Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргон очистка

    Получение чистого аргона включает стадии отбор фракции из ректификационной колонны и получение сырого аргона, очистка сырого аргона от кислорода, очистка аргона от азота. [c.26]

    Получение чистого аргона. Очистка аргона от примесей азота и примесей водорода производится методом низкотемпературной ректификации. Колонна, предназначенная для этой цели (колонна чистого аргона), размещается либо внутри кожуха основного воздухоразделительного аппарата, либо вне его (в установке типа БРА-2). В первом случае покрытие потерь холода колонны и обеспечение ее флегмой осуществляется за счет резервов холода основного аппарата, во втором случае — за счет эффекта дросселирования воздуха высокого давления и технического аргона. [c.173]


    Трущиеся детали (диск и палец) очищали от окислов, бомбардируя их ионами аргона. Очистку проводили в условиях тлеющего разряда особочистый аргон напускали при остаточном давлении 2,66 Па использовали постоянный ток напряжением 1000 В, подаваемый в пространство между диском н шиной. На диске создавался отрицательный потенциал, а положительно заряженные ионы аргона бомбардировали поверхность и тем очищали ее. Очистку проводили до тех пор, пока оже-спектрометр не показывал наличие только ионов железа. [c.100]

    При производстве технического и чистого аргона, очистке криптонового концентрата, неоно-гелиевой смеси, получении [c.307]

    Схема очистки водорода жидким азотом состоит в следующем. Очищенный от Og водород под давлением около 20 ат охлаждается сначала до —45°, а затем до —78° и подвергается абсорбционной сушке. Затем водород охлаждается до температуры —178°, при которой из него конденсируется большая часть остаточного метана. Очищенный от метана водород проходит через промывную колонну, орошаемую жидким азотом. В жидком азоте растворяются СО, СН аргон, Og и высококипящие примеси. [c.110]

    Остаток промывной колонны содержит значительное количество метана, СО, аргона и других примесей. После их отделения от азота во второй колонне последний возвращается в промывную колонну. Легкие фракции из второй колонны после теплообменника выводятся в виде товарной окиси углерода. Метод очистки водорода от СО жидким азотом более экономичен по сравнению с методом медно-аммиачной очистки. Недостающее для синтеза аммиака количество азота в этом случае добавляется к водороду в виде газообразного азота. [c.111]

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]


    В книге рассмотрены вопросы производства инертных газов при комплексном разделении воздуха, природных и продувочных газов методами низкотемпературной ректификации н адсорбции. Описаны схемы установок и способы получения аргона, криптона, ксенона, неона и гелия, а также химические и физические методы глубокой очистки этих газов от примесей. Даны основы расчета аппаратов и установок для производства всех инертных газов. [c.183]

    Газ-носитель и адсорбат из баллонов 1, 2 поступают в фильтры со стеклянной ватой 3 для очистки от следов масла, проходят реометры 4 и очистительную систему. При использовании гелия высокой чистоты (99,9% Не) и аргона сорта А (99,99% Аг) можно обойтись без предварительной очистки, оставив только ловушку 8 для вымораживания влаги из газовой смеси. Азот и водород необходимо затем очищать от кислорода на хромоникелевом катализаторе 5 и осушать в колонке 6. Очищенные газы смешивают в трехходовом кране 7 и далее смесь последовательно проходит сравнительную ячейку катарометра 9, приспособление для ввода пробы в систему при калибровке шесть адсорберов 13, отделяемых друг от друга четырехходовыми кранами 12, измерительную ячейку катарометра 14 и измеритель скорости адсорбции 15. [c.299]

    Очистка гелия или аргона от азота Металлический кальций 650° С 30—50 Не более 0,005 Не регенерируется [c.616]

    Чаще всего для очистки водорода от азота, а также от кислорода, аргона и окиси углерода используют адсорбционные методы. При низких температурах адсорбенты имеют высокую поглотительную способность по отношению к этим примесям. Обычно адсорбцию ведут при температуре примерно 80 °К (охлаждение жидким азотом). В качестве адсорбентов используют активированный уголь или силикагель [5, 24]. [c.57]

    Углеводородный природный газ, добы- ф ОчиСТКа и ОСушка ваемый из газовых месторождений, со- природного газа стоит главным образом из метана с не-большой примесью более тяжелых углеводородов. Кроме того, в нем присутствуют азот, углекислый газ, сероводород, гелий и аргон. Любой природный газ содержит также пары воды. Газовая залежь в толще горных пород окружена водой и находится в контакте с влажными глинами, песками и другими минералами. Поэтому газ в залежи насыщен водяными парами. [c.287]

