Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбции ионов на коллоидах

    Таким образом, видим, что адсорбция стеклом элементов, соединения которых легко гидролизуются, происходит различно в зависимости от состояния их в растворе. На основании изученных случаев можно считать, что максимум адсорбции наблюдается в различных областях pH для всех изученных элементов, но причины его образования в каждом отдельном случае могут быть различны. Увеличение адсорбции при определенных pH мон от происходить за счет адсорбции ионов, коллоидов этих элементов или посторонних коллоидов, на которых адсорбированы исследуемые элементы. В каждом отдельном случае требуется детальное изучение для выяснения характера адсорбции, но и уже полученные результаты показывают значимость этого явления. Вместе с тем, многие авторы до сего времени не принимают во внимание адсорбционные явления, и это приводит к грубым ошибкам. [c.289]


    Из сказанного выше следует, что прибавление электролита к коллоидному раствору, сопровождающееся специфической адсорбцией частицами коллоида ионов одного вида, может привести не только к уменьщению заряда частиц, но и к полной их нейтрализации и даже к перемене знака заряда коллоида. Все это действительно наблюдается на опыте. Состояние коллоида, в котором частицы его нейтрализованы, называется изоэлектрическим состоянием. В таком состоянии система обычно не бывает устойчивой. [c.523]

    Электролиты, находящиеся в коллоидном растворе, уменьшают дзета-потенциал и соответственно понижают устойчивость коллоидного раствора. Именно поэтому с целью повышения устойчивости применяют диализ для удаления электролитов из коллоидного раствора. Однако глубокий диализ приводит к противоположному результату, вызывая коагуляцию коллоидов. Рассмотрим коллоидный раствор положительно заряженных частиц (Agl), , который содержит некоторое избыточное количество ионов Ag и примеси нитрата натрия, от которой необходимо избавиться с помощью диализа. Во время диализа происходит одинаковое относительное уменьшение концентрации всех ионов, которые находятся в растворе, — примеси Na+, N07 и ионов Ag . Последние должны содержаться в растворе для сохранения адсорбционного равновесия, т. е. для сохранения стабильным наряда коллоидных частиц (Agi),,,. Как видно из рисунка 106, уменьшение концентрации ионов серебра в растворе, происходящее вместе с уменьшением концентрации примесей (Na и N07), вначале мало влияет на величину адсорбции ионов Ag+. Заряд ядра и соответственно величина термодинамического потенциала почти не изменяются, а в связи со значительным уменьшением концентрации противоионов (ионов N07) в растворе возрастает дзета-потенциал устойчивость коллоидного раствора увеличивается. [c.423]

    Снижение -потенциала обусловлено сжатием диффузионного слоя, уменьшением толщины ионной атмосферы под влиянием электростатического воздействия ионов введенного электролита и может быть вычислено из теории сильных электролитов Дебая — Гюккеля. Мюллер, учитывая только электростатические взаимодействия, путем расчетов пришел к обоснованию правила Шульце — Гарди и к зависимости между снижением -потенциала и концентрацией прибавляемого электролита. Однако ряд явлений не получил удовлетворительного объяснения электростатической теорией. Экспериментальный материал, полученный различными исследователями, убедительно доказывал, что коагуляция лиофобных коллоидов электролитами сопровождается адсорбцией ионов-коагуляторов, причем в большинстве случаев эта адсорбция носит обменный характер. Ионы-коагуляторы адсорбируются, вытесняя одновременно из двойного слоя в жидкость одноименно заряженные ионы, образующие наружную обкладку. [c.340]


    Изменение температуры различно влияет на устойчивость золей. В то время как одни из них (например, АззЗз) при нагревании легко коагулируют, другие (например, РегОз) не изменяются даже при длительном кипячении. В общем можно сказать, что для большинства неорганических коллоидов нагревание заметно способствует коагуляции. Одной из важнейших причин этого является уменьшение при нагревании адсорбции ионов коллоидными частицами, что влечет за собой понижение их заряда. [c.616]

    Коагуляции гидратированных высокомолекулярных веществ мешает водная оболочка и электрический заряд, обусловленный диссоциацией ионогенных групп, л в ряде случаев также адсорбцией ионов электролитов из раствора на поверхности частиц. Главным фактором устойчивости большинства гидрофильных коллоидов является их водная оболочка, препятствующая коагуляции частиц даже в изоэлектрическом (электронейтральном) состоянии. [c.174]

