Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий соединения, кислотно-основные свойства

    Между положением в периодической таблице легких элементов и их химическими свойствами не всегда обнаруживается закономерная взаимосвязь. Например, бериллий (II группа) во многих отношениях напоминает алюминий (группа ША) много общего также между бором и кремнием. Степени окисления этих элементов соответствуют номерам их групп, но, судя по свойствам образуемых ими соединений, по кислотно-основным характеристикам этих элементов и их физическим свойствам, между ними существует необычная для периодической системы диагональная связь. Причиной этого является сходство так называемых ионных потенциалов у диагонально расположенных в периодической таблице пар элементов. Ионным потенциалом (не пу- [c.105]


    Оксид и гидроксид алюминия являются амфотерными соединениями, т. е. проявляют как основные, так и кислотные свойства. Основные свойства этих соединений [c.226]

    Оксид и гидроксид алюминия являются амфотерными соединениями, т. е. проявляют как основные, так и кислотные свойства. Основные свойства этих соединений проявляются в реакциях с кислотами, а кислотные — в реакциях со щелочами  [c.129]

    Гидроксиды элементов IIIA группы мало растворимы в воде. Гидроксид бора В(ОН)з (ранее формулу записывали как Н3ВО3) обладает слабыми кислотными свойствами в водном растворе гидроксиды алюминия, галлия и индия амфотерны в уменьщающейся степени, а гидроксид таллия (I) ТЮН — сильное основание . По сравнению с соответствующими соединениями элементов ПА группы основные свойства гидроксидов элементов П1А группы выражены в меньщей степени. [c.301]

    Оксид алюминия. Поверхность этого сорбента, образованная ионами алюминия и кислорода, способна создавать сильное электростатическое поле, обладающее поляризующим свойством. Вследствие этого на оксиде алюминия соединения, имеющие систему легко смещаемых электронов (непредельные, ароматические и др.), сорбируются в большей степени, чем на силикагеле. Вода легко адсорбируется на поверхности оксида алюминия. При нагревании до 300—400°С большая часть адсорбированной воды удаляется. Остается вода, взаимодействующая с поверхностью, в результате чего образуются гидроксильные группы. В такой форме оксид алюминия используют в хроматографии. Различают три вида адсорбционных центров на оксиде алюминия кислотные, взаимодействующие с веществами, имеющими области с высокой электронной плотностью основные — адсорбирующие кислоты электронно-акцепторные, взаимодействующие с легко поляризуемыми ароматическими молекулами. [c.597]

    Кислотные и основные свойства проявляют даже углеводороды. Их реакции с едкими щелочами (а), металлорганическими соединениями (б), кислотами (в), щелочными металлами (г),хлоридом алюминия (<3) и т. п. можно рассматривать как процессы кислотно-основного взаимо-действия  [c.402]

    В этой реакции А1(0Н)з ведет себя как основание. Следовательно, гидроокись алюминия проявляет в зависимости от условий и кислотные, и основные свойства, т. е. это соединение амфотерно. [c.163]

    По кислотно-основному механизму протекают каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, крекинга, алкилирования, изомеризации и др. Типичные катализаторы кислотно-основного взаимодействия — кислоты и основания. Активными катализаторами являются соединения бора, фтора, алюминия, кремния, фосфора, серы и других элементов, обладающих кислотными свойствами, или соединения элементов первой и второй групп периодической системы, обладающих основными свойствами. [c.25]


    В щелочах взаимодействие идет труднее и образуются комплексные соединения Маз[1п(ОН)б] или Ма[Т1(0Н)4]. Причем TI2O3 не растворяется, а лишь пептизируется, дробясь на отдельные агрегаты типа ТЬОз-дгНгО. Следовательно, оксиды амфотерны, но кислотный характер у них выражен слабее, чем у соответствующих соединений алюминия и галлия. Гидроксиды 1п(0Н)з и Т1(0Н)з — нерастворимые в воде студенистые осадки неопределенного состава получаются из солей действием щелочи. У гидроксида индия основные свойства преобладают над кислотными, а у гидроксида таллия кислотная функция практически отсутствует. Соединения таллия (111) сильнейшие окислители, так как он стремится перейти в степень окисления Ч-1, для которой известны многочисленные соединения таллия. Соединения индия (I) неустойчивы и являются сильными восстановителями. При взаимодействии с кислородом таллий образует смесь двух оксидов TI2O и TI2O3. При 90° С оксид таллия (111) начинает отделять кислород и получается оксид таллия (I) черного цвета [c.321]

    Некоторые оксиды и их гидраты в зависимости от условий проявляют как кислотные, так и основные свойства. Они называются амфотерными соединениями (амфолитами). Такие соединения могут растворяться в кислотах и растворах щелочей. К ним относятся оксиды алюминия, цинка хрома, олова, свинца и др. Например, оксид алюминия А Оз растворяется в кислотах и растворах щелочей по уравнениям  [c.18]

