Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы с сочетанием различных взаимодействий

    СИСТЕМЫ С СОЧЕТАНИЕМ РАЗЛИЧНЫХ ВЗАИМОДЕЙСТВИЙ [c.67]

    Здесь метод будет рассмотрен применительно к расчетам ДЯ . 298- А. Л. Сейфер и Е. А. Смоленский описывают три возможные формы расчета этой величины, отвечающие трем степеням приближения. Для каждой из этих форм расчета может быть построена своя система инкрементов, отвечающих взаимодействию различных связей между атомами углерода, причем влияние связей С—И отдельно не учитывается, а входит в указанные инкременты. Система инкрементов, отвечающая первому приближению, основывается на рассмотрении взаимодействия только между двумя смежными связями, причем учитывается влияние различия состояний углеродного атома, которому принадлежат эти связи (С(2) — вторичный, С(з) — третичный и С(4) — четвертичный). Этому соответствуют три инкремента /2, отвечающий сочетанию связей [c.242]


    Научные основы подбора присадок и в особенности сочетания различных присадок в маслах разработаны недостаточно. Подбор присадок осуществляется преимущественно по их функциональному действию, часто без учета запаса растворимости присадок, а также изменения межмолекулярных взаимодействий в системе при их совместном присутствии. В этих случаях решающее значение приобретает знание коллоидной стабильности и возможности фазовых переходов в растворах присадок в маслах. Следует отметить, что в настоящее время отсутствуют в ГОСТах и ТУ показатели, характеризующие коллоидную стабильность товарных масел. Не регламентируются последовательность введения присадок, температура, продолжительность и интенсивность перемешивания и другие технологические режимы завершающей стадии приготовления товарных масел с композициями присадок. Более того, систематических исследований в этом направлении, за исключением разрозненных работ, проводится недостаточно. Таким образом, изучение коллоидной стабильности и оптимизация на этой базе масляных композиций с присадками с учетом принципов регулирования фазовых переходов являются очевидным резервом улучшения и стабилизации их качества. [c.269]

    Примерно с 1950 г. начинается новый, современный этап исследований смачивания. Он характеризуется прежде всего резким расширением числа систем и свойств веществ, участвующих в смачивании. Ранее смачивание изучалось почти исключительно на системах со сравнительно слабым (молекулярным) взаимодействием между жидкостью и твердым телом. Теперь потребности практики стимулировали исследования смачивания в системах с сильными взаимодействиями между фазами (т. е. при одновременном протекании растворения, химических реакций и других физико-химических процессов). Весьма разнообразны и условия контакта фаз при смачивании от очень высоких до очень низких температур, в условиях невесомости и т. д. Вместе с тем очень расширился и арсенал средств, с помощью которых можно управлять смачиванием,— как физических воздействий (например, облучение, магнитная обработка), так и химических (в связи с синтезом новых поверхностно-активных веществ). Эти обстоятельства привели к тому, что наряду с изучением общих законов смачивания возникла необходимость в выявлении специфических особенностей смачивания в различных системах при различном сочетании внешних условий. [c.9]


    Известно, что остаточные нефтепродукты, в частности остатки вакуумной перегонки нефти — гудроны, проявляют в некоторых случаях значительную депрессор-ную активность по отношению к парафиносодержащим нефтяным системам. В этих случаях взаимодействие парафиновых углеводородов и смолисто-асфальтеновых соединений приводит в различных сочетаниях к формированию либо разрушению структурных элементов нефтяной системы. Наличие смолисто-асфальтеновых соединений может привести к образованию коагуляционных каркасов различной прочности, способных удерживать часть легкокипящих компонентов нефтяной системы даже в ус- [c.204]

    Но силикатные структуры, в которых мы постоянно встречаем разнообразные сочетания кремнекислородных тетраэдров, в частности кварц и особенно пористые разновидности силикагелей, представляют значительный интерес с точки зрения вопросов химической эволюции. На поверхности силикатов и силикагеля находятся группы ОН, способные образовывать водородные связи с различными молекулами. Возникающие таким путем поверхностные соединения химически активны и могут вступать в специфические взаимодействия, по отношению к которым силикагель выполняет функции катализатора. Еще более разнообразными становятся эти функции, если заменить в кислородных тетраэдрах часть атомов кремния на атомы алюминия. Так как заряд иона алюминия на единицу меньше, чем иона кремния, то для компенсации заряда такая структура обязательно должна связывать катион, например ион водорода. Получающиеся системы — алюмосиликаты— катализируют различные реакции (синтез и изомеризацию углеводородов и др.). [c.172]

