Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетероцепные полимеры деструкция

    Чаще всего беспорядочная деструкция наблюдается при действии химических агентов на гетероцепные полимеры, содержащие в цепях функциональные группы, способные подвергаться гидролизу, ацидолизу, аминолизу и другим химическим превращениям. Глубина деструкции зависит от количества низкомолекулярного реагента и времени его воздействия. Такая деструкция может быть остановлена на любой стадии путем снижения температуры, удаления реагента или, наоборот, доведена до предела— до образования устойчивых молекул мономеров. Распад молекул целлюлозы под каталитическим действием кислот протекает по случайному закону  [c.240]


    У гетероцепных полимеров деструкция протекает наиболее интенсивно в результате одновременного действия повышенной температуры, кислорода воздуха и гидролитических реагентов (воды). [c.154]

    Процесс деструкции во многом зависит от природы и строения полимера. Химическая деструкция, например, наиболее характерна для гетероцепных полимеров (целлюлоза, крахмал, белки, полиамиды, полиэфиры, полиуретаны и т. д.) и протекает с разрывом связи углерод — гетероатом. [c.409]

    Химическая деструкция наиболее характерна для гетероцепных полимеров и протекает избирательно — с разрывом связи углерод—гетероатом конечным продуктом химической деструкции является мономер. Углерод-углеродная связь значительно более стойка к действию химических агентов, поэтому химическая деструкция карбоцепных полимеров возможна только в очень жестких условиях или при наличии боковых групп, понижающих прочность связей в основной цепи полимера. [c.264]

    Лучше всего изучен механизм химической деструкции гетероцепных полимеров. Механизм деструкции полимеров под влиянием физических воздействий интенсивно изучается в последние годы. Получен-нуе данные показывают, что реакции деструкции, протекающие под влиянием различных видов энергии, очень близки по механизму. Многие виды физической деструкции, например механическая и деструкция под влиянием частиц высокой энергии, нашли широкое применение в технике. [c.265]

    Механизм окислительной деструкции гетероцепных полимеров изучен меньше, чем карбоцепных. Для окислительной деструкции полиамидов, например, по аналогии с окислением низкомолекулярных амидов предложен радикальный механизм, причем процесс проходит через стадию образования гидроперекисей (наличие которых подтверждено [c.277]

    Некоторые гетероцепные полимеры деполимеризуются при нагревании с довольно высоким выходом. Так, полиметиленоксид деполимеризуется с образованием формальдегида, а при нагревании целлюлозы в вакууме при 100 С удается получить с хорошим выходом 1,6-ангидро-глюкозу. Тепловое воздействие играет большую роль и при других видах деструкции полимеров, повышая скорость, например, химической деструкции, механохимических процессов. Поскольку в условиях эксплуатации полимеров обычно протекает не термическая, а термоокислительная деструкция, то принципы стабилизации в этом случае ничем не отличаются от стабилизации полимеров к окислительной деструкции. [c.290]


    Химическая деструкция протекает под действием кислот, оснований, спиртов, воды, кислорода и др., она наиболее характерна для гетероцепных полимеров и протекает избирательно. Углерод-углеродная связь более устойчива к действию химических агентов, чем углерод-гетероатом, и поэтому полимерные углеводороды достаточно устойчивы к химической деструкции. [c.108]

    Окислительная деструкция целлюлозы происходит под действием различных окислителей, в том числе кислорода воздуха. Целлюлоза и другие полисахариды как гетероцепные полимеры с ацетальными связями довольно легко подвергаются окислительной деструкции. Находят практическое применение некоторые виды окисленных целлюлоз (см. главу 21 ). [c.545]

    Химическая деструкция представляет собой разрушение макромолекул при действии химических агентов. Она характерна для многих гетероцепных полимеров, содержащих в основной цепи группы, способные к химическим превращениям. Глубина деструкции зависит от природы и количества низкомолекулярного реаген-г та, условий его воздействия. [c.70]

