Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы коррозия в среде хлора

    Медь подвергается сильной коррозии и при действии газовых сред — хлор, бром, йод, пары серы, сероводород, углекислота разрушают медь. В особенности интенсивная коррозия меди имеет место при действии на нее водорода при высоких температурах. Этот вид разрушения известен под названием водородной болезни . Технические марки меди всегда загрязнены примесью закиси меди, которая при взаимодействии с водородом восстанавливается до металлической с образованием паров воды. Образующиеся при указанной реакции пары воды стремятся выделиться и нарушают связь между отдельными кристаллитами металла, вследствие чего медь становится хрупкой, дает трещины и не выдерживает динамических нагрузок. С повышением температуры водородная хрупкость меди увеличивается (рис. 174). [c.249]


    Коррозия металлов под действием хлора имеет особенность, отличающую ее от коррозии под действием других газовых сред. У некоторых металлов при какой-то определенной температуре начинает протекать экзотермическая реакция, приводящая к резкому повышению температуры и очень сильной коррозии, металлы в токе хлора могут даже сгореть. [c.22]

    Воздействие тех же агрессивных сред на цветные металлы происходит при других температурах. Так, коррозию меди хлор вызывает при температурах выше 300 °С, никеля — выше 540 °С. Пары серы и сернистые соединения, особенно сероводород, разрушают никель уже при 300 °С. Сероводород оказывает очень сильное воздействие на медь в присутствии кислорода воздуха, а двуокись серы начинает разрушать медь только при 700—900 °С. [c.8]

    Особо важное значение в производстве синтетического глицерина имеет защита металлов от воздействия хлора и хлористого водорода. Эта коррозия принципиально отличается от действия других газовых сред на металлические поверхности. В зависимости от природы металла при определенной температуре протекает экзотермическая реакция с большим выделением тепла. Так как скорость выделения тепла превосходит скорость его отвода, то металлы в токе хлора сгорают. [c.162]

    Если окислительная среда содержит ионы, способные нарушить целостность ленки или проникнуть через ее поры к поверхности металла (например, ионы хлора), то сталь корродирует, причем в большинстве случаев коррозия носит точечный характер. [c.200]

    Поскольку стойкость хромистых сталей в окислительных средах обусловлена наличием на поверхности металла защитной пленки, увеличение содержания окислителя в растворе повышает стойкость этих сталей. Если окислительная среда содержит ионы, способные нарушить целостность пленки или проникнуть через ее поры к поверхности металла (например, ионы хлора), то сталь корродирует, причем в большинстве случаев коррозия носит местный характер. [c.112]

    Коррозия. Основной причиной коррозии металлов в охлаждающей воде является наличие растворенного кислорода и углекислоты. Последняя снижает pH воды, вследствие чего происходит воздействие кислоты на металл. В системах оборотного водоснабжения охлаждающая вода обогащается кислородом до полного насыщения. Другими факторами, усиливающими коррозию, являются электропроводность воды и наличие растворенных в воде таких газов, как сернистый ангидрид, аммиак, хлор и др. Эти газы могут попадать в охлаждающую воду из окружающего атмосферного воздуха в градирнях. Например, на предприятиях, использующих в топках печей тяжелое жидкое топливо, из-за выбросов в атмосферный воздух сернистого ангидрида pH воды может заметно снижаться. Утечка аммиака в охлаждающую воду в аммиачных конденсаторах приводит к растворению его в воде и как следствие к усилению коррозии. Среди других причин, усиливающих коррозию, можно назвать отложения [c.18]