    В вопросах, рассмотренных ранее, применение полярографического метода в полимерной химии основывалось на способности ртутного капающего электрода (как нуклеофильного реагента) взаимодействовать с химически активными электронофильными группами исследуемых веществ. Это позволило, исходя из неодинаковой реакционной способности различных соединений, определять их природу, делать заключение об их количественных соотношениях в различных системах, используемых в полимерной химии, и т. д. Были также найдены возможности применения полярографического метода и для исследования некоторых физических свойств полимерных молекул. Это направление основано на знании гидродинамических свойств ртутной капли в сочетании с ее электрохимическими и электро- [c.223]

    Тем не менее можно считать, что любому из возможных сочетаний фаз в двухфазных и трехфазных системах соответствуют определенные хроматографические методы. При этом возможны самые различные механизмы взаимодействия разделяемых веществ со стационарной твердой фазой, которые являются дополнительными классификационными признаками хроматографических методов в системе — жидкая твердая фаза адсорбционная, аффинная, гель-проникающая, ионообменная, лигандообменная и другие разновидности жидкостно-твердофазной хроматографии. [c.178]

    Вентили в сочетании с изоляциями образуют арсенал средств, с помощью которых производится управление процессами переноса обобщенных координат от одного объекта к другому. Практически это делается путем разделения взаимодействующих объектов разного рода изолирующими оболочками (перегородками, стенками), снабженными различными вентилями. Реальные изоляции и вентили относятся к числу устройств, которые способны сохранять на заданном уровне свои проводимости, изменяя прочие свойства под воздействием соседних с ними объектов. Поэтому при анализе взаимодействий между системой и окружающей средой или любыми другими объектами следует учитывать все изменения, происходящие в изоляциях и вентилях. [c.32]

    Побочная валентность, являвшаяся причиной сочетания насыщенных в валентном отношении молекул, имеет ту же природу, что и главная валентность. И та, и другая — лишь проявление различной прочности координационной химической связи, поскольку атомы различных элементов, вероятно ввиду их различной электроотрицательности или электрофильности (см. стр. 236 настоящего сборника), обладают неодинаковой способностью к взаимодействию и образованию связей с другими атомами или молекулами. Эта опособность больше у элементов Vni группы периодической системы и поэтому комплексные соединения тяжелых металлов более прочны, чем щелочных и щелочноземельных. [c.204]

    Сама по себе природа отклонений от идеальности не определяет в общем случае возникновения и положения азеотропы. Все формы взаимодействия, вызывающие эти отклонения, — различия в интенсивности и характере ван-дер-ваальсовского притяжения между молекулами, образование молекулярных соединений (в частности путем образования водородной связи) или уменьшение степени ассоциации одного из компонентов — часто одновременно в различных сочетаниях имеют место в данной системе, и обычно мы не можем разделить эти влияния. Однако при значительном преобладании какой-нибудь из форм это иногда оказывается возможным, и в этих случаях можно установить, что образование соединений между молекулами компонентов усиливает тенденцию к образованию минимума на кривой давления пара, а уменьшение степени ассоциации действует в обратном направлении. [c.35]