    Оксид алюминия, особенно полностью активированный, сильнее катализирует химические реакции хроматографируемых растворенных веществ, чем диоксид кремния. Поскольку оксид алюминия до некоторой степени обладает основными свойствами, он воздействует главным образом на соединения с кислотным характером иногда наблюдается миграция двойной связи и даже расширение колец в молекулах. Все это является причиной того, что оксид алюминия как адсорбент уступает диоксиду кремния. [c.559]

    В течение длительного времени господствовала теория электролитической диссоциации Аррениуса, согласно которой кислота определялась, как водородсодержащее соединение, которое в водном растворе образует ионы водорода Н+, а основание — гидроксидсодержащее вещество, которое в водном растворе образует ион гидроксида ОН . Однако эта теория оказалась не- состоятельной, поскольку многие органические соединения проявляют в реакциях основные свойства, но гидроксида в молекуле не имеют (например, пиридин, амидопирин, основания алкалоидов). Аналогично, есть вещества, не содержащие в молекуле водорода, например хлорид алюминия, но в эфире это вещество реагирует с основаниями и, следовательно, проявляет кислотные свойства. Это явление не могло быть объяснено с позиций теории электролитической диссоциации Аррениуса, поэтому появились новые теории кислот и оснований, из которых наиболее приемлемой оказалась протонная (протолитиче-ская) теория Бренстеда — Лоури. [c.30]

    Алкоголяты могут быть амфотерными, сильно кислыми и сильно щелочными. Алкоголяты щелочных металлов, например алкоголят натрия, являются основаниями благодаря этоксид-иону [1—3]. Алкоголят алюминия [4] А1 (ОК)д проявляет прежде всего кислотные свойства благодаря сильной тенденции электрофильного, т. е. кислотного, атома алюминия приобрести пару электронов у электродотного соединения, т. е. основания. По отношению к другой, более сильной кислоте алкоголят алюминия может вести себя как основание, подобно гидроокиси алюминия. В литературе находим некоторые очень интересные исследования в области каталитической конденсации альдегидов с применением кислотных, основных и амфотерных катализаторов. Кульпин-ский и Норд [5] описали применение комплексного алко-голята Mg [А1 (ОК)4]2, который, согласно их экспериментальным результатам, проявляет, повидимохму, амфотерную природу. [c.188]

    Гидраты окисей цинка, алюминия и хрома Zn(0H)2. А1(0Н)з и Сг(ОН)з представляют амфотерные (двойственные) соединения. Они растворяются и в кислотах и в щелочах и в зависимости от условий реакции проявляют либо кислотные, либо основные свойства ( 24). [c.50]

    Применяемые растворители могут быть охарактеризованы с учетом их кислотности, основности или дипольных свойств. Адсорбенты, применяемые в ЖАХ, могут быть классифицированы аналогичным образом. На треугольнике растворителей, приведенном на рис. 171, обозначены также различные адсорбенты, применяемые в ЖАХ (см. также рис. 165, б). Оказалось, что силикагель и оксид алюминия, проявляя себя как кислотные фазы, удерживают преимущественно основные соединения - простые эфиры, амины и карбонильные соединения. Фазы с привитыми аминогруппами являются основными, поэтому они удерживают кислотные соединения - спирты, фенолы, карбоновые кислоты. Для фаз с привитыми цианогруппами характерны дипольные взаимодействия, поэтому на них предпочтительно удерживаются высокополярные соединения - нитрилы и нитросоединения. Силикагели с привитыми диольными группировками, по-видимому, относятся к IV группе фаз и проявляют как кислотные, так и основные свойства. Перечисленные типы фаз 8102 (или А12О3), МНг- 02, СЫ-5102 характеризуются экстремальной чувствительностью по отношению к определенным группам анализируемых вешеств. т.е. максимальные изменения селективности могут быть достигнуты при использовании одного из этих трех адсорбентов [151]. В один прекрасный день разработанный подход оптимизации селективности - 4 [c.84]


    Алкоголяты, например А1 (01 )з, являются очень сильными кислотными катализаторами [1—3] благодаря тенденции атома алюминия в этих соединениях приобрести пару электронов. Ввиду этого факта можно ожидать, что алкоголяты алюминия будут заставлять амфотерные альдегиды играть роль оснований и давать сложные эфиры. Так как подобное поведение связано лишь с основными свойствами самой карбонильной группы, то довольно безразлично, имеем ли мы один, два или ни одного а-атома водорода в альдегиде  [c.191]

