Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлургия, реакции

    Существует несколько способов представления фазовых равновесий трехкомпонентных конденсированных систем на диаграммах. Такие системы часто встречаются в процессах химической технологии (соли, вступающие в реакцию в растворах, растворы смесей кислот и т. п.), технологии вяжущих материалов, металлургии и т. д. [c.191]


    А. Ф. К а п у с т и н с к и й. Термодинамика химических реакций и ее применение в неорганической технологии. Главред. по цветной металлургии (1935). [c.155]

    Я. И. Герасимов, Крестовников. Термодинамика реакций цветной металлургии (1933). [c.155]

    ЩИХ технику реакций в нужном направлении и при условиях, наиболее приемлемых для заводских масштабов. Такие важнейшие процессы химической технологии, как синтез н окисление аммиака, контактное получение серной кислоты и многие другие, всецело основаны на результатах физико-химического изучения этих реакций. Велико и постоянно возрастает значение физикохимических исследований в развитии химической промышленности (основной органический синтез, нефтехимия, производство пластических масс и химического волокна и др.). Важную роль играют физико-химические исследования и для многих других, отраслей народного хозяйства (металлургии, нефтяной промышленности, производства строительных материалов, сельского хозяйства), а также для медицины и др. [c.13]

    Окисление компонентов. Окислительные реакции, проводимые в печах, включают в себя окисление простых веществ с получением их окислов. Они протекают при получении фосфорного ангидрида сжиганием фосфора серного ангидрида сжиганием серы хлористого водорода сжиганием водорода в среде хлора и т. д. Окислительные реакции лежат в основе обжига и плавки сульфид -ных руд и концентратов в цветной металлургии. [c.7]

    Туманов Ю.Н. Электротермические реакции в современной химической технологии и металлургии. М. Энергоиздат, 1981. 232 с. [c.205]

    Термодинамика химических реакций получила быстрое развитие в особенности после того, как на ее основе был решен ряд важнейших промышленных проблем синтез аммиака, синтез метанола, совершенствование основных металлургических процессов, позднее — создание ряда нефтехимических производств, новых отраслей металлургии, новых видов горючего и другие. На основе термодинамических методов был решен и ряд теоретических проблем химии, в частности относящихся к химии высоких температур. [c.6]

    Главные трудности в практической реализации сульфатирования спиртов серным ангидридом — очень высокая скорость и большая экзотермичность реакции, что приводило к перегревам смеси, развитию побочных реакций и потемнению продукта. Успех был достигнут благодаря применению паров SO3, разбавленных воздухом до концентрации 4—7% (об.). Это значительно замедлило диффузию SO3 из газовой фазы в жидкую и позволило справиться с отводом выделяющегося тепла. Крупнотоннажное производство ПАВ этим методом можно комбинировать с установкой окисления SO2 воздухом и базировать иа содержащих SO2 отходящих газах с предприятий цветной металлургии. [c.325]


    Катализатор, кроме своей основной функции ускорителя химической реакции, выполняет роль регенеративных теплообменников. Это позволяет практически полностью исключить теплообменное оборудование, что снижает металлоемкость контактных узлов для различных процессов в 3—20 раз. Так, на 1 т/сут вырабатываемой серной кислоты требуется 20—25 теплообменной поверхности для предприятий, производящих серную кислоту из серы или серного колчедана. При переработке отходящих газов цветной металлургии эта величина достигает 50 м . Для реактора мощностью - 1000 т/сут серной кислоты масса теплообменников составляет 1000—2000 т. Потребность в этих теплообменниках для реакторов, работающих в нестационарном режиме, отпадает. [c.122]

    В разделе II 1.1 проведен оценочный расчет перекосов температур при до некоторой степени аналогичном процессе обжига сернистых руд цветной металлургии. Кинетика процесса при этом не рассматривалась, а теплота считалась выделяющейся равномерно вдоль всей печи. Рассмотрим схематическую одномерную модель топки кипящего слоя (рис. IV.8), считая, что подаваемый уголь беззольный и сгорает без остатка, целиком газифицируясь [149, 234]. Локальную скорость реакции будем рассчитывать по уравнению первого порядка (х) = К-у (х), где у (х) (кг/м ) — локальная концентрация горючего, а константа скорости К = [c.193]