    Третьим вариантом смешанных катализаторов являются многофазные системы. Еще в 1946 г. А,- И. Наумовым [99], вероятно впервые, было строго доказано на примере реакции изомеризации окиси этилена, что механическая смесь двух компонентов (силикагеля и окиси алюминия) в условиях, исключающих их взаимодействие (температура 200°С), обладает значительно более высокой активностью, чем каждый из компонентов в отдельности. В 1958 г. метод механического смешивания платинированного угля с алюмосиликатом был предложен для получения активных катализаторов гидрогенолизного дезалки-лирования [100]. В 1964 г. Никс и Вейз показали эффективность такого приема при проведении ароматизации парафинов на смеси алюмосиликатного и дегидрирующего платинового катализаторов [101]. Можно предполагать, что повышенная активность механических смесей связана либо с тем, что реакция протекает на границе соприкосновения двух фаз, где наблюдается взаимное влияние поверхностей двух типов, либо с тем, что при наличии двух фаз в катализаторе на них протекают последовательные превращения. Если принять, что первое из последовательных превращений обратимо, а второе может идти только в присутствии второй фазы катализатора и что время диффузии промежуточных продуктов между частицами компонентов катализатора сравнимо с временем существования этих продуктов, то последнее объяснение становится более правдоподобным. Расчеты модельных реакций на электронно-цифровой вычислительной машине показывают, что неаддитивный эффект действия смесей катализаторов с точкой максимума по составу смеси может наблюдаться в сложных реакциях при определенных сочетаниях различных кинетических порядков в каждой из составляющих реакций катализаторов. [c.66]

    Весьма существенно, что этим методом представляется возможным получать не только одно-, но и многокомпонентные системы весьма различной природы, определяемой прежде всего характером взаимодействия в-процессе спекания отдельных компонентов спрессованной смеси. Здесь возможны, в основном, три случая 1) компоненты взаимно реагируют без образования жидкой фазы, 2) компоненты взаимно реагируют с образованием жидкой фазы и 3) компоненты не реагируют друг с другом, т. е. не образуют ни твердых растворов, ни химических соединений. Компонентами системы могут являться как металлы, так и неметаллы (например, графит, карбиды, оксиды и т. п.) и различные комбинации тех и других. Благодаря этому можно достигнуть не только весьма необычных свойств получаемых изделий, но и исключительного разнообразия в сочетании этих свойств. Вместе с тем, в зависимости от состава шихты изделия, полученные порошковыми методами, образуют как бы непрерывный переход из области металлургии в область петрургии. [c.330]

    Так как в промышленных условиях процессы протекают неравновесно, обра-еование тех или иных продуктов зависит не только от химического сродства соответствующего сочетания компонентов системы, но и от скорости их взаимодействия. В аависимости от этого в прореагировавшей еистеме относительное содержание продуктов реакций, протекающих одновременно по различным путям, будет иным, чем это предопределяется законами термодинамики. Путь, менее выгодный термодинамически, может оказаться более быстрым и производительным. [c.153]

    Система считывания данных в первых приборах состояла из двухкоординатных самописцев, которые не ставили обозначений, распечатанных таблиц п фотографий с экрана электроннолучевой трубки. Каналы связи как с большими централизованными вычислительными системами, так и с прилагаемыми мини-компьютерами были в основном медленными и неудобными. Несмотря на некоторые достижения в сопряжении внешних ЭВМ с вспомогательными печатающими устройствами, дтя накопления и в0сстан01вления спектров этот путь также оказался ограниченным. В многоканальном анализаторе на основе миии-ЭВМ информация из АЦП передается прямо в блок центрального процессора специализированной мини-ЭВМ, который благодаря сочетанию конструкции и программ следит за тем, чтобы информация о распределении импульсов направлялась в определенные места памяти. Оператор обычно взаимодействует с системой при помощи буквенно-цифровой клавиатуры и различных кнопочных переключателей. Под контролем М ИНИ-ЭВМ можно приступать затем к выполнению желаемых операций. Они включают в себя набор данных, накопление спектров и их восстановление на вспомогательных устройствах, обработку [c.253]

    В литературе опубликован.обширный м.атериал [54, 55] по другим подходам к проблеме идентификации. Эти подходы основаны на расчетных методах (индексы молекулярной связанности ц различных порядков, гомоморфный фактор), различного рода инкрементах индексов удерживания (температурные, метиленовые, фазовые, замещения), универсальных корреляционных зависимостях для дифференциальной молярной свободной энергии растворения. Многие из этих подходов представляют значительный интерес и являются мощным средством исследования межмолекулярных взаимодействий в хроматографических, системах, а в сочетании с ЭВМ позволяют осуществлять бесстан-дартную идентификацию самых сложных объектов. Однако в методическом плане для массового пользователя эти подходы остаются достаточно сложными, поэтому мы вынуждены отослать интересующегося читателя к специальной литературе. [c.222]