    Для предохранения деталей машин и механизмов от воздействий, связанных с внешней средой, к смазочным маслам добавляют специальные защитные и противокоррозионные присадки, которые обеспечивают не только высокие эксплуатационные свойства масел в обычных условиях, но и препятствуют нежелательному действию воды, соединений хлора, кислот, сероводорода и других коррозионно-активных веществ на металл в периоды консервации и перерывов в работе. Ниже приводится обзор работ по проблеме защиты металлов от коррозии, связанных в основном с разработкой и применением различных ПАВ в качестве противокоррозионных средств [15, с. 174]. Например, были разработаны защитные эмульсионные масла ЭЭМ-1 и ЭЭМ-2, представляющие собой композиции минерального масла, антиокислительной и противоизносной присадок, водомаслорастворимого сульфоната и нитрованного окисленного петролатума. Эти масла обладают высокими антифрикционными, противоизносными и противозадирными показателями и с успехом могут быть использованы для защиты гидравлических систем кораблей и горнодобывающего оборудования в качестве смазочно-охлаждающих жидкостей при механической обработке металлов, для консервации металлических изделий. [c.182]

    Коррозия металлов и сплавов газообразными хлором и хлористым водородом при высоких температурах, как это показали работы X. Л. Цейтлина, принципиально отличается от действия других газовых сред на металлические поверхности. В зависимости от природы металла при какой-то определенной температуре начинает протекать экзотермическая реакция, приводящая к резкому повышению температуры и очень сильной коррозии. Так как скорость реакции выделения тепла превосходит скорость его отвода, то металлы в токе хлора могут сгореть. [c.157]

    Коррозия металлов и сплавов газообразным хлором и хлористым водородом при высоких температурах принципиально, как это показали работы X. Л. Цейтлина , отличается от действия других газовых сред па металлические поверхности. В зависимости от природы металла, при какой-то определенной температуре начинает протекать экзотермическая реакция, приводящая к резкому повышению температуры и очень сильной коррозии. Так как скорость реакции выделения тепла превосходит скорость его отвода, то металлы в токе хлора могут сгореть. В особенности сильной коррозии в условиях воздействия сухого хлора подвергается алюминий при температуре свыше 160°, железо Армко — при 300°, чугун — при 240°, медь — свыше 300°. [c.142]

    Коррозионная среда. Коррозионное растрескивание металлов и сплавов может идти в различных средах — как газовых (воздух, водяной пар), так и жидких (растворы электролитов, органические растворители, расплавленные соли). Обычно это средне- и малоагрессивные среды, которые вызывают у ненапряженного металла незначительную общую коррозию. Отдельные металлы и сплавы подвержены коррозионному растрескиванию только при наличии в среде специфических ионов. Один и тот же ион может ускорять растрескивание одного металла и тормозить растрескивание другого. Например, хлор-ионы вызывают растрескивание аустенитных хромоникелевых сталей, но предотвращают коррозионное растрескивание углеродистых в растворах нитратов. Ион NO3 , наоборот, вызывает растрескивание углеродистых и тормозит растрескивание аустенитных сталей. [c.451]

    В зависимости от характера воздействия рабочей среды механизм коррозии металлов может быть химическим или электрохимическим. Химическая коррозия вызывается взаимодействием между металлической поверхностью и агрессивной средой, не проводящей электрический ток такими средами являются сухие газы (хлор, хлористый водород, сернистый газ, кислород, воздух и др.) и жидкости — органические растворы (хлороформ, дихлорэтан, продукты переработки сернистых нефтей и др.), обладающие высокой активностью и разрушающие металл. Коррозию, вызываемую действием сухих газов, называют газовой. Обычно газовая коррозия происходит при высоких температурах, а в некоторых процессах и при одновременном действии высоких давлений (получение синтетического аммиака, синтетического спирта и др.). При газовой коррозии происходит в основном двусторонняя диффузия атомов рабочей среды и атомов металла. [c.5]

    Состав и pH раствора. Точечная коррозия проявляется прежде всего в нейтральных или почти нейтральных растворах, содержащих ионы галогенов (особенно ионы хлора). Металлы, помещенные в сильнокислые растворы, подвергаются интенсивной равномерной коррозии. Необходимым условием возникновения точечной коррозии является наличие в коррозионной среде, помимо ионов хлора, окислителей (кислорода, Ре +, Си +, Нд2+ и др.). [c.443]