    Отличительной особенностью этой грушты материалов является то, что в основе их монолитизации лежат процессы синтеза фосфатных соединений [16]. Для фосфатных цементов отвердевание обусловлено хими-чес1сим взаимодействием исходного твердого порошкообразного компонента с жидкостью затворения, содержащей фосфатные анионы. В качестве таких жидкостей могут использоваться как водные растворы фосфорных кислот (главным образом ортофосфорной), так и растворы кислых фосфатов (фосфатные связки), например аммония, алюминия, магния, хрома и т. д. В качестве порошкообразного компонента фосфатных композиций используются оксиды и гидроксиды различных металлов, стекла различного состава, соли, бескислородные соединения, порошки металлов и т. д. Основным химическим процессом, инициирующим твердение фосфатных композиций, является кислотно-основное взаимодействие жидкости затворения и твердого вещества. Условия проявления вяжущих свойств зависят как от свойств фосфатного затворителя (степень нейтрализации, химический состав), так и химических особенностей порошковой части. Повышение основности по- [c.293]

    И ЭТО заключение действительно подтверждается разительным образом ВО всей совокупности свойств элементов, принадлежащих к четным и нечетным строкам или рядам. Элементы четных рядов образуют наиболее энергические основания, и притом основная способность для них возрастает в данной группе по мере увеличения атомного веса. Известно, что цезий более электроположителен и образует основание более энергическое, чем рубидий и калий, как показал это Бунзен в своих исследованиях этого металла относительно бария, стронция и кальция это известно каждому по давнему знакомству с соединениями этих элементов. То же повторяется и в такой же мере при переходе в четвертой группе от иттрия к церию, цирконию и титану, как видно на таблице, а также при переходе от урана к вольфраму, молибдену и хрому. Эти металлы четных рядов характеризуются еще и тем, что для них неизвестно ни одного металлоорганического соединения, а также ни одного водородистого соединения, тогда как металлоорганические соединения известны почти для всех элементов, расположенных в нечетных рядах. Такое различие элементов четных и нечетных рядов основывается на следующем соображении элементы нечетных рядов, относительно ближайших элементов той же группы, но принадлежащих к четным рядам, оказываются более кислотными, если можно так [246] выразиться, а именно, натрий и магпий образуют основания менее энергические, чем калий и кальций серебро и кадмий дают основания еще менее энергические, чем цезий и барий. В элементах нечетных рядов основные способности различаются гораздо менее при возрастании атомного веса, чем в элементах четных рядов. Окись ртути, правда, вытесняет окись магния из растворов, окись талия, конечно, образует основание более энергичное, чем окись индия и алюминия, но все же это различие в основных свойствах не столь резко, как между барием и кальцием, цезием и калием. Это особенно справедливо для элементов последних групп из нечетных рядов. Кислоты, образованные фосфором, мышьяком и сурьмою, а также серою, селеном и теллуром, весьма сходны между собою при одинаковости состава только прочность высших степеней окисления с возрастанием атомного веса здесь, как и во всех других рядах, уменьшается, а кислотный характер изменяется весьма мало. [c.757]

    Гидроокиси алюминия, хрома и цинка — амфотерные соединения проявляют и кислотные и основные свойства, т. е. реагируют с кислотами и с основаниями. В их растворах наблюдаются следующие равновесия  [c.101]

    Активными промышленными катализаторами являются соединения бора, фтора, алюминия, кремния, фосфора, серы и других элементов, обладающие резко выраженными кислыми свойствами, или соединения элементов I и П групп, обладающие основными свойствами. Это обусловлено тем, что каталитические реакции этого типа протекают в результате промежуточного протолитического взаимодействия реагирующих веществ с катализатором или взаимодействия с участием неподеленной пары электронов. В первом случае каталитическая активность должна зависеть от легкости передачи протона реактанту (кислотный катализ) или отрыва протона от реактанта (основной катализ). [c.238]

    По сравнению с получением спиртов или карбонильных соединений, число методов синтеза простых эфиров весьма ограниченно. Поскольку в молекуле простого эфира нет пи подвижного водорода, ни двойных связей, он обладает наименьшей реакционноспособ-ностью по сравнению с указанными выше соединениями. В большинстве случаев простые эфиры не поддаются ни кислотному, ни щелочному гидролизу и устойчивы при действии как окислителей, так и восстановителей. Алифатические эфиры, однако, обладают неприятным свойством образовывать перекиси при хранении в контакте с воздухом. Наиболее опасными в этом отношении являются диоксан, тетрагидрофуран и диизопропиловый эфир. Для удаления перекисей из эфиров существует много способов. Недавно было предложено пропускать эфир через колонку, содержащую сильно основную ионообменную смолу дауэкс-1 [21. Однако наиболее эффективным методом удаления перекисей является пропускание эфира через колонку с окисью алюминия. Окись алюминия в колонке заменяют после того, как при смешении равных объемов элюата и смеси ледяной уксусной кислоты с конц. HI обнаруживают выделение свободного иода. [c.325]