    Переходя от рассмотрения чисто химических аспектов поведения формальдегида к изложению особенностей фазового равновесия систем, содержащих последний, т. е. к вопросам сугубо термодинамическим, полезно уточнить содержание применяющегося в термодинамике понятия компонент. Известно, что с позиций обычной химии под компонентом (реагентом) понимают все без исключения сорта реагирующих частиц, включая атомы, ионы, молекулы и свободные радикалы. С этой точки зрения, в частности, все формы существования формальдегида в водном растворе—и мономер, и триоксан, и метиленгликоль, и семейство по-лиоксиметиленгидридов, и вода —равноценные компоненты. Частицы, не принимающие непосредственного участия в химическом взаимодействии, особенно в газофазных реакциях, из числа компонентов реагирующей системы часто исключаются. В отличие от этого в термодинамике в качестве компонентов признается лишь некоторое минимальное число частиц, реагирующих друг с другом или инертных, комбинации которых полностью выражают состав системы в целом. Подчеркивая важное значение выбранных в таком смысле компонентов, их иногда называют независимыми. Очевидно, что далеко не все перечисленные соединения, присутствующие в водном растворе формальдегида, могут быть признаны независимыми компонентами, поскольку продукты взаимодействия можно рассматривать как сочетание исходных реагентов и т. д. Вопрос о правильном выборе числа компонентов имеет важнейшее значение именно при анализе различных вариантов возмож-134 [c.134]

    В химии очень часто при изучении химических свойств какого-либо вещества применяют метод добавления к нему другого реагента. Использование этого метода в химии явилось одной из причин, побудившей нас исследовать свойства не только двойных систем, но и более сложных — тройных. В данном случае исследовалось влияние добавления третьего компб -нента — хлористого натрия — на термодинамические свойства двойных систем МСЬ—НгО. Выбор именно хлористого натрия в качестве реагента объясняется тем, что прибавление Na l позволяет более выпукло подчеркнуть различное отношение ионов кальция и кадмия к взаимодействию с ионами хлора и молекулами воды, имеющееся, как показывает анализ свойств двойных систем, в бинарных растворах. Прибавление хлор-иона в сочетании с ионом натрия позволяет сравнить некоторые выводы данной работы с выводами, полученными при изучении похожей системы с НС1 [25]. [c.35]

    Сходный механизм уширения спектра действует, как известно в примесных кристаллах, где фононные уровни энергии сгруппировались в квазиненрерывные зоны. Оптический спектр примесного центра кристалла состоит из узкой бесфононной линии (чисто электронный переход) и широкой фононной полосы, обусловленной вибронными переходами [72]. Чем сильнее электрон-фононная связь, тем шире и интенсивнее фононная полоса (и соответственно тем слабее выражена безфононная линия). Наблюдаемый колебательный спектр фрагмента ОНО по форме похож на электронный спектр примесного центра. Поскольку ни один из флуктуационных механизмов не может обеспечить появление наблюдаемой полосы ИК-поглощения, мы будем рассматривать гидратированный протон в воде как примесь в квазикристаллической среде, а сравнительно узкую полосу вблизи 1200 см — как бесфононную, обусловленную чисто протонными переходами, а широкое непрерывное поглощение — как фононное крыло, обязанное различным сочетаниям возбуждений фононов в сольватной комплексе [73]. Ниже будет показано, что такое поглощение может появиться, если в системе с большим числом колебательных степеней свободы велико как протон-фононное взаимодействие, так и фононная частота. [c.189]

    Вулканизующие системы. П. х. вулканизуется в результате взаимодействия реакционноспособных групп макромолекулы (группы SO l, атома С1 у третичного атома С и образующихся при дегидрохлорировании и отщеплении SOj двойных связей) с различными ди- или полифункциональными соединениями. В качестве вулканизующих агентов для П. х. предложены многочисленные соединения (обычно в сочетании с акцепторами к-т, напр. MgO) ускорители серной вулканизации каучуков (напр., бензтиазолы, тиурамди- и тиурамтетрасульфиды), полиолы (напр., пентаэритрит), диамины, изоцианаты, тиомочевины, амиды и тиоамиды, бис-малеимиды, металлоорганич. соединения, а также эпоксидные смолы и низкомолекулярные полиамиды. [c.53]