    Скорость атмосферной коррозии в значительной степени определяется газовым составом среды, в которой находятся металлические изделия. Коррозионная агрессивность воздушной атмосферы зависит от погоды. Большое влияние на скорость атмосферной коррозии оказывает наличие в газовой среде таких коррозионно-агрессивных компонентов, как сернистый газ, сероводород и хлор, а также частиц угля, золы и т.д., которые, попадая на поверхность металла, становятся центрами капиллярной конденсации влаги. Существенное влияние на скорость атмосферной коррозии оказывает также температура с повышением ее коррозия усиливается. [c.191]

    При химической коррозии атомы металла после разрыва металлической связи непосредственно соединяются химической связью с атомами (или группами атомов), которые входят в состав окислителей, отбирающих у металла его валентные электроны. Такая коррозия может иметь место практически в любой коррозионной среде наиболее часто она протекает в средах, не являющихся электролитами. В качестве примера химической коррозии можно назвать взаимодействие металлов с хлором и серой, окисление на воздухе поверхности алюминия, высокотемпературное окисление металлов кислородом, коррозию в неэлектропроводных органических жидкостях и др. [c.273]

    Одни составные части омывающей металл среды, в частности ионы хлора, усиливают коррозию металлов, другие составные части могут ослаблять коррозию. Так, коррозия железа ослабляется в присутствии ионов гидроксила. [c.164]

    Эффект синергизма достигается при совместном введении в электролит производных пиридина или анилина, с галогенид- ионами. По повышению защитного действия галогенид-ионы можно расположить в ряд 1", Вт", СГ, т.е. в последовательности, обратной изменению их энергии гидратации, Дж/моль 353 для СГ 319 для Вт и 268 для 1 , так как более гидратированные поверхностные комплексы с галоидом, например, с ионом хлора, легко теряют связь с атомами кристаллической решетки металла и переходят в раствор. Анионы с меньшей энергией гидратации, хемосорбируясь на поверхности металла, теряют гидратированную воду и приобретают свойства защитной пленки. Резко возрастает защитный эффект от введения -аминов и некоторых других ингибиторов катионного типа при наличии в кислой среде сероводорода, тогда как в аналогичной среде без сероводорода эти же соединения являются слабыми ингибиторами коррозии. В таких случаях адсорбированные на поверхности железа анионы СГ, Вг", 1", Н8 выполняют роль анионных мостиков, облегчающих адсорбцию ингибиторов катионного типа. [c.144]

    Нефть — не коррозионно-активная среда. Однако наличие даже небольшого количества воды (1—5%) в транспортируемой нефти значительно повышает ее коррозионную агрессивность. Наличие в сопутствующей воде солей и прежде всего ионов хлора, углекислого газа, кислорода, сероводорода в соответствующей последовательности усиливает ее агрессивность. Чаще всего сопутствующая вода содержит несколько или все из перечисленных компонентов. Кроме того, к наиболее распространенным скоростям потоков продуктов надо отнести величины скоростей, близкие к 1 м/с. При таких скоростях в нефтепроводах наблюдается расслоенный режим течения. В нижней части нефтепровода существует водная фаза, в верхней — нефтяная, а при наличии нефтяного газа — трехслойный режим транспортировки с газовой фазой в самой верхней части трубопровода. При таком режиме транспортировки обычно неизбежно образование на нижней образующей трубы слоя механических примесей и продуктов коррозии. Соответственно, максимальная скорость коррозии наблюдается на нижней образующей трубы (около 90 % коррозионных поражений) по основному металлу (около 60 % коррозионных поражений) в виде продольных канавок с шириной в зависимости от диаметра трубопровода 10—60 мм и длиной 2—20 м с переменной глубиной [c.182]