    Химическая деструкция лучше всего изучена и наиболее часто наблюдается у гетероцепных полимеров она протекает избирательно за счет разрыва связи между углеродом и гетероатомом. Конеч-ны м продуктом реакции является мономер. Карбоцепные полимеры, макромолекулы которых не содержат кратной связи, обычно мало склонны к химической деструкции, так как связь С—С устойчива к наиболее ходовым реагентам. Только при очень жестких условиях или наличии в макромолекуле групп, снижающих прочность связей С—С в цепи полимера, происходит химическая деструкция карбоцепных высокомолекулярных соединений. Непредельные карбоцепные полимеры, например натуральный каучук, очень чувствительны к различным окислителям, но в этом случае деструкция [c.621]

    Окислительная деструкция гетероцепных полимеров детально изучена на примере целлюлозы по изменению вязкости ее растворов. Замедление процесса после достижения степени полимеризации 100—200 объясняется тормозящим влиянием альдегидных групп, образующихся при разрыве глюкозидной связи целлюлозной цепи и в первую очередь реагирующих с кислородом. [c.630]

    Необходимо учитывать также возможность деструкции цепей растворенного полимера под влиянием растворителя или термического воздействия и в том случае, когда все связи в молекуле являются го-меополярными. Так, например, многие гетероцепные полимеры, как полиамиды, белки, полиэфиры, целлюлоза и др., легко распадаются под влиянием растворителей кислотного характера, а также под влиянием кислорода и других агентов. Растворенные молекулы полимера чрезвычайно чувствительны к термическому и механическому воздействиям и легко подвергаются дроблению даже при многократном пропускании через капиллярный вискозиметр или при определении тех или иных свойств при высоких температурах. Следовательно, при выборе метода исследования растворов полимеров необходимо учесть особенности их химического строения и стабильность, возможность химического взаимодействия с растворителем и продуманно подобрать условия проведгния измерений. [c.17]

    Термическая деструкция гетероцепных полимеров [29] имеет очень сложный характер. У полиамидов уменьшение молекулярной массы сопровождается выделением метана, этана, пропана, бутана и этилена. Образование циклопентанона при этом можно объяснить следующей схемой  [c.636]

    Химическая деструкция наиболее часто наблюдается у гетероцепных полимеров и протекает избирательно за счет разрыва связи между углеродом и гетероатомом Карбоцепные полимеры, молекулы которых не содержат кратные связи, обычно мало склонны к химической деструкции Наиболее распространенным видом химической деструкции является гидролитическая Поскольку большинство лакокрасочных покрытий в большей или меньшей степени подвергается воздействию воды, необходимо знание закономерностей этой реакции [c.50]

    Под действием кислорода воздуха в полимерах протекают реакции, также приводящие к деструкции Поскольку этот вид деструкции отмечен и для карбоцепных, и для гетероцепных полимеров и не так строго избирателен, как химическая деструкция, его рассматривают как самостоятельный процесс — окислительную деструкцию [c.51]

    Структурирование полимеров под влиянием кислорода и света, как правило, приводит к расширению кривой МВР, а термическая деструкция в отсутствие кислорода — к снижению среднего молекулярного веса, а в случае наличия активных групп ведет к структурированию и расширению кривой МВР. Многие гетероцепные полимеры подвержены гидролизу под влиянием кислот и щелочей, что приводит к снижению среднего молекулярного веса. [c.27]

    Важнейшим условием получения воспроизводимых результатов при фракционировании любым методом является строгое соблюдение и регулирование температуры. Колебания температуры не должны превышать + 0,05°. Образцы полимеров, взятые для фракционирования, должны быть тщательно очищены от посторонних примесей, лучше всего фильтрацией приготовленного раствора через стеклянный фильтр и последующего осаждения путем добавления раствора в осадитель и вакуумной сушки выделенного осадка. Осадители и растворители, применяемые для фракционирования, также должны быть тщательно очищены от механических и химических примесей, так как многие гетероцепные полимеры способны к деструкции под влиянием следов гидролизующих примесей, имеющихся в растворителях. Необходимо соблюдать предосторожности, исключающие влияние деструкции и структурирования под действием тепла, света и кислорода воздуха на растворы и выделенные осадки. Фракционирование полиолефинов, проводимое при повышенных температурах, требует создания инертной атмосферы для избежания окислительной деструкции при высоких температурах. Структурирование под влиянием кислорода, света и тепла, как правило, приводит к расширению кривой ММР. [c.209]


    Интересные исследования проведены и в области деструкции гетероцепных полимеров. Первые исследования проводились на природных макромолекулярных соединениях древесине, [c.127]