    Ввиду того, что коррозия включает химические превращения, для лучшего понимания коррозионных реакций необходимо знать основы химии, и особенно электрохимии, так как коррозионные процессы по большей части являются электрохимическими. Поскольку структура и состав металла зачастую определяют коррозионное поведение, надо быть знакомым с основами металлургии. Следовательно, химия и металлургия составляют фундамент при изучении коррозии, так же как биология и химия — при изучении медицины. [c.16]

    Если в жидкое состояние переходят не все составляющие шихты, то оставшаяся в сыпучем состоянии часть шихты представляет собой опорный столб, передающий вертикальное давление верхних слоев, шихтового столба на лещадь шахты. Жидкие фракции фильтруются через столб (рис. 45) как через пористую насадку с неравномерной структурой. В доменных печах и вагранках эту функцию выполняет кокс, в печах цветной металлургии при пиритной плавке — кварц или кварцит. Именно эти фракции в печах указанного типа обеспечивают наличие реакции Р5 (см. рис. 33), уравновешивающей активное давление слоя Ракт- На условия встречной фильтрации шлака и металла, с одной стороны, и поднимающихся газов — с другой, оказывают влияние свойства и соотношение количества шлака и металла в жидкой фазе и перегрев шлака над температурой плавления, с чем связана его подвижность. Чем больше относительное количество шлака, тем больше вероятность захлебывания слоя, тем ниже производительность шахтной печи. [c.146]

    Вторым по значению энергетическим элементом в цветной металлургии является железо, окисление которого может происходить по трем реакциям  [c.163]

    В последнее время возрос интерес к неорганическим реакциям гидрирования, при которых происходит восстановление металлических ионов в водных растворах. Р еакции этого типа нашли важное применение в металлургии в качестве метода выделения металлов из растворов, полученных после выщелачивания [14, 15]. Проводилось кинетическое изучение процесса восстановления ионов N12+, Со2+, исГ и Все эти реакции оказались гетерогенными и протекающими в присутствии гидрирующих катализаторов обычного тина, а именно мелко раздробленного металлического никеля или кобальта. [c.196]

    Электролиз с образованием амальгам. К методам амальгамной металлургии относятся наряду с другими обменные реакции на границе раздела фаз , а также электролиз с образованием амальгам. Сущность обмена на границе фаз очень напоминает реакции цементации в водных растворах если амальгама активного металла входит в соприкосновение с водным раствором менее активного металла, первый переходит в раствор,, в то же время эквивалентная часть второго превращается к амальгаму (обменная реакция между фазами). Докажите этс обобщение См. учебники электрохимии  [c.586]

    В металлургии для получения металлического железа из его оксида используется реакция [c.196]

    В предьщущих главах учебника уже отмечалось, что металлические элементы обладают характерным свойством - они теряют электроны в химических реакциях. Разумеется, образующиеся положительно заряженные ионы (катионы) не остаются изолированными, а существуют в окружении анионов, в результате чего сохраняется равновесие зарядов. Кроме того, катионы металлов обладают свойствами льюисовых кислот (см. разд. 15.10). Это означает, что они способны связываться с нейтральными молекулами либо анионами, если таковые обладают неподеленными парами электронов. Мы уже неоднократно упоминали о таких соединениях, в которых катион металла окружен группой анионов или нейтральных молекул. Например, о частице Л (СН)2 мы говорили в разд. 22.6, где обсуждались проблемы металлургии в разд. 10.5, ч. 1, где рассматривалась способность крови к переносу кислорода, упоминался гемоглобин, а в разд. 16.5 при обсуждении равновесий мы встречались с частицами Си(СН)4 и Л (ЫНз)2. Подобные частицы называются комплексными ионами или просто комплексами, а соединения, содержащие такие ионы,-координационными соединениями. [c.370]


    Изотоп Р широко используется в химии для исследования механизма. реакций, в металлургии, технических радиоактивных приборах и т. д. [c.478]

    Развитие техники в век НТР идет как бы по цепной реакции быстро развивающиеся области науки и промышленности взаимно обогащают друг друга, еще невозможное вчера становится явью сегодня. Это относится и к космической технике, и к ядерной индустрии, к радиоэлектронике и многим другим областям науки и техники. Но в основе прогресса все же лежит химия и металлургия (тоже одна из областей химии), расширяющие наши возможности благодаря использованию редких элементов, особенно редких металлов и их соединений. [c.252]