    Очень остро стоит вопрос о загрязнении и высокотемпературной коррозии поверхностей нагрева при сжигании твердых топлив — особенно сланцев и канско-ачинских углей. Влияние минеральной части этих топлив на условия работы парогенератора может создавать значительно более сложные проблемы, чем те, которые возникают при сжигании других видов топлива. При этом характерно то, что агрессивное действие золы в процессах загрязнения и коррозии поверхностей нагрева парогенераторов не всегда обусловливается высоким содержанием минерального балласта в топливе, а прежде всего наличием в нем отдельных активных компонентов. Последние обыкновенно образуются в результате превращения минеральной части топлива в топке под влиянием высоких температур и газовой среды. Так, например, в горючих сланцах количество минерального балласта может доходить до 70%, в то время как на процессы загрязнения и коррозии немаловажное влияние оказывают такие компоненты, как щелочные металлы и хлор, содержание которых в сравнении с общим количеством балласта невелико. [c.3]

    Ограничениями в использовании кадмия является его высокая стоимость и дефицитность. В последние годы на ряде производств ограничено применение кадмиевых покрытий (вплоть до полного их исключения) вследствие высокой токсичности соединений кадмия. Поскольку кадмиевые покрытия более стойки в среде, содержащей ионы хлора, кадмирование используют для защиты черных и цветных металлов, соприкасающихся с морской водой, растворами солей. Кадмий более пластичный металл, чем цинк, поэтому кадмирование используется для защиты наиболее ответственных резьбовых изделий. Однако в последнее время все шире используют и цинковые покрытия. В промышленных условиях для создания электрохимической защиты предпочитают цинковые покрытия. Цинкованию подвергают не только готовые изделия, но и стальные листы, ленту. Цинковое покрытие часто применяют для защиты от коррозии водопроводных труб и запасных емкостей. В мягкой воде цинковое покрытие защищает сталь хуже, чем в жесткой. В горячей непроточной воде (свыше 70 °С) цинковое покрытие не обеспечивает надежной защиты стали от коррозии, так как в этих условиях цинк защищает сталь лишь механически. [c.281]

    Местная коррозия обычно является следствием образования гетерогенных смешанных электродов, причем изменение кривых местная плотность тока — потенциал мол<ет иметь причины, связанные с особенностями и материала и окружающей среды. При наличии различных металлов (см. рис. 2.7) получается контактный элемент. Местные различия в составе среды ведут к образованию концентрационных элементов. Сюда относится и аэрационный элемент, свойства которого в конечном счете характеризуются различиями величиной pH стабилизирующимися в результате последовательных химических реакций, здесь могут иметь значение ионы хлора и ионы щелочных металлов [21. Такие коррозионные элементы могут иметь весьма различную протяженность. Так, при селективной коррозии многофазных сплавов аноды и катоды могут иметь размер в доли миллиметра. У объектов большой площади, например трубопроводов, размеры таких коррозионных макроэлементов (макропар) могут достигать нескольких километров. Опасность коррозии при образовании элемента решающим образом зависит от отношения площадей катода и анода. Из зависимостей на рис. 2.6, если ввести интегральные сопротивления поляризации [c.58]

    Однако в некоторых средах титан обладает более высокой коррозионной стойкостью, чем тугоплавкие металлы (кроме Та). Это окислительные среды, в особенности щелочные растворы [50], растворы хлоридов и другие среды, содержащие хлор. Впрочем, полная нечувствительность к коррозионному воздействию относительно слабых в химическом отношении сред (например, морской воды, промышленных атмосфер и др.) и хорошие технологические свойства Т1 обеспечили возможность широкого применения этого металла в различных отраслях промышленности, в том числе и при создании архитектурных сооружений, памятников и тд. Отсутствие необходимости защиты от коррозии (например, окраски) создает значительные преимущества при эксплуатации сооружений, в которых использован титан. [c.52]

    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]