    В настоящей главе рассмотрены основные закономерности адсорбции из растворов нейтральных молекул и ионов. Эти случаи существенно различаются между собой. Анализ закономерностей адсорбции ионов основан на представлении о фиксации ионов одного знака заряда при сохранении подвижности ионов противоположного знака. Процессы вторичной адсорбции — ионного обмена, рассмотрены в широком плане, где обнаруживается замечательная общность закономерностей для гетерогенных (суспензоиды) и гомогенных (молекулярные коллоиды) систем. [c.191]

    Опыт проводится под т я г о й ). к 50 мл 0,25%-ного раствора АзгОз прилейте 4—5 мл сероводородной воды раствор окрашивается в желтый цвет. Составьте уравнение реакции образования сульфида мышьяка и схему строения его мицеллы в коллоидном растворе, имея в виду адсорбцию ионов Н5", возникающих при электролитической диссоциации сероводорода. К какому типу коллоидов относится золь сульфида мышьяка Золь оставьте для опытов 5 и 7. [c.102]

    Необходимо также иметь в виду, что радиоактивные вещества, находящиеся в воде, способны образовывать коллоиды (коллоидные растворы содержат взвешенные частицы размером от 0,001 до 0,1 мкм). По вопросу о радиоколлоидах в научной литературе имеется несколько направлений, из которых наиболее убедительным является направление, возглавлявшееся И. Е. Стариком [117, 118]. И. Е. Старик считал, что радиоколлоиды состоят из частиц самих радиоактивных веществ и образование радиоколлоидов не сопряжено с адсорбцией ионов радиоактивных элементов на посторонних пылинках, взвешенных в растворе, как это представлялось О. Хану [1191. Эти радиоколлоиды ведут себя своеобразно вещества в них не находятся в состоянии электролита, не диссоциированы на ионы и не участвуют в ионных реакциях [116]. Такие коллоиды проходят через фильтры, но под влиянием случайных величин теряют устойчивость и коагулируют. [c.77]

    Взаимодействие коллоидов с нейтральными солями сопровождается двумя основными эффектами 1) адсорбцией ионов солей, обычно по типу ионообменной адсорбции с изменением структуры двойного слоя, 2) сжатием двойного слоя при повышении ионной силы раствора. [c.133]

    При адсорбции ионов и создании двойного электрического слоя на поверхности коллоидных частиц гидрофиль-ность поверхности возрастает в результате собственной гидратации попов и влияния зарядов поверхности на ориентированную адсорбцию дипольных молекул воды так, например, возрастает смачивание заряженной поверхности ртути. Однако в этом случае гидратные слои полностью зависят от ионных взаимодействий и при наступлении коагуляции коллоидов электролитами не препятствуют процессам слипания частиц. Поэтому в типично лиофобных золях (Аи, Ag, 8, АззЗз и др.) сразу после перехода порога коагуляции наблюдается помутнение раствора, изменение цвета, выпадение осадка и другие проявления коагуляции. [c.145]

    Повышение температуры усиливает коагуляцию коллоидных частиц, так как способствует снижению адсорбции ионов, придающих заряд коллоидам. [c.130]

    Первичный заряд частиц обусловлен диссоциацией на их поверхности концевых групп, таких как уже упоминавшиеся гидроксильные, карбоксильные и аминогруппы, и(или) адсорбцией ионов из водной фазы. Заряд гидрофильных коллоидов чаще всего определяется диссоциацией, а заряд гидрофобных частиц — адсорбцией. Под действием первичного заряда частиц к ним притягиваются противоположно заряженные ионы (противоионы), которые накапливаются вокруг поверхности частицы, тем самым частично нейтрализуя первичный заряд и создавая двойной электрический слой. [c.393]

    Теория электростатической слагающей расклинивающего давления получила широкое развитие и количественное применение к расчетам устойчивости тонких пленок и лиофобных коллоидов потому, что она базируется на учении о растворах электролитов и адсорбции ионов. В противоположность этому развитие теории структурной слагающей тормозится несовершенством теории структуры полярных жидкостей, в первую очередь воды. При этом многие кардинальные вопросы, касающиеся структуры полярных жидкостей, решаются в различных работах по-разному и далеко не однозначно. [c.115]