    Более эффективным методом очистки АВС от оксида углерода (П) является применяемая в современных установках промывка АВС жидким азотом при -190°С, в процессе которой из нее удаляются, помимо оксида углерода (П), метан и аргон. [c.194]

    Технологическая схема получения фторуглерода показана на рис. 6-53. Фтор получается на углеродном аноде при электролизе кислого трифторида калия в растворе фтористого водорода с последующей его очисткой от фтористого водорода [6-156]. Далее он смешивается с аргоном или азотом в соотношении 1 (5-15) и поступает в реакторы для фторирования [6-157]. Фтор может использоваться также и в чистом виде после продувки реактора аргоном. Как правило, фтор используется при нормальном давлении. В отдельных случаях оно может быть повышено до 150 кПа. [c.381]

    Примеси кислорода, азота, углерода резко ухудшают механические свойства титана, а при большом содержании превращают его в хрупкий материал, непригодный для практического использования. Поскольку при высоких температурах титан реагирует с названными неметаллами, его восстановление проводят в герметичной аппаратуре в атмосфере аргона, а очистку и переплавку — в высоком вакууме. [c.505]

    На чем основано применение нагретого кальция для очистки аргона от примеси кислорода и азота  [c.119]

    Получение и очистка газов. Большинство измерений в электрохимии проводят в отсутствие кислорода воздуха, который является электрохимически активным. В связи с этим исследования выполняют в атмосфере инертных газов азота, аргона, гелия. В ряде систем возможно использование водорода, который, однако, может проявлять электрохимическую активность на некоторых электродах при анодных потенциалах, Эти газы выпускаются промышленностью разной степени очистки. Если содержание кислорода в газах не превышает 0,005 %. то для большинства исследований нет необходимости в дополнительной очистке газов от следов кислорода и их очищают лишь от органических примесей пропусканием через трубки, заполненные активированным углем. При большом содержании кислорода в газах возникает необходимость его удаления. [c.31]

    Собранную ячейку заполняют раствором серной кислоты илИ подкисленного раствора соли и в течение 30 мин продувают инертным газом (аргоном) или азотом для удаления кислорода из раствора и пространства над раствором. Используемый для этих целей газ подвергается дополнительной очистке и осушке (подробности см. в 1.2). [c.278]


    Для удаления примеси кислорода из благородных газов иногда используют кислый раствор соединений ванадия (II). Какая реакция лежит в основе этого метода Предложите схему лабораторной установки для очистки технического аргона (из баллона) от кислорода. [c.134]

    Химическая активность ЩМ не имеет себе равных среди других металлов. Хранят ЩМ обычно в керосине, герметично упакованными в запаянных железных коробках. На воздухе ЩМ быстро покрываются пленкой сложного состава, в которой присутствуют окислы (перекиси), нитриды, гидраты окислов, карбонаты и др. Чтобы ввести ЦМ в реакцию, обычно кусочек металла нужного размера отрезают от монолита скальпелем под слоем органического неполярного растворителя, например керосина или бензола. Тщательно скальпелем убирают с поверхности металла следы коррозии. При необходимости несколько раз меняют растворитель и процедуру очистки проводят в сухой камере, заполненной инертным газом, например аргоном. [c.11]

    Применение инертных и благородных газов и их соединений. Для проведения целого ряда технологических операций необходима инертная атмосфера (электросварка, плавка металлов, синтез некоторых материалов, их очистка и выращивание монокристаллов, перекачка горючих жидкостей и многие другие). Для этих целей обычно используют аргон. Свечение, наблюдаемое прн прохождении электрического тока сквозь заполненные благородными газами трубки, находит применение в световой рекламе, в разнообразных сигнальных устройствах. Неон дает красно-оранжевое свечение, аргон — голубое, криптон — зелено-желтое. Мощными неоновыми лампами оборудуют маяки, обозначают границы аэродромов, вершины телевизионных вышек, так как красный свет мало задерживается туманом и пылью. Аргон в смеси с азотом служит для заполнения электроламп. Еще лучше для этой цели подходят криптон и ксенон. [c.398]

    Существуют два способа перемещения газообразной фазы в химических транспортных реакциях способ потока и способ диффузии или конвекции. Для реакций, протекающих со значительной скоростью и с достаточно полным выделением транспортируемого вещества, широко используют метод потока. В других случаях отдают предпочтение способу диффузии или конвекции, осуществляемому в ампулах. В методе потока вещество помещают в проточную трубу, через которую продувают газ-носитель (например, аргон) и транспортер С(г). Транспортер может быть газом или веществом, которое только при определенной температуре переходит в состояние пара. Для получения чистых материалов должны жестко соблюдаться условия необходимой чистоты реакционного пространства, контейнера, используемых газов, так как Загрязнения могут легко внедряться в образующуюся твердую фазу. Газ-носитель перед использованием подвергают специальной очистке. [c.76]