    Собранный в справочнике экспериментальный материал по диаграммам плавкости тройных систем позволяет делать обоснованные заключения о характере взаимодействия компонентов в пшроком интервале температур и концентраций. Эти данные могут быть использованы наравне с данными по плавкости двойных систем для прогнозирования физико-химического взаимодействия в системах с больпшм числом компонентов цри самых различных сочетаниях солей. [c.4]

    В вопросах, рассмотренных ранее, использование полярографии в полимерной химии основывалось на способности ртутного капельного электрода как нуклеофильного реагента взаимодействовать с химически активными электронофильными группами исследуемых веществ. Это позволило определять природу различных соединений на основании неодинаковой реакционной. способности, делать заключение об их количественных соотношениях в системах, применяемых в Цолимерной химии и т. д. Однако, используя гидродинамические свойства ртутной капли в сочетании с ее электрохимическими и электрофизическими особенностями, можно найти пути к применению полярографического метода для исследования некоторых физических свойств полимерных молекул. В основу этого направления может быть положено, в первую очередь, свойство поверхностно-активных веществ, адсорбирующихся на ртутной капле — электроде, влиять на величину и характер полярографических максимумов. А так как одно из специфических свойств полимерных молекул — их поверхностная активность, это дает возможность применить ртутный капельный электрод для определения некоторых физических свойств полимеров. [c.217]

    Таким образом, можно сделать вывод о том, что при введении в резины химически активных добавок усиливается межмолекулярное взаимодействие, что приводит к образованию химической сшивки на границе адгезив — резина. Так, например, при добавлении в резины хлорсульфополиэтилена и белой сажи при сочетании с адгезивами, содержащими винилпиридиновые группы, на модельных системах показано наличие химического взаимодействия с образованием ониевых связей 202,2ое, 207 ц последние годы работы по модификации резин различными добавками с целью повышения прочности связи в системе корд — адгезив — резина получили широкое развитие о . 208-212 [c.83]

    Более целесообразно анализ сорбционно-диффузионного взаимодействия воды с полимерами проводить с точки зрения фазового равновесия в этих системах. Необходимость такого подхода отмечалась в [5, 317], однако не нашло своего отражения ни в характере изложения материала, ни в трактовке результатов. На рис. 6.2 приведены типичные диаграммы фазового состояния в различных системах полимер — вода. Принципиально они не отличаются от диаграмм состояния для других систем полимер — растворитель и в случае аморфного равновесия могут быть как с НКТС, так и ВКТС для частичнокристаллических полимерных матриц диаграммы характеризуются сочетанием кристаллического и аморфного равновесия. Поэтому нет ничего удивительного в том, что вода в одних областях диаграммы вызывает аморфизацию полимера, в других— является кинетическим стимулятором процесса кристаллизации [5, 317] или полиморфных превращений [5, с. 51 323 324], в третьей — образует с фрагментами макромолекул соединения включения, молекулярные комплексы 325, 326]. Аналогичные эффекты фазовых превращений наблюдаются и в других полимерных системах [33, 133]. Однако, если для воды они наблюдаются в системах с гидрофильными полимерами, то [c.216]

    Таким образом, сложные реакции, отвечающие в общем случае совокупности (V.11), могут быть представлены при стационарном их протекании определенной совокупностью стадий и промежуточных соединений, сочетание которых в заданных условиях дает разные реализуемые направления, приводящие к одним и тем же или различным продуктам. Такие направления называют маршрутами ( route ) реакции (термин введен Гориути [303]). Следовательно, маршрут реакции — это характеристика некоторого ее направления, выражающего один из путей химического взаимодействия в данной системе при определенном сочетании элементарных стадий, описываемом соответствующим набором [c.151]