    Помимо своего исключительного значения для жизни природы, вода является важнейшим и наиболее разносторонним по характеру объектом промышленного использования. Она применяется как исходное вещество, участник реакции или растворитель при проведении различных химических процессов, как теплоноситель и тепло-передатчик в теплотехнике, как механическая сила при размыве грунтов и т. д. и т. п. Общее потребление воды для технических целей колоссально. Так, одна лишь металлургия расходует ее больше, чем тратит на бытовые нужды все население промышленно развитой страны. [c.147]

    До сих пор мы рассматривали энтальпии реакций при тандарт-ной температуре 298 К. В технике, особенно в металлургии, реакции происходят при высоких температурах, поэтому необходимо знать закон изменения АЯ с температурой. Этот закон определяется тем, что с изменением температуры в соответствии с величинами теплоемкостей по-разному изменяются энтальпии исходных веществ и продуктов реакции и, следовательно, меняется разность этих энтальпий, т. е. АЯ. Так как Ср = с1Н1с1Т, то для реакции [c.16]

    Мн, методы синтеза специфичны. При получении тугоплавких соед. и материалов применяют методы порошковой технологии (см, Порошкова.ч металлургия), реакц, спекания и химического осаждения из газовой фазы. Сферич, однородные частицы порошков получают плазменной обработкой или с помощью золь-гель процессов. Разработаны спец. методы выделения в-в в виде монокристаллов (см. Монокристаллов выращивание), монокристаллич, пленок, в т, ч, эпитаксиальных (см. Эпитаксия), и нитевидных кристаллов, волокон, а также в аморфном состоянии, Нек-рые р-ции проводят в условиях горения, напр, синтез тугоплавких соед. из смеси порошков простых в-в (см. Горение, Самораспространяющийся высокотемпературный синтез). Все более [c.212]

    При получении тугоплавких соед. применяют методы порошковой металлургии, реакц. спекание, химическое осаждение из газовой фазы. Нек-рые сильно экэотермичные р-ции проводят в условиях горения, напр, синтез P Oj-сжиганием Р на воздухе, SFg-сжиганием S в потоке F , нек-рые тугоплавкие. соед. получают при беспламенном горении (см. Самораспространяющийся высокотемпературный синтез). [c.215]

    Эта реакция также оопровождается значительным выделением тепла. Двуокись серы получается при обжиге серного колчедана (РеЗг) или серы. Источником двуокиси серы служат также отходящие газы предприятий цветной металлургии. Реакция окисления серного газа идет при температуре 400— —470° С в присутствии катализаторов. [c.24]

    При обычной температуре элементарный углерод весьма инертен. При высоких же температурах он непосредственно взаимодействует с многими металлами и неметаллами. Углерод проявляет восстановительные свойства, что широко используется в металлургии. Окислительные свойства углерода выражены слабо. Вследствие различия в структуре алмаз, графит и карбин по-разному ведут себя в химических реакциях. Для графита характерны реакции образования кристаллических соединений, в которых макромолекулярные слои С200 играют роль самостоятельных радикалов. [c.394]

    Перенос субстаищо осуществляется посредством некоторого носителя. Различают три зфовня масштабов при рассмотрении носителя переноса. Нижний уровень — квантовый, на которюм материальным носителем являются элементарные частицы. Например, перенос лучистой энергии осуществляется квантами света (фотонами). В химической технологии этот уровень переноса играет исключительную роль в таких областях, как фотохимия, радиохимия, а также в металлургии, в нефтепереработке и теплотехнике, где используют прямой огневой нагрев. правило, на квантовом уровне осуществляется перенос энергии. И лишь в ядерных реакциях, при которых захват элементарных частиц осколками деления крупных ядер приюдит к образованию стабильных элементов, можно рассматривать перенос вещества. [c.58]

