Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гептан алкилирование

    Пропан. При реакции пропана с этиленом (суммарное мольное отношение 6,5) при 510° и давлении 316 ат было получено 126% вес. (на этилен ) жидкого продукта, состоящего из 55,5% изопентана, 16,4% н-пентана, 7,3% гексанов и 10,1% гептанов 7,4% составляли пентены, гексены, гептены и более высокомолекулярные олефины. Выходы изопентана и и-пентана составляли соответственно 27 и 8% от теоретического. Гептан (выход 7%), вероятно, образовался в результате реакции пентанов с этиленом. Образование других побочных продуктов, по-видимому, является следствием крекинга (сопровождаемого алкилированием части продуктов разложения) и полимеризации. [c.305]


    Алкилирование в непрерывном процессе при 3.7,8° с использованием в качестве катализатора 90%-ного фтористого водорода сопровождалось образованием гептанов с выходом 56% (67% 2,3-диметилпентана, 33% [c.323]

    Алкилирование изобутана изопропилхлоридом можно осуществить, используя в качестве катализатора раствор хлористого алюминия в нитро-метане [39]. Так, при нагревании нри 60—70° смеси изобутана и изопропилхлорида в присутствии такого раствора катализатора менее 30 % хлорида было восстановлено в пропан. Жидкий продукт, полученный в в количестве 100—130% вес. на пропилен, который можно получить, исходя из изопропилхлорида, состоял из смеси парафинов гептаны и октаны были получены в наибольших количествах гептанов 15—16% и октанов 7—15% от теоретического выхода. [c.332]

    При алкилировании изопарафинов алкилфторидами в присутствии. фтористого водорода образуются продукты, аналогичные продуктам, получаемым при алкилировании олефинами, за исключением того, что получается больше продуктов, образующихся по реакции переноса водорода. Так, например, при периодическом алкилировании изобутана фтористым изопропилом при 37° получался алкилат (выход 226 % вес. на пропилен, который можно получить из фтористого алкила), в котором содержалось 39 % гептанов и 24% октанов от теоретического [24]. При использовании в качестве алкилирующего агента пропилена получался алкилат, содержавший 45 % гептанов и 10 % октанов. [c.334]

    При обработке изобутана спиртами в присутствии избытка фтористого водорода реакция алкилирования преобладала над реакцией переноса водорода [14]. Так, алкилирование изобутана тре/ г-бутиловым спиртом при 19—26° шло с выходом 58% октанов, в то время как реакции алкилирования изопропиловым спиртом при этой температуре совсем не было, а при температуре 49—51° она шла с образованием гептанов с выходом 50% и октанов 7%. С м-бутиловым спиртом алкилирование не наблюдалось даже при 50°. По-видимому, в этих условиях не идет дегидратация первичных спиртов. [c.336]

    Алкилат, образующийся под действием HF, имеет лучший состав, чем при сернокислотном алкилировании. Считается, что в присутствии HF в меньшей степени протекают полимеризацион-ные процессы. Кроме того, более высокое содержание фракции g (и с меньшим количеством диметилгексанов) и пониженное содержание гептанов указывают на то, что при фтористоводородном алкилировании более энергично протекают реакции переноса водорода от пропилена. [c.60]

    Термическое алкилирование пропана. Реакцию пропана с этиленом при 510° и 315 ат проводили в потоке путем циркуляции парафинового углеводорода через облицованные медью стальные т]>убы с подачей олефина в нескольких точках небольшими порциями для подавления полимеризации поддержанием высокого отношения парафин олефин [12]. При общем молярном отношении 6,5 и продолжительности контакта около 5 мин. основными продуктами алкилирования были изопентан и к-пентан, полученные с выходами соответ--ственно 27 и 8% от теоретического. В результате дальнейшей реакции пентана образовался гептан с выходом 4%, В качестве побочных продуктов присутство- [c.189]


    Моноалкилирование толуиловых кислот. При обработке толу иловых или диметилбензойных кислот 2 эке реагента в с.меси ТГФ — гептан при 0° образуется гомогенный раствор литийорганического комплекса, имеющий ярко-красную окраску. Это соединение легко алкилируется алкилгалогенидами выход 30—70%. При наличии второй метальной группы преимущественное алкилирование одной из групп происходит в следующем порядке орто >пара>мета [6]. [c.150]

    Для нахождения оптимальных температурных условий реакции алкилирования фенола н-гептаном были исследованы три температуры 300, 400 и 480°. Все опыты проводили при одинаковой скорости пропускания смеси 12—15 мл/час, одинаковом молярном соотношении фенола и н-гептана (1 3) и одинаковом объеме катализатора — 60 мл. [c.102]