    Использование селективных детекторов является интересным направлением в исследовании деструкции, особенно при изучении продуктов деструкции гетероцепных полимеров. Отметим, что селективность детектора может быть изменена путем использования различных реакторов [301 с селективными поглотителями, которые прочно удерживают соединения определенных классов. [c.169]

    В работах [33, 35] отмечается, что при наличии в основной цепи полимера гетероатомов (К, О, 81) понижается химическая стойкость полимеров. Гетероцепные полимеры, как правило, могут подвергаться гидролитической деструкции. Наличие ароматических звеньев в гетероцепных полимерах повышает их [c.85]

    Гетероцепные полимеры (в главной цепи которых имеются кроме углерода другие атомы) склонны к деструкции под действием химических реагентов, в частности, к гидролизу под действием щелочей и кислот. [c.66]

    Деструкция и растворение по всему сечению образца происходит, например, при гидролизе некоторых набухающих волокон или пленок из гетероцепных полимеров в щелочных или кислых средах, или при рассасывании отдельных видов волокон в живом организме вследствие каталитического (ферментативного) гидролиза. Механизм и кинетика гидролиза в этом случае детально рассмотрены в работе [25]. [c.21]

    Давая гигиеническую оценку пластмасс, врач должен учесть, наконец, также и возможность ее деструкции в процессе эксплуатации. Под деструкцией понимают частичное разрушение полимера, протекающее с разрывом связей основной молекулярной цепи. Деструкция полимера может протекать под действием химических агентов (воды, кислот, щелочей, спиртов, кислорода и т. д.) или под влиянием механических воздействий, тепла, света, ионизирующего излучения и т. д. Химическая деструкция наиболее характерна для гетероцепных полимеров и протекает обычно избирательно — с разрывом связи углерод — гетероатом. Конечным продуктом химической деструкции является обычно мономер. [c.328]

    Наиболее легко подвергаются гидролизу гетероцепные полимеры. По способности к гидролизу их можно расположить Б следующий ряд полисахариды>полиамиды (белки и синтетические полиамиды) >сложные полиэфиры>простые полиэфиры. Катализаторами реакции гидролиза служат ионы водорода № и гидроксила 0Н . Ионы водорода (кислоты) сильнее разрушают полисахариды (например, хлопчатобумажные ткани), а ионы гидроксила (щелочи) — белки (например, шерстяные ткани). Катализаторами гидролиза природных гетероцепных полимеров могут быть также различные ферменты. Реакцию гидролитической деструкции применяют специально для получения простых сахаров (моносахаридов) из полисахаридов и в том числе из полисахаридов древесины в гидролизном производстве (см. с. 123). [c.62]

    Полипептвды, являющиеся стереорегулярными сополимерами, способны, аналогично другим гетероцепным полимерам, как к реакциям деполимеризации (гидролитической деструкции), так и к разнообразным полимераналогичным превращениям. Специфичность строения макромолекул белков обусловливает возможность протекания сопряженных процессов деструкции цепей и полимераналогичных превращений. Кинетика химических реакций в белках определяется не только реакционной способностью тех или иных функциональных фупп, но и всеми структурными уровнями полимерного субстрата. [c.357]

    Деструкция полимеров. Химические реакции элементарных звеньев высокомолекулярных соединений часто осложнены побочными реакциями деструкции макромолекул. Строго говоря, полимераналогичные превращения возможны только в особых условиях, полностью исключающих деструкцию макромолекулы. В обычных условиях реакции элементарных звеньев сопровождаются частичной деструкцией, особенно реакции гетероцепных полимеров. Но и карбоцепные полимеры, которые содержат в цепи углерод-углеродпую связь, обладающую малой реакционной способностью, также часто деструктируются при химических превращениях. Поэтому к полимераналогичным превращениям условно относят и такие реакции полимеров, при которых протекает частичная деструкция макромолекулы, но не она определяет конечный результат реакции. [c.222]

    При нагреванни гетероцепных полимеров протекают очень сложные процессы, сопровождающиеся уменьшением молекулярной массы и выделением разнообразных продуктов разложения. Так, при термической деструкции [юлиаыидов при температуре выше 373 К выделяются метан, этан, пропан, бутан, [c.204]