    Лиофобные коллоиды обычно неустойчивы и обнаруживают взаимодействие с дисперсионной средой только при добавлении стабилизаторов (ионов, которые адсорбированы на поверхности поверхностноактивных веществ высокомолекулярных веществ — таких, как крахмал и желатин). Если стабилизатор становится неактивным (например, при нагревании, при нейтрализации адсорбированных ионов), то образуются более грубые частицы, коллоидный характер исчезает (например, водный золь кварца, стабилизированный путем адсорбции ионов). [c.498]

    A. И. Рабинович полагал, что основной путь разработки проблемы устойчивости гидрофобных коллоидов (по крайней мере, в ее химическом аспекте) лежит в установлении связи между закономерностями адсорбции ионов и коагуляцией [9]. Первый цикл работ В. А. Каргина и был посвящен этой проблеме. Этому предшествовала разработка электрохимической методики. Точное электрометрическое определение адсорбции во многих коллоидных растворах — трудная задача вследствие побочных процессов и реакций на электродах. Большое внимание было уделено подбору соответствующих электродов. В это исследование было вовлечено большое число типичных коллоидных систем золи гидрата окиси железа, сернистого мышьяка, вольфрамовой кислоты, двуокиси титана, пятиокиси ванадия, кремнекислоты, гидроокиси алюминия и др. Отдельные из этих работ могут служить образцами тонкого и продуманного эксперимента, проведенного после тщательной методической подготовки, отдельные этапы которой имеют и самостоятельное значение. Из последних отметим обнаруженную неэквивалентность обмена ионов и открытие молекулярной адсорбции. Была показана сложность адсорбционного процесса и возникновение побочных реакций в адсорбционном слое и дисперсной среде, в том числе при добавлении нейтральных электролитов. [c.83]

    Как показал ряд классических исследований лиофобных коллоидов начиная с 1890-х годов прошлого века, коагуляция типичных представителей этого класса веществ связана с адсорбцией ионов электролита, вызывающего коагуляцию, на поверхности частиц выпадающего коллоида. Основываясь на этом экспериментально установленном факте, целый ряд авторов связывал коагуляцию с адсорбцией ионов, пытаясь установить количественные зависимости между этими явлениями. Первой теорией этого рода явилась теория Фрейндлиха [5], до настоящего времени приводимая во всех курсах коллоидной химии. Позднее было установлено, что процесс адсорбции в большинстве случаев сопровождается вытеснением в интермицеллярную жидкость некоторого количества компенсирующих ионов, имеющих заряд, противоположный по знаку заряду частицы и совпадающий со знаком адсорбированных ионов электролита. Таким образом, процесс толковался как обменная адсорбция ионов, разыгрывающаяся в наружной обкладке двойного слоя коллоидных частиц. Из представления о постоянстве заряда частицы и об отсутствии заряжающих ионов в интермицеллярной жидкости с неизбежностью вытекало представление о своеобразии стехиометрии процесса обменной адсорбции в конечном состоянии количество адсорбированных ионов должно быть эквивалентно содержанию компенсирующих ионов в жидкости, окружающей частицы коллоида, т. е. в фильтрате, получаемом после коагуляции. В этом направлении был произведен ряд экспериментальных исследований, давших противоречивые результаты. [c.100]

    В ряде работ нашей лаборатории начиная с 1925 г. обменная адсорбция ионов при коагуляции лиофобных коллоидов электролитами была иссле- [c.100]

    Основные научные работы посвящены проблемам коллоидной химии и фотохимии. Ввел прецизионные методы исследования коллоидов. Установил связь между адсорбцией ионов и стабильностью коллоидных систем. Предложил адсорбционную теорию фотографического проявления, выяснил влияние адсорбции на спектры поглощения и сенсибилизирующее действие красителей. [c.415]

    Агрегативная устойчивость коллоидных систем обусловлена тем, что на поверхности раздела происходит адсорбция ионов (молекул) из окружающей среды. На данных частицах адсорбируются ионы одного знака и частицы приобретают одинаковый заряд. Заряженные одноименно частицы отталкиваются друг от друга, благодаря чему не происходит их агрегация. Агрегации частиц лиофильных коллоидов также препятствует наличие на их поверхности сольватных (гидратных) оболочек. [c.219]