    Многие ароматические углеводороды получают непосредственно из каменноугольной смолы или косвенно из нефти. Каменноугольная смола содержит бензол, нафталин, толуол, ксилол и т.д., которые можно выделить перегонкой, и она широко использовалась как первичный источник ароматических углеводородов. Однако во время второй мировой войны был разработан процесс получения ароматических углеводородов из нефти, и в настоящее время это главный источник ароматических углеводородов. Сама нефть состоит главным образом из алифатических углеводородов, таких, как гептан и октан, которые превращаются в ароматические углеводороды (толуол и ксилол) при пропускании над катализатором — оксидом металла при высокой температуре. В лаборатории алкилбензолы можно получить алкилированием по Фриделю — Крафтсу или ацилированием с последующим восстановлением (разд. 5.4). [c.119]

    Поскольку реакция включает взаимодействие ароматического углеводорода с протоном, степень протекания реакции может служить непосредственной мерой основности углеводорода. Бензол является слишком слабым донором электронов, чтобы действовать в качестве эффективного ст-основания, но ксилолы и более высоко алкилированные бензолы при распределении их между н-гептаном и жидким фтористым водородом в присутствии соответствующего количества фтористого бора образуют комплексы, которые переходят в неорганический слой. Так как стабильность ст-комплекса изменяется в зависимости от природы, числа и расположения алкильных групп, возможно разделение смеси углеводородов фракционной экстракцией. Если три изомерных ксилола обработать ограниченным количеством фтористого бора в присутствии избытка фтористого водорода, то ж-ксилол, как наиболее сильное основание, извлекается в первую очередь, а /г-ксилол —в последнюю. [c.129]

    Что касается изменения с давлением состава изомерных гексанов и гептанов, получаемых при алкилировании изобутана этиленом и пропиленом, то по этому вопросу достоверных данных в литературе нет. Близость мольных объемов изомерных углеводородов не дает оснований для предположения о сколько-нибудь значительном изменении равновесных соотношений изомеров с увеличением давления. Однако при гомогенном алкилировании термодинамическое равновесие между изомерными продуктами реакции, повидимому, не устанавливается. Весьма интересно то, что алкилирование в присутствии хлористого алюминия при низких температурах дает продукты, отличные от продуктов гомогенного высокотемпературного алкилирования. Например, алкилирование изобутана этиленом в присутствии хлористого алюминия дает 2,3-диметилбутан [26]. Причину этого надо, повидимому, искать в специфическом действии хлористого алюминия . [c.100]

    Общий выход гексанов (включая незначительные количества 2,3-диметилбутана) составлял 34% от теоретического. Присутствие изопентана (10,7% вес. на пропилен), и-пентана (14,1%), гептанов (12,6%) и олефинов (около 23%) показывает, что алкилирование сопровождается крекингом и полимеризацией. [c.307]

    Изобутан и пропилен. Как и при чисто термическом алкилировании, алкилирование этиленом в присутствии галоидсодержащих катализаторов идет легче, чем алкилирование другими более высокомолекулярными олефинами. Так, например, для алкилирования изобутана пропиленом при 413° в присутствии хлористого пропилена необходимо давление 420 ат, чтобы получить выход жидких продуктов в 150% вес. на пропилен (теоретический выход гептанов на пропилен 238% вес.). Алкилирование в тех же условиях, но боз добавления катализатора, дает выход жидких продуктов лишь 65%. При снижении давления до 210 ат выход жидких продуктов в инициированной и чисто термической реакциях падает до 69 и 29% вес. соответственно. В опытах, проводимых в периодическом процессе при 400°, 280 ат и при времени реакции 15 мин., с использованием изобутан-пропиленовой смеси, содержаш,ей 10% вес. пропилена и 1—3% вес. трихлопропана, трибромпропана, хлора или брома, были получены выходы гептана 25—28% от теоретического (нри выходе жидких продуктов в количестве 140 170% вес. на взятый пропилен). [c.309]


    При алкилировании изобутана, например, пропиленом промежуточный 2,3-диметилиентил-ион легче расщепляется в уЗ-положении, чем превращается в гептан  [c.316]

    Алкилирование изобутана пропиленом при 75° в присутствии хлористого алюминия, растворенного в нитрометане, давало выход 44% гептанов (главным образом 2,3- и 2,4-диметилнентанов) октаны и пропан, образовавшиеся в результате побочной реакции переноса водорода, были получены с выходом около 12%. При 35° алкилирование шло слабее. [c.322]