    Температуру выше 650° С поднимать нельзя, так как промежуточный оксид QeO легко сублимируется именно при такой температуре и затем конденсируется в холодных частях трубки, не восстанавливаясь до Ge. Полученный темно-серый порошок германия необходимо расплавить. Для этого вытесняют водород из трубки ч-истым сухим азотом или аргоном, так как расплавленный германий адсорбирует водород. Затем поднимают температуру до 1000° С и после расплавления германия ее медленно снижают. Дальнейшая очистка и получение монокристаллов производятся одним из методов, описанных в гл. X. [c.297]

    Из сжиженной части воздуха в разделительных колонках первым испаряется азот, затем аргон с примесью азота и кислорода. Для очистки от кислорода к смеси примешивают водород и вводят в нее катализатор, благодаря чему кислород превращается в пары воды. После удаления водяных паров остается азот-аргоновая смесь (до 86% Аг и 14% N2), имеющая самостоятельное применение для наполнения многих осветительных ламп. Если необходимо, то аргон освобождают от азота. [c.316]

    Аргон применяется в газоразрядных приборах с накаленным катодом (газотроны, тиратроны), в газосветных трубках, в некоторых ртутных выпрямителях, для создания инертной атмосферы при очистке полупроводников и в других целях. Применение аргона связано с его относительно низким потенциалом ионизации, инертностью, невысокой теплопроводностью и сравнительной доступностью. [c.316]

    Из жидкого воздуха в разделительных колонках сначала испаряется азот, а затем аргон е примесями азота и кислорода. Но кислород связывают водородом с образованием паров воды, удаляют воду и остается смесь, содержащая 86% (мае.) аргона и 14% (мае.) азота. Из кислородной фракции выделяют смесь криптона [90% (мае.)] и ксенона [10% (мас.)1. Дальнейшая очистка позволяет получить благородные газы с чистотой 99,999% (мае,). [c.402]

    Значительный интерес представляет очистка вакуумной дистилляцией, проводящейся при остаточном давлении около 10 мм рт. ст. и температуре 1400° материал тигля — окись бериллия. Предварительно из расплавленного металла при 1500° (атмосфера аргона, 20 мм рт. ст.) отгоняют примеси. Рафинированный бериллий в зна- [c.215]

    Для определения времени выхода из системы иеад-сорбированного газа применяют аргон из баллона, который проходит систему очистки. [c.135]

    Мембранная установка включает 12 мембранных аппаратов, каждый из которых имеет внутренний диаметр 0,1 м и длину 3,0 м, и смонтирована на площади около 60 М-. Продувочные газы, содержащие после стадии синтеза и конденсации около 2% (об.) аммиака, под давлением 14 МПа направляют в скруббер водной промывки для окончательного улавливания КНз. Газовая смесь, очищенная от аммиака и содержащая 62,3% (об.) водорода, 20,9% (об.) азота, 10,4%, (об.) метана и 6,4% (об.) аргона, проходит через 8 последовательно установленных аппаратов I ступени очистки. Пермеат I ступени, содержащий 87,3% (об.) водорода, под давлением 7,0 МПа подают на вторую ступень компрессора свежей азотоводородной смеси и возвращают в производство. Ретант после I ступени разделения направляют на 4 последовательно расположенных мембранных аппарата П ступени. Обогащенный до 84,8% (об.) по водороду газовый поток под давлением 2,5 МПа возвращают на I ступень компрессора свежего газа и далее в цикл. Суммарная степень выделения водорода—87,6%. Обедненный водородом [г=20,8% (об.) И,] ретант после И ступени установки сжигают в трубчатой печи конверсии углеводородов. Работу установки хорошо иллюстрирует табл, 8.4. [c.278]

    Процессы НТ-адсорбции используются в процессах газопереработки в основном для очистки инертных газов (гелий, неон, аргон и др.) от микропримесей кислорода и азота или для очистки воздуха от СО2. Для обеспечения хорошего теплосъема применяются адсорберы кольцевого типа или в виде кожухотрубчатого теплообменника. [c.150]