    Таким образом выяснилось, что имеется некоторая количественная связь между концентрацией сульфата цинка и коллоида, причем введение коллоида в электролит вызывает рост поляризации. Объяснить это явление вероятнее всего можно образованием некоторого комплекса между катионом и коллоидом, причем ближайшее исследование числовых соотношений показывает, что в данном случае нет основания рассматривать эти комплексы как соединения химического типа (например, цианистые кои-плексы цинка), но как своего рода адсорбционное образование. Адсорбция ионов цинка происходит на частицах желатины, являющейся дисперсной фазой данного раствора лиофильного коллоида. [c.343]

    Дониановское равновесие имеет очень большое значение для понимания и теоретического обоснования целого ряда явлений осмотического давления лиофобных коллоидов и растворов высокомолекулярных соединений, отрицательной адсорбции ионов, явлений набухания, а также различных физиологических процессов. [c.306]

    На процесс коагуляции существенное влияние оказывает солевой состав воды. Анионы слабых кислот обусловливают емкоси, буфера, способствуя гидролизу коагулянта. Катионы могут изменять заряд коллоидных частиц. Например, в жестких водах отрицательно заряженные коллоиды за счет адсорбции ионов кальция и магния могут приобрести положительный заряд. При значениях рН>7 этот заряд может нейтрализоваться ионами 804 из сернокислого алюминия, а ион алюминия будет полностью гидролизоваться до Л (ОН)з. Доза коагулянта в этом случае будет меньше, чем при коагуляции глинистой взвеси с отрицательно заряженными частицами. Следовательно, ион-партнер 504 оказывает суще ственное влияние на процесс коагуляции в водах с повышенной жесткостью. С добавлением в воду коагулянта у частиц происходит сжатие двойного электрического слоя, способствующее сближению их на такое расстояние, где проявляются межмолекулярные силы притяжения, и частицы укрупняются. [c.143]

    Гош и Дхар считают, что положительное привыкание обусловлено медленно протекающей адсорбцией коллоидными частицами одноименно заряженных с этими частицами ионов, что приводит к некоторому увеличению заряда, повышающему устойчивость золя. Однако было показано, что при коагуляции адсорбция ионов, заряженных одноименно с коллоидйыми частицами, происходит только в редких случаях и поэтому точка зрения Гоша и Дхара едва ли имеет. достаточное основание. [c.303]

    Характерно для коллоидных растворов явление электрофореза. Оно заключается в том, что под влиянием извне приложенной разности потенциалов все кОллондные частицы перемещаются к одному из полюсов. Это свидетельствует о том, что все коллоидные частицы данного коллоида имеют одноименный (поло, ительный или отрицательный) заряд. Наличие одноименного электрического заряда вызывает электростатическое отталкивание частиц если сила отталкивания больше, чем силы притяжения между частицами, то это препятствует укрупнению частиц, т. е, обеспечивает агрегативную устойчивость. Заряд коллоидных частиц возникает вслгедствие адсорбции ионов из раствора. Преимущественно адсорбируются те ионы, которые входят в состав самих частиц. Заряд коллоидной частицы может возникнуть также вследствие частичной диссоциации молекул, составляющих частицу. [c.384]

    В теорегическом объяснении явления антагонизма и сенсибилизации единства взглядов различных исследователей нет. Одни из них объясняют антагонизм, исходя из адсорбции частицами коллоида одноименно с ним заряженных ионов, что приводит к повышению -потенциала и увеличению устойчивости золя. Другие исследователи считают, что антагонизм проявляется благодаря тому, что в смеси ионы одного электролита понижают адсорбцию частицами золя ионов другого электролита. Более обоснованной следует признать точку зрения, согласно которой антагонизм [c.335]

    Коагуляцию гидрофобных коллоидов электролитами затрудняют присутствие желатина, альбумина и других гидрофильных коллоидов. В качественном и гравиметрическом анализе имеют значение способность осадков к коагуляции и пептизации, адсорбции ионов, слизис-тость, студенистость, старение, например, для сульфидов металлов, гидроокисей металлов и др. [c.88]