    При алкилировании изопентана этиленом в присутствии катализатора ВЕз. Н3РО4, полученного насыщением 100%-пой фосфорной кислоты фтористым бором, был получен [48в] алкилат с выходом 182% на этилен (теоретический выход гептанов 357% вес. на этилен). Такой же выход получался и в присутствии моногидрата фтористого бора, но сам втори-стый бор и эфират фтористого бора оказались неактивными. Методом спектров комбинационного рассеивания было показано, что основным компонентом гептановой фракции (15—30% от алкилата) является [c.329]

    Алкилирование изопентана фтористым изопропилом в присутствии фтористого водорода при 35° также сопровождается в значительной мере переносом водорода и деструктивным алкилированием, причем выход октанов составляет только 20% от теоретического [24]. Жидкий продукт, полученный в количестве 247 % вес. в расчете на пропилен, содержал 12% гексанов, 10% гептанов, 23% октанов, 13% нонанов и 42% деканов и более высококипящих продуктов. [c.335]

    Как уже наблюдалось, при алкилировании изобутана олефинами нормального строения и с разветвленной цепью в присутствии серной кислоты реакция переноса водорода идет несколько меньше с ето/)-бутиловым спиртом, чем с грет-бутиловым спиртом [27]. При реакции изопентана с втор-буталовым спиртом при 24° образовалось 44 % нонанов, 12 % изобутана, 18% деканов, 31% гексанов, 7% гептанов и 12% октанов м-бутан в продуктах реакции обнаружен не был по-видимому, изомеризация сопровождала перенос водорода. [c.336]

    При применении катализаторов типа Фридель—Крафтса изомеризация парафинов, за исключением бутана, обычно сопровождается побочными реакциями, включающими и разрыв связи С—С. В процессе реакции синтезируются соединения, кипящие либо выше, либо ниже первоначального углеводорода. Реакции перераспределения, проходящие особенно с пентанами или более высокими парафинами, вызываются, очевидно, крекингом изо-парафиновых молекул, которые галоидом алюминия пе активируются [409]. По аналогии с реакциями, происходящими в авто-деструктивном алкилировапии, описываемый процесс является все-таки соединением деалкилирования (крекинг) и алкилирования [410], которые дают изопарафины более высокого либо более низкого молекулярного веса, чем первоначальный алкан. Возможно, проведением изомеризации под давлением водорода [411 — 413], в присутствии изобутана [412, 414], ароматики [412], нафтеновых углеводородов [412, 415—418] или гетероциклических углеводородов, таких как тиофен [419], можно свести к минимуму боковые реакции для нентанов и гексанов, но не для гептанов и более высоких парафинов. Устранение побочных реакций обычно сопровождается замедлением изомеризации, однако, прибавление олефинов уменьшает предохраняющее действие вышеприведенных агентов. Реакции изомеризации проходят через индукционный период в течение этого времени проходят незначительные реакции перераспределения [420, 421]. [c.117]

    Под давлением и нри температурах от 25 до 125° С получаются жидкие продукты, которые в зависимости от времени реакции и количества катализатора колеблются от бензина до масляных фракций. Бензин, выкипающий до 200° С, сильно насыщен и имеет октановое число смешения 77 [621], что указывает на присутствие разветвленных структур высококипящие порции содержат нафтеновые углеводороды. Очевидно, образование циклов наиболее легко происходит при полимеризации более низкомолекулярных олефинов. Никто не сообщал о подобных реакциях с амиленом и октеном [622, 623], так же как и с пропиленом, который в деструктивном алкилировании дает нормальный гептан [624] или гексадецилен [625, 626]. [c.140]

    Имеются сведения [17а] об алкилировании (при —10°С, в присутствии смеси НЗОзР+ЗЬРв в соотношении 1 1) н-бутана этиленом, которое приводит к образованию гексанов с выходом 38% (масс.), а также об алкилировании н-бутана пропиленом, приводящем к получению гептанов с выходом 29% (масс). Первую из этих реакций проводили тоже при 60 °С [31], однако состав продуктов в этом случае был близок к составу продуктов разложения полиэтилена. В описываемой работе, где использован катализатор НР+ТаРб (10 1), при 40°С в непрерывном реакторе при взаимодействии 14,19% (масс.) этилена с н-бутаном с 94%-ной селективностью был получен 3-метилпентаи в качестве начального лродукта (схема VI, путь а). Альтернативный путь, т. е. прямая реакция этилена с втор-бутильным катионом (путь б), исключается поскольку бутан при этих условиях не ионизируется (см. выше). [c.156]