    Растворы поваренной соли коррозионно-активны, причем активность растворов хлористого калия выше хлористого натрия. Корродирующее действие рассолов возрастает с понижением pH и проявляется в большей степени на границе раздела.фаз или при перемешивании растворов воздухом [74]. В щелочных средах в присутствии 0,05—0,1 г/л NaOH скорость разрушения металлов в рассолах резко снижается [75]. Особенно агрессивны рассолы, содержащие активный хлор. Коррозия трубопройодов и аппаратуры возрастает под влиянием токов утечки [76]. Для предотвращения коррозионного разрушения под влиянием рассола в сочетании с токами утечки принимают меры по антикоррозионной защите трубопроводов и аппаратуры. Применяют гуммированные трубопроводы и арматуру и стальные защищенные гуммировкой или футерованные плиткой емкости. [c.228]

    Литературные данные о коррозии металлов в среде фтористого водорода при высоких температурах довольно ограничены [2—6], влияние примесей во фтористом водороде на коррозию конструкционных материалов в этих работах не рассматривается. Между тем примеси, в частности кислорода или кислородсодержащих веществ, могут сзтцествепно влиять на скорость коррозионного процесса. Так, известно, что скорость взаимодействия многих металлов с хлором резко уменьшается при наличии в нем примеси кислорода или кислородсодержащих веществ [7, 8]. При взаимодействии металлов с хлором образуются хлориды. При наличии же в хлоре примеси кислорода, последний принимает участие в формировании пленки в этом случае окалина обогащается окислами металла или целиком состоит из них. Диффузия хлора через пленку такого состава затрудняется, соответственно скорость окисления металла становится меньше. [c.189]

    Коррозия металлов в неэлектролитах, как было указано ранее, протекает в агрессивных средах, не обладаюидих электропроводностью. В таких средах работа микроэлементов, т. е. электрохимическая коррозия металлов, нриниипиальио невозможна. К этим средам относятся многие органические соединения. Присутствие в органических соединениях примесей воды делает, однако, эти растворы хотя и слабо, ио электропроводными. Так, углеродистая сталь в незначительной степени подвергается коррозии (химической) в четыреххлористом углероде и других хлор-замещснных растворителях при температуре их кипения, в присутствии же влаги в этих средах наблюдается электрохимическая коррозия. [c.147]

    Коррозионно-активными составляющими золы твердых топлив являются соединения серы, щелочных металлов и хлора. Хотя их содержание в золе невелико, присутствие этих соединений в отложениях приводит к значительному увеличению скорости коррозии металлов по сравнению со скоростью коррозии в газовых средах, содержащих кислород. Поэтому, например, максимальную температуру поверхностей нагрева угольных котлов, изготовленных из перлитных сталей, ограничивают обычно значением 540—580 °С. Коррозионные повреждения при сгорании углей вызываются в основном сульфатами щелочных металлов, а при сгорании сланцев — хлоридами щелочных металлов. Обычно указывается на определяющее влияние двойных сульфатов ЫазРе(504)э и КзРе(504)з в процессах коррозии сталей в золовых отложениях, образующихся при сгорании углей. Двойные сульфаты образуются из сульфатов щелочных металлов (возникающих в процессе горения), а также из ЗОз и Р аОз. На стальных поверхностях происходит восстановление двойных сульфатов  [c.223]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Высокая защитная способность ДГУ в условиях электрохимической коррозии в двухфазных средах электролит-углеводород связана с наличием в композищш изощюната, который реагирует с водой на поверх- ности металла, снижает скорость коррозионного разрушения, увеличивая адгезию с подложкой. По данным нефтяных фирм США, покрытия на основе полиуретанов с толщиной слоя 250 мкм, применяемые для защиты трубопроводов различного диаметра, обеспечивают защитное действие в течение 20 лет. Сообщается также об эффективности защиты насосно-компрессорных труб в условиях гидроабразивного потока, содержащего агрессивные хлор- и сероводородсодержащие компоненты. [c.140]