    Процесс охлаждения и ожижения основного потока технологического водорода состоит нз сжатия его в компрессоре 1 (см. рис. 33), оллаждения до 4,5—5°С во фреоновом теплообменнике 3, осушке от влаги в блоке осушки 4. Затем, пройдя теплообменник 5, где поток охлаждается до 100 °К, водород направляется в блок очистки 12. в котором удаляется метан. В ванне жидкого азота 6 водород охлаждается до 80 °К за счет холода жидкого азота, кипящего при давлении несколько выше атмосферного, и далее поступает в блок очистки 13 для удаления азота, аргона и других оставшихся примесей. Последующее охлаждение водорода происходит в теплообменнике 7, в ванне жидкого азота 8, кипящего под вакуумом (остаточное давление 0,14 ат), теплообменнике 9, ванне 10 жидкого водорода циркуляционного холодильного цикла (водород кипит под давлением 7 аг). Температура основного технологического потока водорода после ванны 10 составляет приблизительно 29 °К. [c.85]

    Азотистые основания очищались по методике [16], акридин — перекристаллизацией из этилового спирта, затем возгонкой, индол — возгонкой, карбазол — хроматографической очисткой на окиси алюминия и возгонкой. Тетрахлориды титана и олова марки безводные также подвергались очистке в токе инертного газа. Были приготовлены 0,1- и 0,01-молярные растворы азоторганических соединений в декане и в очищенном дизельном топливе. Тетрахлориды титана и олова концентрации I и 0,1-молярные были-приготовлены в гептане. Гептан, используемый в Качестве растворителя солей металлов, подвергался очигтке 1-молярным раствором четыреххлористого титана, затем перегонкой над гидроокисью калия. Чистота растворителей контролировалась УФ-спектрами. Исследование проводили в боксе в атмосфере очищенного от кислорода и влаги аргона при комнатной температуре и атмосферном давлении. 100 мл азотистых соединений конЦейТраций 0,1- или  [c.117]

    Графитация карбонизованного волокна осуществляется при очень БЫС0Ы1х температурах (до 3000°С) в инертной среде, обычно азоте или аргоне. На этой стадии еще в большей мере, чем при карбонизации, необходима тщательная очистка защитных газов от следов кислорода, а также применение аппаратуры, исключающей попадание кислорода воздуха в реакционное пространство. Как и при карбонизации, к основным условиям графитации относятся среда, температурно-временные реясимы, степень вытягивания волокна. [c.62]

    Исходные данные мощность выброса - 12 500 м7ч химический состав выброса % об) азот - 78, кислород -21, аргон - 0,93, пары воды -0,04, диоксид углерода - 0,03 концентрация примесей, подлежащих обезвреживанию (г/м ) фенол - 1,25, этанол - 0,025 предельно допустимые кэнцентрации (мг/м ) фенол - 0,01, этанол - 6 температура промышленного выброса - 15°С катализатор - АП-56, размеры гранул катализа-тэра (м) диаметр - 0,003, высота - 0,005 порозность слоя катализатора - 0,375 требуемая степень очистки по веществу с меньшей предельно допустимой концентрацией У = 0,998. Расчет выполняется по фенолу. Кинетическое уравнение процесса глубокого окисления фенола на катализаторе АП-56 (табл. П,1) [c.224]

    Установка ДФС-51 предназначена для решения наиболее массовой задачи эмиссионного спектрального анализа в металлургической промышленности — экспрессного и маркировочного анализа простых и среднелегированных сталей, а также чугунов на содержание углерода, серы, фосфора и других элементов. В состав установки входят вакуумный полихроматор с решеткой 2400 штрих/мм (обратная линейная дисперсия 0,416 нм/мм, спектральный диапазон 175—340 нм, 24 выходных канала), источник возбз ждения спектра ИВС-6, ЭРУ-18, УВК Спектр 2-2 с печатающим устройством и стенд для очистки и осушки аргона. [c.71]

    Для создания инертной атмосферы в лабораторной практике используется азот или аргон. Для очистки этих газов от примесей кислорода применяется влажный фосфор, пирогаллол, гидросульфит натрия, аммиачный раствор оксида меди (I). Поглотительный раствор пирогаллолата натрия приготовляют, смешивая непосредственно в поглотительной склянке 1 объем 25 %-го раствора пирогаллола и 5 объемов 60 %-го раствора гидроксида калия, избегая окисления смеси кислородом воздуха. Один миллилитр такого раствора может поглотить 13 мл кислорода. [c.34]