    Полимерный раствор — это дисперсия полимера в растворяющей системе. Дисперсность может быть молекулярной (отдельные молекулы полимера) и надмолекулярной (агрегаты молекул). Характер дисперсности может изменяться в зависимости от типа полимера и его концентрации, молекулярной массы, температуры, растворяющей системы и времени хранения. Растворяющая система может представлять собой один растворитель, смесь растворителей или сложную систему, включающую растворители в различных онцентрациях и сочетаниях, агенты, вызывающие набухание, и компоненты, в которых полимер не растворяется. В любом полимерном растворе существует Множество конкурирующих взаимодействий полимер — растворитель и полимер — полимер, которые стремятся, с одной стороны, увеличить дисперсность, а с другой — способствуют агрегации. Кроме изменения дисперсности может изменяться и конфигурация макромолекул. В случае сильного взаимодействия полимер — растворитель молекулярная дисперсность преобладает над надмолекулярной агрегацией кодда преобладают взаимодействия полимер —полимер, наблюдается обратное явление. Эти факты играют важную роль, поскольку дисперсность молекул полимера, в особенности на начальной стадии гелеобразования, т. е. непосредственно перед переходом золя в гель, является единственным фактором, влияющим на их расположение в геле. [c.230]

    В согласии с принципом совместимости изотермы свойства двойных систем при переходе в область тройного состава трансформируются в поверхности в результате трансляции в направлении оси третьего измерения. Пользуясь принципом трансляции изотерм двойных систем, можно вывести основные типы диаграмм тройных систем и с большим числом компонентов. Ранее было выведено шесть типов изотерм двойных систем при отсутствии взаимодействия между кол понентами (см. рис. 34). Сочетанием их по три получим 20 диаграмм тройных систем, отличающихся различным набором двухкомпонептных систем. Однако форма поверхности свойства более однообразна. Она может носить монотонный характер, иметь изгибы и экстремальные точки. Только такие виды поверхности при сечении ее вертикальными плоскостями дадут кривые, разрешенные основными принципами физико-химиче-ского анализа и правилом фаз (см. рис. 9). С учетом сказанного для тройных систем без химического взаимодействия между компонентами можно вывести восемь типов диаграмм состав — свойство (рис. 36). Эти типы диаграмм построены для случая, когда системы составлены из изомолярных смесей. Но они сохраняются и нри выражении состава в мольных процентах, так как изменение мольного объема из-за небольшого отклонения от аддитивности мало сказывается на форме поверхности свойства. Три из приведенных на рис. 36 диаграмм отличаются монотонным видом поверхности свойства. Свойство на этих диаграммах изображается плоскостью (1), а также вогнутой (2) и выпуклой (5) поверхностями. На кривых поверхностях трех остальных диаграмм (4—6) имеются перегибы. Две диаграммы на поверхностях свойства имеют точки максимума (7) и минимума (8). [c.133]

    Одним из способов снижения внутренних напряжений в полимерных покрытиях является формирование их из смесей полимеров оптимального состава. Смесевые композиции нащли щирокое применение в промышленности при создании материалов различного назначения [148]. Правильное сочетание компонентов в полимерных смесях обусловливает резкое понижение внутренних напряжений в процессе формирования покрытий с одновременным получением требуемого ко мплекса свойств. Качественно новая упорядоченная структура, отличная от структуры покрытий из отдельных компонентов по морфологии, размеру и уровню организации структурных элементов и по характеру их распределения в системе, создается лищь при неаддитивном изменении свойств смесевых композиций. Регулярное чередование структурных элементов отдельных компонентов и специфическое взаимодействие их осуществляются при [c.114]

    Б. Е. Куценок, Б. А. Долгоплоск и Е. И. Тинякова установили, что на основе ронгалита в сочетании с гидроперекисью изопропилбензола может быть создана весьма эффективная система для инициирования полимеризации различных мономеров и их смесей в кислой среде, и показали, что инициирование при этом обусловлено непосредственным взаимодействием гидроперекиси с ронгалитом без участия комплексных солей железа. [c.623]


Смотреть страницы где упоминается термин Системы с сочетанием различных взаимодействий: [c.345]    [c.125]    [c.297]    [c.345]    [c.609]    [c.424]    [c.271]    [c.302]    [c.376]    [c.23]    [c.356]    [c.94]    [c.246]    [c.23]    [c.133]    [c.133]    [c.312]    [c.56]    [c.234]    [c.108]   
Смотреть главы в:

Ионообменный синтез -> Системы с сочетанием различных взаимодействий




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия в системе

Взаимодействующие системы

Различные взаимодействия



© 2024 chem21.info Реклама на сайте