    А. Пятнами, язвами, точками (питтинг). Эти виды различаются по соотношению диаметра разрушенного участка к его глубине (см. рис. 1, в, г, д). Язвы и пятна образуются на участках, где защитный слой недостаточен, порист или поврежден. Точечная коррозия типична для пассивирующихся металлов,— хрома, алюминия, нержавеющих сталей и др. Питтинг возникает, когда в агрессивной среде одновременно присутствуют окислитель, являющийся пассиватором, и ионы хлора, сульфат-ионы или другие ионы, играющие роль депассиваторов. [c.4]

    Титан является термодинамически очень активным металлом. Его равновесный электрохимический потенциал равен —1,63 В. Характерной особенностью титана является высокая склонность к пассивации в окислительных и нейтральных средах. Вследствие этого-его стационарный потенциал в ряде сред (например, в морской воде) положительнее потенциалов конструкционных материалов, т. е. для титана не опасна контактная коррозия. Как указывалось в гл. 2, титан обладает высокой стойкостью в растворах, содерл<аших ионы хлора, в окислительных кислотах, в нейтральных средах, в щелочах средних концентраций (до 20%). Титан неустойчив в смеси плавиковой кислоты с азотной, а также в неокисляющих кислотах при повышенной температуре, в расплавленных солях. [c.76]

    Особенно разнообразные процессы химической коррозии встречаются в различных химических производствах. В атмосфере водорода, метана и других углеводородов, оксида углерода(И), сероводорода, хлора, в среде кислот, шелочей, солей, а также в расплавах солей и других веществ протекают специфические реакции с вовлечением материала аппаратов и агрегатов, в которых осуществляется химический процесс. Задача специалистов при конструировании реактора — подобрать металл или сплав, который был бы наиболее устойчив к компонентам химического процесса. [c.137]

    Как указывалось ранее, синтез HG1 проводят в небольшом избытке водорода, за счет чего достигается отсутствие хлора в хлористом водороде и соляной кислоте. Помимо зтого, избыток водорода постоянно обеспечивает в печи восстановительную атмосферу, что способствует снижению коррозионного разрушения>етальных и графитовых печей. Пленка малолетучего хлористого железа, отлагающаяся на металлических поверхностях в печи в среде Н , предохраняет металл от коррозии. Если в газовой смеси создается избыток-хлора, образуется легко возгоняющееся хлорное железо, и процесс коррозии стальных стенок ускоряется. В графитовых печах при избытке хлора происходит хлорирование стенок с образованием летучих продуктов. [c.486]

    При наложении растягивающих напряжений в области упругой деформации скорость коррозии стали в кислых средах увеличивается [L03—L05]. Как правило, скорость коррозии возрастает пропорционально величине растягивающих напряжений и зависит от природы анионов кислоты, характера катодного про- цесса. Исследование коррозии высокопрочной стали ЗОХГСНА [L03] в серной-кислоте подтвердило эту зависимость (рис. 29), причем введение в коррозионную среду (20%-ный раствор H2SO4) поверхностно-активных анионов хлора значительно усиливает скорость коррозии напряженного металла. Возрастание скорости коррозии стали в кислых средах при приложении растягивающих напряжений отмечалось также в работах [106—108. Так, в 4M НС1 при воздействии двухосных растягивающих напряжений суммарная скорость растворения стали ЗОХГСА с увеличением растягивающих напряжений возрастает (табл. 21). [c.62]

    Кадмий имеет более близкий потенциал к железу, чем цинк. Характер защиты кадмием зависит от коррозионной среды. Во влажной атмосфере и в присутствии хлор-ионов потенциал кадмия становится электроотрицательнее потенциала железа и кадмий электрохими-чес1си защищает металл от коррозии. [c.269]


Смотреть страницы где упоминается термин Металлы коррозия в среде хлора: [c.19]    [c.118]    [c.21]    [c.21]    [c.21]    [c.39]    [c.148]    [c.225]    [c.290]    [c.191]    [c.18]    [c.459]    [c.37]   
Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.188 , c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии



© 2025 chem21.info Реклама на сайте