    Насыщенные углеводороды могут быть опасны в некоторых процессах. Особенно нежелательны они при использовании бензола для производства капролактама и адипиновой кислоты через промежуточное получение циклогексана и циклогек-санона. На стадии окисления циклогексана насыщенные примеси окисляются, образуя кислородсодержащие соединения, вызывающие пожелтение капролактама и ухудшение качества получаемых синтетических волокон. Насыщенные углеводороды не влияют на алкилирование, но могут образовать побочные продукты уже на стадии переработки. Содержание примесей насыщенных углеводородов ограничено только для бензола высшей очистки (н-гептан - не более 0,01 % для продукта высшего и 0,02 % — 1-го сорта, а метилциклогексан и толуол — в сумме, соответственно, не более 0,05 и 0,08%). Косвенньсм показателем является и температура кристаллизации бензола. [c.305]

    Сернокислотное алкилирование бутилена или изобутилена при помощи изобутана дает в качестве главного продукта 2,2,4-триметилпентан и смесь других изомерных октанов (т. кип. 108—115°) с примесью низших изопарафинов. Пропилен с изобутаном образует смесь изомерных гептанов, среди которых преобладают 2.3-и 2,4-диметилпентаны. Пропилен с изопентаном дает смесь изооктанов с преобладанием 2,3-, 2,4- и 2,5-диметилгексанов. Бутен-2 с изопентаном образует изононаны с преобладанием 2,2,5-триме-тилгексана. При алкилировании для снижения до минимума полимеризации олефинов применяют отношения алкен алкан =г 1 4—1 8. [c.654]

    Алкилирование пропиленом. Алкилирование изобутана пропиленом при комнатной температуре с применением хлористого алюминия, промотированного хлористым водородом, в качестве катализатора сопровождается весьма интенсивно протекающими побочными реакциями, в частности деструктивным алкилированием. Эту реакцию можно подавить, проводя алкилирование при низкой температуре или изменив активность катализатора. Нанример, проведение реакции при —30° дает жидкий продукт, содержащий 42% гептанов (главным образом 2,3-диметилиентан с небольшим количеством 2,4-диметилпен-тана) и 20% деканов [27]. Реакция при 63° в присутствии монометанолата хлористого алюминия, промотированного хлористым водородом, ведет к образованию гептанов (состоявших из приблизительно равных количеств 2,3-и 2,4-диметиппентанов) с выходом 40% пропан и триметилпентаны (продукты побочной реакции перераспределения водорода) образовались с выходами всего соответственно 4 и 5% [28в]. Аналогично раствор хлористого алюминия в нитрометане нри 75° давал выход 44% гептанов (главным образом 2,3- и [c.191]

    При попытке алкилировать изобутан тримером пропилена в присутствии 100%-ной серной кислоты при 20° протекала главным образом реакция перераспределения водорода [29]. Образование нонанов и триметилпентанов при этой реакции составляло соответственно 86 и 71—86% от теоретического. Образования тридеканов в результате алкилирования изобутана пли гептанов, получающихся при деполиалкилировании тримера, не наблюдалось. По своим физическим свойствам получаемая нонановая фракция аналогична продукту гидрирования тримера пропилена молекулярным водородом. [c.194]

    Весьма большой интерес представляет новая реакция — инициированная облучением цепная конденсация алканов с алкенами. Как уже отмечалось вьппе, в отношении выяснения механизма реакций радиационная химия углеводородов вследствие исключительной сложности процессов инициирования еще находится в самых начальных стадиях развития. Тем не менее чрезвычайно важно было выяснить, можно ли объяснить результаты радиационного алкилирования изобутана пропиленом при умеренных температурах и давлениях с позиций обычного радикального механизма или требуется разработка совершенно новых представлений и теорий. Применительно к образованию гептанов, которое является важнейшей реакцией алкилирования, можно предложить простой цепной механизм, лгнорирующий первичные стадии облучения и предполагающий, что суммарное действие облучения ограничивается лишь образованием изобутильных радикалов  [c.128]

    Ароматизацию смеси н-гептан - бензол проводили при массовом содержании бензола в смеси от нуля до 30 %. В ходе проведения экспериментов было установлено, что с увеличением концентрации бензола в смеси с н-гептаном наблюдается расходование бензола с достижением его степени конверсии 32,3 % при содержании в смеси 30 % мае. При концентрации бензола в смеси 12,5 % мае. начинает протекать реакция алкилирования бензола этиленом, что проявляется в увеличении доли этилбензола в составе аренов. При содержании бензола 30 % мае. наряду с реакцией алкилирования возможно взаимодействие бензола с продуктом ароматизации - ксилолом, что приводит к образованшо толуола по реакции диспропорционирования. [c.16]