    Древнегреческие философы не придавали никакого значения точным измерениям массы в химических реакциях. Об этом не думали и средневековые европейские алхимики, металлурги и ятрохимики (химики, применявшие свои знания в медицине). Первым, кто осознал, что масса является фундаментальным свойством, сохраняющимся в процессе химических реакций, был великий французский химик Антуан Лавуазье (1743-1794). Суммарная масса всех продуктов химического превращения должна точно совпадать с суммарной массой исходных веществ. Установив этот закон, Лавуазье опроверг прочно укоренившуюся флогистонную теорию горения (см. гл. 6). Он показал, что при сгорании вещества оно соединяется с другим элементом, кислородом, а не разлагается с выделением гипотетического универсального вещества, которое называли флогистоном. Закон сохранения массы является краеугольным камнем всей химии. Но в химических реакциях сохраняется не только суммарная масса веществ до начала реакции и после ее окончания должно иметься в наличии одно и то же число атомов каждого сорта независимо от того, в сколь сложных превращениях они участвуют и как переходят из одних молекул в другие. [c.63]

    Алю/мииий используется в металлургии как восстановитель других металлов. Алюминотермический метод (см. гл. XIX, 9) широко используется для получения тугоплавких металлов —ванадия, хрома, марганца и др. Для этой цели применяется грубозернистый алюминиевый порошок. Алюминотермический метод используется также для сваривания металлических деталей. Для этого смесь порошкообразных алюминия и железной окалины (Ре )04), называемую термитом, поджигают с помощью запала. При этом происходит реакция [c.259]

    Печи кипящего слоя (см. ч. I, рис. 85) применяются для обжига колчедана и других сульфидных руд. Они доминируют в сернокислотном производстве Советского Союза. В отличие от механических печей в печах кипящего слоя (КС) нельзя сжигать материал, сильно различающийся но размеру частиц (в одной и той же печи), так как скорость воздуха, соответствующая взвешиванию зерен, примерно пропорциональна их размеру. В печах КС при полном обтекании воздухом частиц концентрация их в объеме выше, чем в печах пылевидного обжига, поэтому выше интенсивность работы печей, составляющая 1000—1800 кг/(м -сут). При этом можно получать газ, содержащий до 15% ЗОа при 0,5% 3 в огарке. Для использования теплоты реакции трубы паровых котлов-утилизаторов устанавливают как в потоке газа, так и непосредственно в кипящем слое, где коэффициент теплоотдачи много вынле, чем от газа. Съем пара выше, чем в печах пылевидного обжига, и достигает 1,3 т на 1 т колчедана. Температура одинакова во всем слое путем отвода теплоты она поддерживается на уровне 800°С. Запыленность газа в печах КС еще больше, чем при пылевидном обжиге. Благодаря большой интенсивности работы при высокой концентрации ЗОг в газе и лучшем выгорании серы и колчедана печи кипящего слоя вытеснили полочные печи в сернокислотной промышленности и цветной металлургии. [c.121]

    При получении солей синтетическими способами в качестве исходных материалов используются главным образом полупродукты основной химической промышленности или отходы различных гфоизводств. Синтез солей основан на реакциях нейтрализации. Таким образом получают, например, важнейшие азотные удобрения из кислот и щелочей. Большое количество солей получается в качестве побочных продуктов других производств. Например, в производстве глинозема из нефелина в качестве побочных продуктов получают поташ К2СО3 и соду ЫагСОз. Из отходящих газов цветной металлургии и производства серной кислоты, содержащих 50г, получают сульфиты. Нитрат кальция, применяемый как удобрение, можно получить из отбросных нитрозных газов производ- [c.142]

    В промышленности используют два типа скелетных никелевых катализаторов — катализатор Бага [193] и никель Ренея [194]. Оба получают из сплава N1 с А1, однако, если никель Ренея представляет собой мелкодисперсный порошок, состоящий из чистого никеля, то катализатор Бага — кусочки никель-алюминиевого сплава (65—75% N1 и 35—25% А1). Исходные сплавы получают чаще всего пирометаллургическими способами — сплавлением компонентов или алюмотермией. В последнее время используют методы порошкообразной металлургии — спекание предварительно спрессованных смесей никелевых и алюминиевых порошков в восстановительной или инертной атмосфере при 660—700 °С. Реакции между двумя твердыми телами с образованием новой твердой фазы включают процесс диффузии, поскольку реагирующие вещества разделяются образующимся продуктом реакции [174]. Реагирующие вещества сохраняют постоянную активность с обеих сторон реакционной поверхности раздела фаз, в связи с чем скорость переноса материала определяется скоростью нарастания толщины диффузионного слоя продукта и выражается формулой [c.166]