    Наиб, изучена и важна в практич. отношении К. электростатически стабилизир. гидрофобных коллоидов (гидрозолей разл. металлов и неметаллов, латексов и др.), вызываемая коагулянтами-электролитами. Коагулирующее действие электролитов объясняется в теории ДЛФО снижением энергетич. барьера вследствие экранирования поверхностного заряда частиц при высоких концентрациях электролита (концентрационная К.) или вследствие специфич. адсорбции ионов на частицах (нейтрализационная К.). Эффективность коагулирующего действия электролитов возрастает, как правило, с увеличением зарядового числа г, коагулирующего -го иона так, для многих систем соблюдается правило Шульце-Гарди  [c.413]

    Высокий градиент ионной силы в воде дельт приводит к дестабилизации коллоидного материала (т. е. суспензии тонкозернистого материала), вызывая его флоккуяяцию и выпадение на дно. Лучше можно понять этот процесс на примере глинистых минералов — наиболее распространенных неорганических коллоидов в дельтовых водах. Глинистые минералы несут на поверхности отрицательный заряд (см. п. 3.6.6), частично компенсированный адсорбированными катионами. Если поверхностные заряды не нейтрализованы путем адсорбции ионов, глинистые минералы проявляют тенденцию к сохранению состояния взвеси, поскольку одноименные заряды отталкиваются. Эти силы отталкивания велики по сравнению с силами притяжения Ван-дер-Ваальса (см. вставку 3.10) и предотвращают аггрегиро-вание и выпадение частиц. Следовательно, какой-либо агент, нейтрализующий поверхностные заряды, будет способствовать флоккуляции частиц. Многие коллоиды флоккулируют в среде электролита, и морская вода — гораздо более сильный электролит, чем речная, — выполняет эту роль в дельтах. Катионы морской воды притягиваются к отрицательно заряженным поверхностям глин. Они формируют в растворе подвижный слой, примыкающий к поверхности глин (рис. 4.1), и образующийся комбинированный электрический двойной слой близок к состоянию электронейтральности. Соседние частицы могут после [c.152]

    Вообще говоря, строгая теория взаимодействия поверхностей в растворах электролитов должна основываться не на постулировании постоянства потенциала независимо от ширины прослойки, а на учете механизма заряжения поверхности [54, 55], в первую очередь за счет адсорбции ионов или же за счет диссоциации поверхностных функциональных групп. В общем случае потенциал поверхностей меняется при сближении частиц [54, 55]. Предельный случай взаимодействия поверхностей, у которых при сближении оказывается постоянной плотность заряда, как уже отмечалось вьпие, был рассмотрен еще Бергманом, Лев-Бером и Цохером [22]. Однако в применении к устойчивости лиофобных коллоидов данный случай рассмотрен позже Муллером [54], Левиным [46], а для гетерокоагуляции - Визе и Хили [33]. На осложнение, которое может возникать ввиду неизопотен-циальности поверхностей и проникновения электростатического поля в объем частиц, впервые указано Шиловым [151]. [c.11]

    Заряд белковых частиц обусловлен диссоциацией ионогенных групп или адсорбцией ионов, находящихся в растворе. В изоэлектрической точке большинство белков находится в недиссоци-ировапном состоянии, а количества анионов и катионов, адсорбированных из раствора, равны. Поскольку изоэлектрическое состояние большинства белков отвечает значениям pH < 7, в природных водах они заряжены отрицательно. Впрочем, как и для обычных коллоидов, на величину pH изоэлекгрической точки белков сильное влияние оказывает солевой состав воды. [c.57]

    Ингибирующее действие защитных коллоиднов объясняют [100] тем, что селективная адсорбция уменьшает концентрацию перекиси водорода на каталитической поверхности, что в свою очередь понижает скорость процесса. С этим объяснением согласуется наблюдение, что защитный коллоид препятствует адсорбции ионов, которые индуцируют коагуляцию. Если задерживается адсорбция перекиси водорода катализатором, то екорость реакции замедляется очевидно, сильный защитный коллоид сильнее препятствует адсорбции ионов, чем слабый защитный коллоид, и поэтому действует на каталитическую реакцию в большей степени. Изменение скорости разложения перекиси водорода приписывали также влиянию диффузии [169] реагентов к поверхности коллоида в противовес предположению образования коллоидального комплекса. С точки зрения этой теории нельзя объяснить, почему сильный защитный коллоид ингибирует реакцию больше, чем слабый. [c.327]