    Стойкость полимера к термической деструкции определяется его термостойкостью, т.е. способностью сохранять химическое строение и основные свойства при высоких температурах переработки и эксплуатации полимеров. Наиболее высокой термостойкостью обладают трехмерные сетчатые и лестничные полимеры, содержащие большое число ароматических звеньев в своей структуре. Достаточно устойчивы к термической деструкции и некоторые гетероцепные полимеры, такие как полиимиды, полибензоксазолы, полиоксифенилен и др. Термическая деструкция, особенно при эксплуатации материалов на основе полимеров, сопровождается окислением, т.е. происходит совместное действие тепла и кислорода -термоокислительная деструкция. Устойчивость материалов к термоокислительной, да и к другим видам, деструкции характеризуется потерей массы их при нагревании. Для характеристики полимеров по этому показателю применяется термофавиметрический метод анализа (ТГА). На рис. 4.4 приведены термогравиметрические кривые ргаложения политетрафторэтилена в атмосфере азота и ки Jюpoдa воздуха. [c.111]

    Окислительная деструкция имеет большое значение для целлюлозы в связи с процессами отбелки технических целлюлоз и предсозрева-ния щелочной целлюлозы в вискозном производстве. Окислительная деструкция идет одновременно с окислением функциональных (спиртовых) групп. Полисахариды как гетероцепные полимеры легче подвергаются деструкции, чем карбоцепные, хотя в древесине наиболее легкоокисляемым компонентом является лигнин (см. 12.8.7). Реакции окисления полисахаридов будут рассмотрены в главе, посвященной окислению целлюлозы (см. 21.1, а также в 13.11.2). [c.280]

    Наличие в основной цепи полимера гетероатомов (—N =, — О—, —Si—) понижает химическую стойкость полимеров. Гетероцепные полимеры, как правило, могут подвергаться гидролитической деструкции. Наличие ароматических звеньев в гетероцепных полимерах повышает их химическую стойкость по сравнению с гетероцец-ными алифатическими полимерами. Например химическая стойкость полиформальдегида ниже, чем полифени- [c.53]

    Высокой химической инертностью и стойкостью к деструкции обладают фторопласты. Марки фторопластов Ф-4 Ф-4 НТД Ф-3 Ф-40 стойки ко всем средам, приведенным в таблице 33, значительную хим-стойкость демонстрируют и такие полиолефины, как ПЭНП ПЭВП и ПП, а также непластифицированный ПВХ. Несколько уступает им по химстойкости ПК и полистирольные пластики (ПС). Гетероцепные полимеры типа полиамидов склонны к гидролитической деструкции и активному набуханию вследствие своей гидрофильности. Нестоек к агрессивным средам конструкционный термопласт — полиформальдегид. [c.114]

    Многие типы полимеров подверже]н,1 г и д р о л и-ти ческой деструкции. Склонность к гидролизу определяется природой функциональт ЫХ групп и связей в макромолекуле, а также структурой полимера. Гидролитич. Д. может сопровождаться гидролизом боковых функциональных групп. Из гетероцепных полимеров лех че всего подвергаются гидролитич. Д. полиацетали, сложные полиэфиры и полиамиды. Карбоцепные полимеры, как правило, весьма устойчивы к гидролизу. Гидролитич. Д. катализируется иопами Н+ иОН (к-тами или щелочами). Д. полимеров, помимо воды, вызывают спирты, фенолы, аммиак и др. В этом случае мы имеем дело соответственно с алкоголизом, фенолизом или аммонолизом полимеров (см. Обменные реакции). [c.344]

    Деполимеризация — один из основных способов превращения полимеров в низкомолекулярные продукты, если в составе полимерной цепи нет омыляемых связей. При этом макромолекула разрушается под влиянием высокой темп-ры (сухая перегонка). Особенно успешно этот способ применяют для карбоцепных полимеров, однако в нек-рых случаях и гетероцепные полимеры способны деполимеризоваться с образованием исходных мономеров (напр., полиметиленоксид,поликапролактам). Полиметилметакрилат и полистирол при сухой перегонке превращаются в мономеры, из натурального каучука образуется изопрен. В случае других карбоцепных полимеров при этой реакции также часто образуются наряду с другими продуктами деструкции соответствующие мономеры. На основании исследования продуктов деполимеризации м. б. установлен характер структурных единиц в макромолекуле полимера и порядок их связывания друг с другом. Так, при термич. деструкции полистирола были выделены стирол, 1,3-дифенилпро-пан, 1,3,5-трифенилпентан, 1,3-дифенилбутен и др. соединения, что явилось основанием для вывода о строении макромолекулы полистирола, соответствующем [c.68]