    Принципиальная схема газового хроматографа представлена на рис. 57. Газ-носитель из баллона / поступает в блок подготовки газов 2, где происходит его очистка, устанавливаются объемная скорость и давление. В качестве газа-гюсителя используют гелий, азот, аргон, углекислый газ. В обогреваемый до температуры выше кипения исследуемой смеси испаритель 5, через который протекает поток газа-носителя, микрошприцем 3 через резиновую мембрану вводят пробу вещества. Захватив пары анализируемой пробы, газ-носитель поступает в хроматографическую колонку 6 — металлическую или стеклянную трубку длиной обычно от 0,5 до 4 м и диаметром 2—8 мм, заполненную гранулированной насадкой. Во избе-жение конденсации паров пробы колонка помещена в термостат 7. Выходящий из колонки газовый поток содержит зоны отдельных компонентов, разделенные зонами чистого газа-носителя и отличающиеся от них по электрической проводимости, плотности или другим параметрам. Измерение этих параметров на выходе из колонки позволяет определить относительное содержание компонента в смеси. Устройство, непрерывно регистрирующее значение того или иного параметра газового потока, называется детектором 8. [c.49]

    Подготовка изопренового каучука к озоинроваиию состоит в очистке полимерного образца от разл1 чных примесей, которую проводят в атмосфере аргона илн етзота па приборе (рис. VI. 1). [c.98]

    В разделе 5.4 указывалось на важность сочетания разных методов исследования поверхностных соединений. Количественное определение углерода и других элементов в модифицирующих поверхность соединениях производится элементным анализом, а ИК спектры помогают установить, какие именно группы и в каком количестве содержатся в поверхностном соединении. Содержание элементов в поверхностных соединениях можно определить с помощью зондирующего воздействия различных пучков на поверхность твердого тела, служащего рассеивающей мишенью для такого воздействия. Для зондирования используются направленные пучки фотонов, электронов, ионов илц атомов, вызывающие эмиссию вторичных частиц (также фотонов, электронов, ионов или атомов), лзучение которой и позволяет судить о свойствах мишени. Помимо элементного анализа, с помощью зондирующего воздействия на поверхность в благоприятных случаях можно получить сведения о структуре поверхности и адсорбции на ней. В табл. 5.4 представлены некоторые из этих методов. Перечисленные в таблице методы. анализа поверхности, за исключением рентгеновской эмиссионной спектроскопии, позволяют исследовать поверхностные слои на глубину менее 10 нм. В этих методах зондирование поверхности и ана--лиз рассеиваемых или эмиттируемых частиц проводится в очень высоком вакууме. Для дополнительной очистки поверхность часто подвергается предварительной бомбардировке частицами высокой энергии, обычно аргонной бомбардировке. С этим связаны ограничения в применении некоторых из этих методов для исследования поверхности недостаточно стойких адсорбентов. Преимуществом этих методов является возможность локального исследования не- [c.109]

    Газ-носитель. В качестве газа-носителя наиболее часто применяют аргон, гелий, азот и водород. Выбор газа обычно зависит от типа детектора. Газы используют прямо из баллонов. Необходимо тщательное удаление воды из газов, для чего используют молекулярные сита. Более тщательная очистка необходима при проведении анализа в условиях программированного изменения температуры колонки и нри работе с высокочувствительными ионизационными детекторами, где примеси искажают пулевую линию. Скорость газа-носителя измеряется вмонтированными в прибор ротаметрами. Она подбирается эксперименталы[о и обычно варьируется в пределах 10—100 см /мии. На воспроизводимость результатов влияет устойчивость газового потока, и поэтому современные приборы снабжены стабилизаторами. [c.296]

    В СССР А. А. Жуховицким и его сотрудниками разработаны весьма эффективные варианты хроматографических методов. В настоящее время созданы специальные типы адсорбентов и различные хроматографические приборы. Хроматографическими методами удается анализировать смеси, из которых эпитаксиально наращиваются пленки различных примесных полупроводников при изготовлении пленочных схем, а также решать другие важные задачи полупроводниковой химии и технологии. Динамическая адсорбция используется для удаления влаги из водорода и аргона, что необходимо при очистке полупроводников и создания полупроводниковых приборов в атмосфере этих газов. Динамическая адсорбция используется для улавливания иода из нефтяных вод в колонках с углем и пр. [c.171]


Смотреть страницы где упоминается термин Аргон очистка: [c.141]    [c.193]    [c.257]    [c.297]    [c.382]    [c.54]    [c.87]    [c.328]   
Получение кислорода Издание 4 (1965) -- [ c.263 ]

получение кислорода Издание 4 (1965) -- [ c.263 ]

Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.258 , c.408 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.2 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон



© 2025 chem21.info Реклама на сайте