    Процессы эти в первой стадии и, очевидно, во второй связаны с адсорбцией иона таллия на поверхности, имеющей Н5 - и 5 -ионы. Таким образом, на этих стадиях по существу происходят аналогичные процессы, но приводящие сначала к молекулярному, а затем к коллоидо-дисперсному распределению одного сульфида в другом. Такая последовательность и непрерывность превращений, а также подчинение процесса закону распределения указывают на возможность расширения понятия об однородности, считая однородными фазами также и коллоидо-дисперсные системы. Учитывая сказанное, становятся понятными типы диаграмм соосаждения, и поля на них, характеризующие сочетание системе молекулярным и кол-лоидо-дисперсным раздроблением. [c.272]

    Действительно, при коагуляции положительных золей рядом авторов наблюдалась, наряду с обменной адсорбцией анионов, и адсорбция Н+-ио-нов (повышение pH системы). Это показывает, что в адсорбционных процессах при коагуляции участвуют не только компенсирующие ионы коллоида, но и ионы, несущие заряд, но знаку совпадающие с зарядом частицы (Neben-ионы, по терминологии Паули). [c.104]

    С этой точки зрения можно сказать, что в настоящее время экспериментальные данные, позволяющие непосредственно судить об эквивалентности или неэквивалентности обменной адсорбции компенсирующих ионов в двойном слое, совершенно недостаточны. Действительно, из приведенных примеров в случае золей сернистого мышьяка, золота, трехокиси вольфрама, пятиокиси ванадия и двуокиси титана, а также, вероятно, мастики процесс ионного обмена осложнен образованием малорастворимых солей в интермицеллярной жидкости. В случае адсорбции красителей коллоидной кремнекислотой мы, вероятно, имели дело с адсорбцией не ионов, а молеку.ч. Наконец, в случае окиси железа ничего определенного сказать нельзя, так как количества адсорбированных и вытесненных анионов не сравнивались при достаточно высоких концентрациях прибавленного электролита. Однако, как было указано, в случае коагуляции электролитами положительных коллоидов мы имеем косвенные указания на то, что процесс обменной адсорбции должен толковаться с более широкой точки зрения, не требующей соблюдения эквивалентности замещающихся компенсирующих ионов. Непосредственные указания на несоблюдение эквивалентности получены в нашей лаборатории при коагуляции щелочных золей кремнекислоты солями бария. Значительная адсорбция ионов Ва (— 10 N) сопровождается вытеснением очень малых количеств Н -ионов (— 10 Л ), причем концентрация Ка-ионов остается практически неизменной. [c.105]

    Селективность адсорбции ионов. Адсорбция ионов на поверхности твердых частиц, находящихся в контакте с маточным раствором, обус-ло,влена электрическим притяжением. Однако адсорбция ие обязательно будет селективиой. Существует четыре фактора, которые влияют а способность коллоидов адсорбировать один тип ионов, а е другой. [c.227]

    Коагуляцией называется явление укрупнения частиц коллоида, т. е. уменьшение степени дисперсности его, происходящее, в частности, путем взаимного слипания этих частиц. Так как этому слипанию противодействует наличие у частиц электрического заряда, одинакового по знаку, то всякое воздействие на коллоидный раствор, которое уменьшает заряд частиц, будет способствовать в той кГли иной степени их коагуляции. Так, например, повыш ние температуры, уменьшая адсорбцию ионов и, следовательно, уменьшая заряд частиц, обычно способствует их коагуляции. [c.384]

    Железо, находящееся в воде в виде коллоидов, тонкодисперсных взвесей и комплексных органических соединений, удаляется обработкой воды коагулянтами (сернокислым алюминием, железным либо смешанным коагулянтами). Иногда используется предварительное хлорирование обезжеле-зиваемой воды для разрушения органических соединений железа или защитных коллоидов, которые стабилизируют коллоиды железа. Применение железных коагулянтов обеспечивает более полное удаление железа из воды в результате интенсивной адсорбции ионов железа на хлопьях Ре(ОН)д. Оптимум адсорбции ионов железа как в случае применения алюминиевых, так и железных коагулянтов, лежит в интервале значений pH воды 5,7—7,5. [c.484]


Смотреть страницы где упоминается термин Адсорбции ионов на коллоидах: [c.18]    [c.81]    [c.84]    [c.18]    [c.101]   
Физика и химия поверхностей (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция ионитах,

Адсорбция ионная

Адсорбция ионов

Коллоиды



© 2025 chem21.info Реклама на сайте