    Из карбоцепных полимеров наихудшая Д. у тех, макромолекулы к-рых содержат бензольные ядра, способные образовывать в результате термоокислительной деструкции структуру типа графитовой. Хорошей Д. обладают гетероцепные полимеры, в основной цепи к-рых атомы углерода чередуются с др. атомами, способными при окислении образовать легколетучие продукты. Вследствие этого образование непрерывных токопроводящих дорожек затруднено. Еще более высока Д. элементоорганич. полимеров, таких как полиорганосилоксаны, т. к. в них относительно мало углерода и, кроме того, образующаяся при термоокислительной деструкции ЗЮа очень тугоплавка и не проводит тока. Высокая Д. нек-рых неорганич. полимеров, напр, полиалюмофосфатов, объясняется тем, что они не плавятся, совсем не подвержены термоокнслительной деструкции и мало подвержены термической деструкции. [c.383]

    Диапазон рабочих темп-р наиболее распространенных полимерных материалов на основе карбоцепных полимеров обычно не превышает 100—150 °С. При более высоких темп-рах происходит резкое изменение М. с. (уменьшение жесткости, прочности, твердости), связанное с приближением к темп-ре текучести аморфных или темп-ре плавления кристаллич. полимеров (см. Теплостойкость). Вплоть до темп-р 300—400 С способны сохранять прочность и жесткость нек-рые гетероцепные полимеры, напр, кремнийорганические, тсо-лифениленоксиды, полиимиды, полибензимидазолы. Изменение М. с. перечисленных полимеров обычно бывает связано не с изменением агрегатного состояния, а с термической деструкцией (см. Термостойкость). [c.118]

    В работах С. Р. Рафикова, С, А. Павловой и др. изучены кинетика ж механизм термического, термоокислительного, гидролитического и радиационного старения гетероцепных полимеров (см. [120]). При этом установлено, что процессы старения характеризуются одновременным протеканием деструкции (по гомо- и гетеролитическому механизмам) и структурирования с образованием разветвленных, сшитых и высококон-денсированных структур. В результате этих исследований разработан новый способ стабилизации термостойких полимеров путем введения в полимерную систему соединений, способных распадаться при высоких температурах с образованием активных обрывателей радикально-цепных процессов. [c.123]

    Поверхностная деструкция и растворение имеют место, например, в малонабухающих гетероцепных полимерах при их гидролитической деструкции, а также в других малонабухаюшдх волокнах при их поверхностном травлении. [c.23]

    Способность к образованию гомоцепных неорганич. полимеров обнаружена у следующих элелюнтов бор, углерод, кремний, германий, фосфор, мышьяк, сурьма, висмут, сера, селен, теллур и олово, т. е. у сравнительно небольшого числа элементов, имеющих характер неметаллов. Число элементов, способных к образованию гетероцепных полимеров, значительно больше. Доказательство высокомолекулярного хя1рактера тех или иных неорганич. соединений часто сильно затруднено, т. к. не всегда удается найти подходяш,ий растворитель, в к-ром эти соединения растворялись бы без заметной деструкции и в к-ром проявляли бы себя как высокомолекулярные вещества. Заключение [c.351]

    Изучение механических свойств гетероцепных полимеров при низких температурах показало , что. для них характерно резкое повышение хрупкости при температурах, соответствующих стек-лапанию неполярных углеводородных участков цепей. Стеклование неполярных участков с иной плотностью упа1ковки сопровождается возникновением резких внутренних напряжений в молекулярных цепях полимер становится весьдма хрупким и легко-разрушается. Весьма вероятно, что увеличение скорости деструкции желатина при —70 X связано именно с этим эффектом. [c.91]


Смотреть страницы где упоминается термин Гетероцепные полимеры деструкция: [c.256]    [c.18]    [c.50]   
Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.348 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.263 ]

Химия сантехнических полимеров Издание 2 (1964) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Гетероцепные полимеры

Деструкция полимеров



© 2025 chem21.info Реклама на сайте