    Хлорсульфоновая кислота и серный ангидрид энергично сульфатируют спирты уже при комнатной температуре, реакция с сульфаминовой кислотой протекает при 100—120 °С в присутствии катализаторов, например мочевины. Хлорсульфоновая кислота дает высокий выход алкилсульфата, практически не образуя побочных продуктов. С серным ангидридом выход побочных продуктов несколько выше, особенно при сульфатировании вторичных спиртов. Однако его применение во многих случаях оправдано, поскольку это самый дешевый сульфирующий агент. Источником 50з могут служить отходящие газы цветной металлургии. Относительно дорогую сульфаминовую кислоту целесообразно применять при производстве аммонийных солей алкилсульфатов, являющихся высокоэффективными моющими средствами, и в тех случаях, когда более дешевые сульфирующие агенты оказываются непригодными, например при сульфатировании непредельных, вторичных или содержащих большие примеси непредельных соединений первичных спиртов. [c.244]

    Вторичными энергоресурсами (ВЭР) называется энергетический потенциал конечных, побочных и промежуточных продуктов и отходов химического производства, используемый для энергоснабжения агрегатов и установок. К ВЭР относятся тепловые эффекты экзотермических реакций, теплосодержание отходящих продуктов процесса, а также потенциальная энергия сжатых газов и жидкостей. Наибольшими ВЭР (главным образом, в форме тепла) располагают предприятия химической, нефтеперерабатывающей и нефтехимической промышленности, металлургии, промышленности строительных материгшов, газовой промышленности, тяжелого машиностроения и некоторых других отраслей народного хозяйства. [c.60]

    В процессе восстановительной плавки сопутствующие глинозему окислы восстанавливаются при температурах более низких, чем глинозем (кроме окпси кальция и магния), что и послужило основой для создания этого процесса. Однако окислы восстанавливаются не до конца — 5—7% окислов остается в электрокорунде. Наличие окислов в больших количествах плохо влияет на рост кристаллов корунда. При оксисульфидной плавке вредные примеси с помощью сульфидирующих агентов (например, РеЗ) предварительно переводят в сульфиды. Сульфидирование металлов и их окнслов широко применяют в цветной и черной металлургии. Конец реакции сульфидирования определяют по содержанию в расплаве АЬ5з. Наличие его (около 8,0%) свидетельствует о том, что все окислы других металлов перешли в основном в сульфиды или восстановлены. В дальнейшем оксисульфидный шлак растворяют в воде и из раствора выделяют кристаллы корунда. [c.109]

    Массовый выпуск пропитанных электродов позволил более объективно оценить среднее снижение удельного их расхода и оно оказалось в пределах 10-15%. Эта операция уже требует специального оборудования, удорожание себестоимости таких электродов существенно, поэтому электродчики внимательно следили за реакцией металлургов. Практически никто из них не последовал примеру Красного Октября и не организовал у себя пропитку. А на электродных заводах такие электроды ко всему теряли товарный вид, происходило так называемое высаливание , электрод покрывался белесыми пятнами. К тому же металлурги относились с подозрением к поступлению в сталь дополнительных примесей, в частности бора. [c.125]

    Во второй части учебника рассмотрены кинетика и термодинамика химических реакций, злектрохимия, ядерная химия, химия неметаллических и металлических элементов, координационных соединений. В нее также вошли 1лавы, посвященные химии природных вод, геохимии А металлургии, органической химии и биохимии. [c.4]

    КАЛОРИМЕТРИЯ (лат. alor — тепло + meireo — измеряю) — совокупность методов измерения количества теплоты, выделяемого или поглощаемого в результате различных физических или химических процессов. Методы К. применяют для определения теплоемкости, тепловых эффектов химических реакций, растворения, смачивания, абсорбции, радиоактивного распада, теплотворной способности топлива и др. Данные К. имеют большое практическое значение для составления тепловых балансов, их широко используют в химии, химической технологии, металлургии, теплотехнике и т. п. Количество теплоты, выделяемое или поглощаемое в том или ином процессе, измеряют специальным прибором — калориметром. [c.116]

