c.228]    [c.238]    [c.44]    [c.121]    [c.441]    [c.256]    [c.37]   
Введение в моделирование химико технологических процессов Издание 2 (1982) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте