Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация ионов электрохимическая

    Электрохимическая поляризация не зависит от плотности тока и возникает, когда на электродах выделяются продукты электролиза, отличные от материала самого электрода. Ее можно заметно уменьшить, прибавляя так называемые деполяризаторы, т. е. веще-< тва, разряжающиеся прежде, чем те ионы, которые разряжались бы в их отсутствие. Например, если на электроде выделяется кислород или хлор, в качестве деполяризатора употребляется [c.427]


    Доставка исходных веществ к поверхности электрода и отвод продуктов реакции могут осуществляться тремя путями миграцией, молекулярной диффузией и конвекцией. Миграция представляет собой передвижение ионов под действием градиента электрического поля, возникающего в электролите при прохождении тока. Молекулярная диффузия представляет собой перемещение частиц под действием градиента концентрации, возникающего в растворе при его качественной или количественной неоднородности. Конвекция представляет собой перенесение частиц растворенного вещества вместе с потоком движущейся жидкости, например при перемешивании. Отклонение потенциала под током от равновесного значения, вызванное замедленностью доставки и отвода участников реакции, называют концентрационной поляризацией. Концентрационная поляризация имеет важное значение для окислительно-восстановитель-ных процессов и меньшее значение — для разряда простых металлических ионов. Концентрационная поляризация не единственная причина отклонения потенциала электрода под током от его равновесного значения. Обычно изменение потенциала при наложении тока оказывается больше, чем концентрационная поляризация. Это является следствием торможения на стадии присоединения или отдачи электронов. Поляризация, вызванная замедленностью разряда или ионизации при протекании электрохимической реакции, называется химической поляризацией. Химическую поляризацию называют также перенапряжением. [c.204]

    Причиной поляризации может быть как замедленный разряд ионов (электрохимическая поляризация), так и диффузия (концентрационная поляризация). [c.89]

    ПОЛЯРИЗАЦИЯ ЭЛЕКТРОДНАЯ, разность между значениями электродных потенциалов при равновесии и при пропускании через электрод внеш. электрич. тока. М. б. обусловлена 1) отклонением приэлектродной конц. реагирующего на электроде в-ва от ее значения в объеме р-ра электролита вследствие замедленного. диффуз. переноса исходных в-в и продуктов р-ции 2) замедленным переносом заряж. частнц (ионов, электронов) через границу электрод I р-р. Соотв. различают концентрационную поляризацию к электрохимическую, (см. Перенапряжение).-П. э. зависит от материала электрода, характера электродных про- [c.473]

    Теория замедленного разряда приложима ко всем электрохимическим процессам с замедленной электрохимической стадией разряда или ионизации и изложена выше (см. с. 198) применительно к процессу растворения металла. Именно при изучении катодного процесса разряда водородных ионов и его поляризации складывались основные положения электрохимической кинетики электродных процессов. [c.253]


    Процесс анодного растворения железа во влажных грунтах начинается с перехода в грунтовый электролит иона-атома металла, несущего положительный заряд. В дальнейшем ион-атом гидратируется полярными молекулами воды и превращается в нейтральную частицу. При недостатке полярных молекул воды происходит накапливание положительных ионов-атомов в приэлектродном слое, т.е. сдвиг потенциа а анода в положительную сторону (анодная поляризация), уменьшающий скорость анодного растворения. Таким образом, при уменьшении влажности грунта скорость коррозии снижается. Для абсолютно сухих грунтов скорость электрохимической коррозии равна нулю. [c.45]

    Под общим названием активационная поляризация объединяют электрохимическое и фазовое перенапряжение, а под названием концентрационное перенапряжение объединяют диффузионное и химическое перенапряжение. Из всех стадий электродной реакции самой важной является стадия электрохимического перенапряжения (перехода), от скорости этой реакции непосредственно зависит электродный потенциал. Все остальные стадии влияют на электродный потенциал через посредство реакции перехода. В процессе электролиза в приэлектродных слоях электролита наблюдается заметное изменение концентрации реагирующих веществ (молекул, ионов), вследствие чего возникает перемещение частиц в направлении убывания их концентрации. Если скорость доставки ионов более медленная, чем скорость электрохимического акта разряда или ионизации, то кинетика электродной реакции в целом определяется концентрационной поляризацией. В результате изменений концентрации в приэлектродных слоях возникает диффузия, которая способствует некоторому выравниванию концентрации вещества. Закономерности концентрационной поляризации устанавливают обычно, исходя из представлений Нернста, т. е. не принимая во внимание движение жидкости вблизи поверхности электрода. [c.99]

    Если собственно электрохимическая реакция протекает медленно, то на электроде возникает электрохимическая поляризация. Замедленность электрохимического процесса обусловлена тем, что при реакции происходит перестройка структур молекул и ионов, разрыв одних химических связей и образование других. [c.22]

    Если металл опущен в раствор, содержащий ионы этого же металла, то, как известно, на поверхности металла — электрода устанавливается электрохимическое равновесие и появляется соответствующий электродный потенциал. При включении тока это равновесие нарушается и, в зависимости от направления тока, возникает тот или другой электродный процесс, стремящийся восстановить равновесие. При катодной поляризации, т. е. когда к электроду подводятся электроны, наблюдается процесс электрокристаллизации, т. е. перехода ионов металла из раствора в кристаллическую решетку при анодной поляризации, когда электроны отводятся от электрода, происходит электро- [c.634]

    Логарифмическая зависимость электрохимической поляризации от плотности тока при достаточно больших значениях последней была впервые установлена Тафелем для катодного процесса разряда водородных ионов (1900 г.), и уравнение подобного типа называют уравнением Тафеля или тафелевским. [c.196]

    Ограниченная скорость электрохимической реакции оказывает существенное влияние на поляризацию электрода, выражающуюся в отклонении электродного потенциала от его равновесного значения при прохождении в цепи сравнительно небольших токов. Очевидно, что в растворах обратимых систем наблюдается лишь незначительная поляризация электрода. Вследствие того, что электродный потенциал однозначно определяется активностями потенциалопределяющих ионов и при небольших величинах тока лишь незначительная их доля участвует в процессе электролиза, на электроде быстро устанавливается потенциал, мало отличающийся от первоначального равновесного значения. [c.17]

    Воздействие ультразвука на электрохимические процессы, включающие и процессы электрохимической коррозии металлов, складывается из целого ряда эффектов 1) перемешивания, которое устраняет концентрационную поляризацию 2) активационного воздействия на реагирующие частицы и внедрения их в двойной электрический слой (изменение состояния ионных атмосфер и гидратации частиц, преимущественная ориентация ионов и молекул) 3) влияния на переход электронов (за счет возбуждения [c.368]

    Существенное значение для процесса электролиза имеет перенапряжение, представляющее разность между потенциалом разряда иона в данных условиях (фактический потенциал) и равновесным потенциалом, то есть потенциалом неполяризован-ного (неработающего) электрода. Перенапряжение является следствием концентрационной, электрохимической и химической поляризации и увеличивает потенциал разряда ионов катодный в положительную сторону, анодный — в отрицательную сторону (ф-ла 21.3), что может существенно изменить картину электролиза. [c.332]


    А. Т. Ваграмян с сотр. [42] показал, что образующаяся на катоде в процессе электролиза пленка, наоборот, способствует восстановлению хромат-ионов до металла. По данным авторов, в чистом растворе хромовой кислоты электроды из хрома, железа, никеля, кобальта или других металлов покрываются прочной окисной пленкой, которая препятствует восстановлению ионов хрома даже при поляризации катода до высокого электроотрицательного потенциала. В этих условиях выделяется только водород, причем при повышенном перенапряжении. Восстановление хромат-иона на этих электродах возможно только в присутствии небольшого количества указанных выше анионов, которые служат как бы катализаторами процесса. При этом в зависимости от потенциала изменяется как характер, так и скорость электрохимических реакций. Последнее иллюстрируется поляризационными кривыми, полученными потенциостатическим методом в растворе [c.415]

    Специфика электролиза индивидуальной расплавленной соли при применении жидкого катода из расплавленного металла заключается в том, что концентрационная поляризация вследствие высокой подвижности ионов практически отсутствует, отсутствуют также затруднения, связанные с электрокристаллизацией. Электрохимическое перенапряжение очень мало, так как токи обмена в расплавах для всех металлов велики 0,5—3,3 А/см (в водных растворах io = 10 — 10 A/ м ). Поэтому отклонение потенциала от равновесного значения обычно мало (от 2 до 30 мВ). [c.470]

    Скорость электрохимического процесса определяется самой медленной стадией, которая в разных электродных реакциях может быть различной по своей природе. Это служит основанием для классификации электрохимических процессов. В любых электрохимических процессах тип поляризации может быть определен ио абсолютной величине эффективной энергии активации, т. е. той энергии, которая необходима, чтобы молекула или ион вступили в электрохимическое взаимодействие, по ее зависимости от потенциала поляризации и скорости перемешивания. Эффективная энергия активации электрохимической реакции может быть определена при постоянном потенциале поляризации по линейной зависимости логарифма плотности тока от обратного значения абсолютной температуры. [c.403]

    Из имеющихся в литературе ограниченных сведений о потенциалах электрохимических реакций (табл. 62) видно, что согласно величинам стандартных потенциалов реакций разряда и образования комплексных ионов имеется теоретическая вероятность раздельного образования ионов на аноде и их разряда на катоде. Что же касается практического осуществления, то необходимо учитывать концентрацию комплексов в растворе, пассивирование анода и скорость разряда комплексных анионов (катодная поляризация). [c.258]

    Восстановление цинка, как полагают, происходит из комплекса и при достаточно высокой катодной поляризации, которая обусловлена как диффузионными ограничениями, так и торможением электрохимической стадии. К тому же повышение катодной поляризации может быть за счет адсорбции на катоде ионов РгО .  [c.23]

    Нарушение равновесного состояния электрода, связанное с прохождением тока, называется электрохимической поляризацией, а электроды, выведенные из состояния равновесия, называются поляризованными. Разность потенциалов между электродами, возникшая в результате проведения электролиза, всегда направлена противоположно наложенному извне напряжению. Поляризация является следствием процессов, происходящих на электроде во время разрядки пли образования ионов. Природа поляризации может быть различной И определяется наиболее замедленной стадией в процессе электролиза. [c.402]

    Химическая поляризация обусловливается замедленностью протекания электрохимической реакции, т. е замедленностью разряда ионов, замедленностью диссоциации комплекса, замедленностью дегидратации иона металла и т. п. Химическую поляризацию можно ослабить прибавлением веществ, активно взаимодействующих с веществами, ее вызывающими. Так, для поляризации, обусловленной выделением водорода на катоде, деполяризаторами могут служить различные окислители, а для уменьшения поляризации при выделении кислорода на аноде деполяризаторами могут служить различные восстановители. [c.403]

    Скорость электрохимического процесса в обратимой окислительновосстановительной системе зависит от соотношения концентраций окисленной и восстановленной форм ионов. Если наиболее замедленная стадия процесса электролиза имеет диффузионную природу (концентрационная поляризация), то зависимость скорости (силы или плотности тока) электролиза от состава исследуемой обратимой системы рассчитывается по уравнению [c.418]

    Металлы, соприкасаясь с расплавленными солями, взаимодействуют с ними и подвергаются коррозионному разрушению. Расплавы солей в большинстве случаев являются проводниками второго рода, т. е. обладают ионной проводимостью, и взаимодействие их с металлами протекает по электрохимическому механизму. А. В. Рябченков и В. Ф. Абрамова на основании своих опытов по полной защите деталей от коррозии в расплавленной соли при катодной поляризации деталей предложили этот механизм, который был подтвержден и подробно изучен И. И. Тугарнновым и И. Д. Томашовым в расплавах хлоридов. [c.405]

    Если электрод находится при равновесном потенциале р, то ток в цепи равен нулю. При смещении потенциала электрода относительно равновесного значения на величину АЕ начинается направленный переход электронов или ионов через границу фаз и 1 0. Справедливо и обратное при прохождении через электрод тока / потенциал его отклоняется от равновесного значения на величину АЕ. Сдвиг потенциала АЕ=Е—Е при прохождении тока через электрод называется поляризацией электрода. Изучение кинетики электродного процесса состоит прежде всего в установлении связи между поляризацией электрода АЕ и скоростью электрохимической реакции . Для измерения этой зависимости обычно используют трехэлектродную электрохимическую ячейку (рис. 80). Ячейка изготовляется из стекла [c.143]

    Поляризация, вызванная замедленностью переноса носителя заряда (электрона или иона) через двойной электрический слой, названа поляризацией (или перенапряжением) разряда. Этот вид поляризации называют также электрохимической поляризацией. [c.347]

    На рис. 4.16 представлена типичная поляризационная кривая в координатах 1=[ Е) или =/( ф) (для катодного или анодного процесса на ртутном капельном электроде). При постепенном увеличении внешней разности потенциалов вначале весь ток идет на заряжение электрода (двойного электрического слоя), поэтому сила тока в цепи остается исчезающе малой, что указывает на отсутствие электрохимического процесса. После достижения определенной разности потенциалов (точка а) происходит резкое увеличение силы поляризующего тока, что указывает на начало электрохимического процесса (окисления или восстановления). По мере того как потенциал электрода и сила тока увеличиваются, концентрация восстанавливающихся или окисляющихся ионов вблизи поверхности электрода уменьшается и наступает концентрационная поляризация. При увеличении поляризации наступает момент, когда концентрация частиц у поверхности электрода практически равна нулю (сколько бы частиц ни пришло, все мгновенно реагируют и [c.106]

    Описываемые опыты проводили при положительных нотенцпа-лах электрода, при которых на платине не могло происходить выделения молекулярного водорода. Кроме того, путем продувания азота через раствор его очищали от молекулярного водорода, который мог там присутствовать. Благодаря этому исключали возможность ионизации водорода на электроде. В таких условиях при поляризации электрода электрохимические процессы ограничивались изменением числа адсорбированных атомов водорода на поверхности платины либо благодаря ионизации атомов, либо, наоборот, в результате разряда ионов. При этом часть электричества затрачивалась на зарядку двойного слоя, а остальная часть—на посадку или ионизацию атомов водорода. Для того чтобы оценить время, необходимое для этих процессов, опыты по измерению емкости двойного слоя проводили при помощи переменного тока различной частоты. [c.269]

    Предложен метод оценки защитной способности ингибированных пленок по изменению поляризации ионного сопротивления датчика, содержащего исследуемую пленку [15]. Датчик состоит из двух разделенных пленкой стальных пластинок, сжатых постоянным усилием. Поверхности пластинок, не контактирующие с пленкой, Защищены лаковым покрытием. Поляризационное сопротивление такого датчика,, погруженного в электролит, при прочих равных условиях определяется кинетикой выделения из пленки ингибитора коррозии, его гидро-фобизирующими характеристиками и электрохимической активностью. Величину поляризационного сопротивления определяют с помощью измерителя скорости коррозии Р5035 и пересчитывают в единицы скорости коррозии. [c.28]

    Последняя стадия определяет скорость всего процесса. Для реализации этой стадии необходимо, чтобы, во-первых, разряд водородных ионов протекал беспрепятственно (или во всяком случае егче, чем разряд восстанавливаемых частиц) и, во-вторых, присоединение атома водорода к частиц(з Ох совершалось с меньшими затруднениями, чем рекомбинация двух водородных атомов. Эти условия лучше всего должны выполняться на металлах групп платины и железа, а также на других металлах, у которых рекомбинация водородных атомов или является замедленной стадией, или протекает с малой скоростью. Накопление водородных атомов на поверхности этих металлов в ходе их катодной поляризации способствует быстрому протеканию реакции гидрирования. Электрохимическое восстановление при подобном механизме становится сходным с процессом каталитического гидрирования с той разницей, что атомы водорода в первом случае поставляются током, а во втором — диссоциацией молекулярного водорода иа поверхности катализатора. В согласии с уравнением реакции (21.15) для илотности тока, идущего на реакцию восстановления, можно наиисать следующее выражение  [c.438]

    Величина напряжения разложения более или менее точно может быть определена для данного электролита определенной концентрации лишь в случае выделения на электродах чистых твердых веществ. Если при электролизе на электродах образуются гвердые или жидкие растворы и, особенно, при выделении газов, напряжение разложения зависит от формы и размеров эл( ктродов, характера их поверхности, условий удаления газов и многих других обстоятельств, подчас не учитываемых Поэтому величина напряжения разложения не может служи ь однозначной характеристикой для любого электролита при различных условиях, так же как и величины потенциалов разряда ионов. Величина э.д.с. электрохимической поляризании при электролизе отражает э.д.с., реально возникающую при приложении внешней разности потенциалов и противодействующую электролизу независимо от того, протекает электролиз или он подавлен э.д.с. электрохимической поляризации. В частном случае возникающая на электродах предельная поляризация может быть как раз лишь незначительно меньшей, чем приложенная разность потенциалов. Тогда эта разность равна сумме потенциалов разряда ионов (напряжению разложения). [c.615]

    При электрохимической поляризации электродов электроли-гической ячейки электролиз может начаться после того, как приложенная извне разность потенциалов достигает величины, равной (вернее очень незначительно превышающей) э.д.с. электрохимической поляризации, которая равна разности обратимых потенциалов электродов электрохимической ячейки (потенциалы разряда ионов). [c.618]

    Вторая особенность связана с тем, что при протекании тока потенциал электрода изменяется, хотя равновесие на электроде практически не нарушается. Это явление называется концентрациоп-rtoft поляризацией. Сущность ее заключается в том, что концентрация ионов в приэлектродном слое раствора в результате электрохимической реакции уменьшается или увеличивается вследствие затруднений в доставке ионов к электроду или в отводе их от электрода. При этом потенциал принимает другое значение. [c.391]

    Рассматривая вышеуказанным способом возможность электрохимического окисления находящихся в растворе компонентов на анодно поляризованном ( /3 а платиновом электроде, приходим к выводу, что легче всего электроокислению могут подвергаться до т.э. ионы Ввиду уменьшения их концентрации по мере титрования потенциал электрода ( д ) постепенно сдвигается в более положительную область потенциалов. Еще до Т.Э., как только концентрация ионов Ре " уменьшится настолько, что его предельный ток ( - р5 2+ч) станет меньше тока анодной поляризации ( ). э и ионы больше Ме могут обеспечить полностью электродньгй процесс.. Поэтому в электрохимической реакции начинают принимать участие другие компоненты, а именно в данном случае молекулы Н2О, окисляясь до О2. Вследствие этого индикаторный электрод принимает новое, бо-. лее положительное значение потенциала ( -гг ),что сопровождается достаточно резким скачком ЛЕ = 1сд , отвечающим к.т.т. Скачок в данном случае пред111ествует т.э., тем саМым обусловливает небольшую, но систематически отрицательную погрешность титрования. [c.188]

    При возникновении атодной поляризации <реакция восстановления Ре + + е р02+ идет за счет выхода электронов катода. Окисление и восстановление катионов, сопровождающееся изменением валентности ионов, происходит без образования или исчезновения новой фазы. Поэтому электрохимические реакции восстановления — окисления должны протекать с большими скоростями, т. е. достижение заданной силы тока требует наложения меньшей поляризации. Это подтверждается экспериментально, обычно скорость этих реакций лимитируется концеитрационной поляризацией. [c.33]

    Выход по току на катоде в данных условиях и при данной поляризации будет зависеть от скорости электрохимических реакций разряда ионов цинка, разряда ионов водорода и реакций в0сстан01вления ионов высших валентностей до низших (РеЗ+- Ре2+ и др.). [c.437]

    Рассмотрение поведения платины и ртути при электролизе показывает, что поляризация электродов не может быть беспредельной. Она ограничена электрохимическими реакциями растворителя и самого электрода. Например, восстановление иона Zп + до при фвосст = — 1 невозможно на платиновом электроде, так как восстанавливается прежде вода. На ртутном электроде восстановление Zп в 2п° идет без помех. Или нельзя, например, окислить гидрохинон в хинон на ртутном электроде при фок= +0,45 В, так как при меньшем потенциале окисляется ртуть электрода. Однако на платиновом аноде гидрохинон легко окисляется [c.208]


Смотреть страницы где упоминается термин Поляризация ионов электрохимическая: [c.226]    [c.322]    [c.322]    [c.402]    [c.403]    [c.403]    [c.297]    [c.38]    [c.45]    [c.519]    [c.106]    [c.133]    [c.352]   
Общая химия Издание 18 (1976) -- [ c.299 , c.301 , c.553 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризация электрохимическая



© 2025 chem21.info Реклама на сайте