    ХИМИЯ ПЛАЗМЫ. Плазма — ионизованный газ, используется как среда, в которой протекают в[лсокотемператур-ные химические процессы. С помощью плазмы достигают температуры около миллиона градусов. Плазма, используемая в химии, в сравнении с термоядерной считается низкотемпературной (1500—3500 С). Несмотря на это, в химии и химической технологии она дает возможность достижения самых высоких температур. В химии плазма используется как носитель высокой температуры для осуществления эндотермических реакций или воздействия на жаростойкие материалы ири их исследовании. Технически перспективными процессами X. п. считаются окисление атмосферного азота, получение ацетилена электро-крекингом метана и других углеводородов, а также синтез других ценных неорганических и органических соединений. Специальными разделами X. п. является плазменная металлургия — получение особо чистых металлов и неметаллов действием водородной плазмы на оксиды или галогениды металлов, обработка поверхностей металлов кислородной плазмой для получения жаростойких оксидных пленок или очистки поверхности (в случае полимеров). К X. п. примыкают также процессы фотохимии (напр., получение озона). Здесь фотохимический процесс протекает в той же плазме, которая служит источником излучения. [c.275]

    Для закрепления знаний учапдихся целесообразно показать диафильм Применение серной кислоты и производство ее контактным способом , который содержит кадры для контроля и проверки знаний учащихся. Содержание кадров состоит из отдельных вопросов и ответов на них. Например, в кадре 7 Какие свойства серной кислоты обусловливают ее применение показано применение серной кислоты в качестве электролита, гигроскопического вещества, в очистке нефтепродуктов, в металлургии (для рафинирования меди), в гальванотехнике, в производстве минеральных удобрений. В кадре 10 От чего зависит выбор сырья Что вы понимаете под комплексной переработкой сырья показана диаграмма производства серной кислоты из серы, из попутных газов, из серного колчедана. Обсуждаются доступность сырья, его распространенность, способы очистки. В кадре 16 Обжиг колчедана показан пример гетерогенной, экзотермической, необратимой реакции. Требуется ответить, при каких условиях наиболее целесообразно ее вести, обсуждается возможность обеспечения наибольшей поверхности соприкосновения реагирующих веществ и т. д. Таким образом, сочетание демонстрации кадров образует систему контрольных заданий, на основе которых может быть проведена основная работа при закреплении и углублении знаний учащихся. [c.59]

    При изучении доменного процесса и его химизма на основе знаний об окислительно-восстановительных реакциях можно применить кинофрагмент Получение чугуна в сочетании с красочной схемой Доменная печь . Это позволяет ознакомить учащихся со схемой доменного процесса, химизмом плавки, устройством и принципом действия колошников, воздухонагревателя и т. д. Кинофильмы Доменный процесс , Металлургия чугуна и стали , кинофрагменты Воздухонагреватель , Загрузка доменной печи , Устройство и работа доменной печи , киноколь-цовка Теплообмен в доменной печи могут найти применение на этапе закрепления знаний о производстве чугуна. Для ознакомления с производством стали целесообразно применить диафильмы Получение металлов из руд , диасерию Производство стали и чугуна , кинофрагменты и кинофильмы Применение кислорода в производстве стали , Устройство и работа мартеновской печи и др. [c.60]

    Капустинский А. Ф. Термодинамика химических реакций и ее применение в металлургии и неорганической технологии. М., Цветметиздат, 1933, 224 с. [c.522]

    В металлургии трехокись молибдена получается из руды MoSj и служит для получения элементарного молибдена. Промышленный процесс получения молибдена (см. учебник) основан на реакции [c.246]

    Общими по составу сульфидами являются МеЗ, Ме25з и МеЗа. Для кобальта и никеля известны сульфиды общей формулы МезЗ . Наиболее важное значение в металлургии имеют моносульфиды. Они образуются из других сульфидов при избытке металла. Например, моносульфид железа образуется из пирита по реакции [c.131]

    Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода (И), водород, метан. Так, например, уголь и оксид углерода (П) восстанавливают медь из красной медной руды (куприта) uaO  [c.166]


Смотреть страницы где упоминается термин Металлургия, реакции: [c.16]    [c.170]    [c.525]    [c.10]    [c.374]   
Физическая химия Том 2 (1936) -- [ c.65 , c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Металлургия



© 2025 chem21.info Реклама на сайте