    Особое использование нормально-фазовой хроматографии—рвзделевве ПАУ с дополнительными алкильными цепями. Здесь важная цель —определять следы тютенциально канцерогенньсх и мутагенных соединений в воздухе, сточных водах н промышленных технологических растворах. Хотя незамещенные ПАУ можно разделить на обращенных фазах, их алкилированные аналоги невозможно разделить по размеру кольца. В этом случае в качестве нормальной неподвижной фазы может быть использована диамин<жая фаза, а в качестве элюента—гептан. [c.281]

    Ряд экспериментальных факторов [246], в частности доминирование сопряженного алкилирования при понижении температуры, повышенные значения М, фракций полиизобутилена, содержащих фенольные группы (по сравнению с несодержащими их образцами), различное влияние температуры на молекулярную массу образующихся полимерных продуктов с концевыми фенольными фрагментами и без них указывают на то, что конкуренция реакций роста и обрыва цепи, в том числе с участием фенолов, может протекать по-разному, в зависимости от типа АЦ (8пС14, СН2С12, гептан, 203-263 К). Конечный результат представляет суперпозицию процессов, протекающих на всех АЦ. [c.107]

    Алкилирование фенолов полиизобутиленом, 3,5 ч, гептан, соотношение (моль) фенол полиизобутилен катализатор Na[Al l4] 2 1 0,5 [c.223]

    Полимеризацию аминоэфиров метакриловой кислоты проводят в среде органического растворителя в присутствии 1%(мол.) динитрила азобисизомасляной кислоты. В качестве растворителя используют гептан. Оптимальное соотнощение (объемное) мономер гептан равно 1 1. Синтезированные слабоосновные полиэлектролиты, содержащие третичную аминогруппу, подвергают алкилированию и переводят в полимерные четвертичные аммониевые соли. В качестве алки-лирующих агентов применяют иодистый метил, бромистый этил и хлористый бензил. [c.151]

    Изомеризация разветвленных гексанов и гептанов при алкилировании с катализатором ВРд, промотированным изопропилфторидом [c.22]

    При алкилировании изопентана этиленом [52] с использованием в качестве катализатора ВРз Н3РО4 образуется алкилат, содержащий только от 10 до 30% гептанов — ожидаемого продукта реакции при алкилировании пропиленом [29] октаны составляют только 26% полученного продукта и гептаны 14%, при алкилировании бутеном-1 [33] в алкилате содержалось только 45% нонанов алкилирование изопентана 2-метил бутеном-2 [53] давало очень сложный продукт, содержащий углеводороды от изобутана до деканов. Строение их не было определено. Во всех этих случаях выход продуктов, кипящих выше нормального продукта реакции алкилирования, также очень велик. Наблюдался также больший расход серной кислоты при алкилировании изопентаном [7]. [c.39]

    В продуктах реакции присутствуют значительные количества гексанов, гептанов и более тяжелых углеводородов. Часть гексанов образуется за счет алкилирования пропана пропеном, часть - в результате термического крекинга. Существование этих реакций в условиях термического алкилирования доказывается образованием высших олефинов, водорода и метана, лаличие гептанов объясняют вторичным алкилированием пентанов этеном, с одной стороны, и пропана бутенами, образующиь..ся в результате димеризации отека, с другой. Действительно, увеличение коццентрации этена в реагирующей смеси приводит к относительному повышению количества гептанов в продуктах реакции. [c.69]

    На установке сверхчеткой ректификации выделяются в виде узких (10-градусных) фракций растворители гексан, гептан, октан кроме того, выпускается циклогекеан 85%-ной концентрации. Остающаяся после алкилирования (отработанная) бутан-бутиленовая фракция направляется на соседний завод для переработки в бутадиен и бутилкаучук. [c.222]

    На проточной установке при 325°С, Я=15,2 бар, у = 2 1, и = = 0,5 см /см н алкилирование бензола амиленами соНровожда ется образование.м (" / масс.) следующих фракций 18,9—толу ольной, 17,5 — ксилольной 145], 22,3 — изопропилбензольной. С н-гептаном при тех же условиях (и = 0,2 ч) получено око [c.58]


Смотреть страницы где упоминается термин Гептан алкилирование: [c.48]    [c.184]    [c.195]    [c.196]    [c.103]    [c.27]    [c.532]    [c.50]    [c.166]    [c.60]    [c.246]    [c.166]   
Химическое равновесие и скорость реакций при высоких давлениях Издание 3 (1969) -- [ c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Гептан

Гептанал



© 2025 chem21.info Реклама на сайте