    Тем не менее, как показывают реакции изотопного обмена водорода в среде жидкого дейтероаммиака, дейтеросерной кислоты и жидких дейтерийгалогенидов 37], инертные растворители, например углеводороды, в действительности проявляют кислотно-основные свойства. К кислотно-основным реакциям углеводородов можно отнести взаимодействие их с электронами, гидридами, гидроксидами, металлорганическими соединениями, галогенидами алюминия, сурьмы и т. д. Например  [c.99]

    Изучение кислотных и основных свойств аквокомплексов дало возможность подойти к современному объяснению амфотер-ности гидроксидов. Согласно протолитической теории амфотерные соединения способны быть как донорами, так и акцепторами протона. Механизм процесса растворения амфотерных гидроксидов в кислотах и щелочах на примере соединений алюминия можно Е1ыразить следующей схемой  [c.391]

    Амфотерный гидроксид, кислотные и основные свойства рав-новыраженны. Белый, аморфный (гелеобразный) или кристаллический. Связи А1—ОН преимущественно ковалентные. Разлагается при нагревании без плавления. Практически не растворяется в воде. Реагирует с кислотами, щелочами в растворе и при сплавлении. Не реагирует с ЫНз-НгО, NH4 I, СО2, SOj и H2S. Метагидроксид АЮ(ОН) химически менее активен, чем А1(0Н)з. Промежуточный продукт в производстве алюминия. Применяется для синтеза других соединений алюминия, органических красителей, как лекарственный препарат при повышенной кислотности желудочного сока. [c.138]

    Какие гидриды относятся к комплексным соединениям Напишите формулы тетрагидроалюмината натрия и бораната алюминия. Кислотные или основные свойства проявляет А1Нз при образовании каждого из этих соединений  [c.64]

    Сначала при изучении адсорбционных и каталитических свойств цеолитов основное внимание обращалось на геометрическую сторону. В частности, довольно подробно исследовалось значение соотношения диаметра пор к размерам и форме молекул. Эти соотношения имеют большое значение для адсорбции и могут играть определенную роль и в катализе. Однако каталитические особенности цеолитов, в первую очередь, определяются не этим, а особенностями их химического и электронного строения. Именно это, а не микропористость, как таковая, делает цеолиты отличными катализаторами для реакций кислотно-основного типа. Катализ вызывается кислотными центрами поверхности цеолитов, среди которых имеются как протонные бренсте-довские, так и апротонные — льюисовские структуры. Хемосорбируясь на этих центрах, органические молекулы образуют различные органические ионы и радикалы. Их образование на окиси алюминия и алюмосиликатах для молекул, окрашенных в видимой и в близкой ультрафиолетовой части спектра, наблюдал Теренин [81. Такие спектры дают некоторое представление о типе активных промежуточных форм, образующихся при катализе, особенно если параллельно с оптическими спектрами исследуются спектры ЭПР и изотопный обмен. Аналогичные исследования хемосорбции и катализа на цеолитах применительно к различным соединениям алифатического ряда и к предельным и непредельным цикланам получили широкое развитие в работах ученых различных стран [9, 10]. Эти работы привели к установлению нескольких общих закономерностей, из которых отметим следующие. [c.15]

    Группу скандия, относимую к -элементам, можно было бы почти с таким же успехом рассматривать как семейство элементов, родственных алюминию. Свойства орбиталей этих металлов таковы, что поведение их 5 й(-электронов не сильио отличается от поведения, 92р-электронов алюминия. В основе как иона АР-ь, так и ионов М + группы скандия лежит структура инертного газа связи в большинстве соединений алюминия и металлов группы скандия преимущественно ионные, и -орбитали элементов группы скандия, по-вндимому, ие оказывают значительного влияния на свойства нх соединений. От.метим, напрпмер, последовательное изменение от А1 + к Га значения pH, при котором акватированный ион(III) находится в равновесии с осадком М(ОН)з. Тенденции в изменении как кислотно-основных, так и окислительно-восстановительных свойств в этой группе очень сходны с ходом изменения этих свойств в группе щелочноземел1з-ных металлов. Наличие лантаноидов (4/-элементов) с 2 от 57 до 71 и происходящее вследствие этого повыше ше заряда ядра у переходных элементов ряда гафния на 32 единицы по сравнению с зарядом ядра у аналогичных элементов ряда циркония [c.329]

    Таким образом, в результате реакции между хлоридами титана и алкилами алюминия образуются кристаллические хлориды титана с адсорбированными слоями из алкилалюминийхлоридов, алкилтитанхлоридов и других ионов. Димер алкилалюминийхлорида диссоциирует на поверхности хлорида титана и адсорбируется уже как мономер. Активными центрами на поверхности катализатора, способными к комплексообразованию с олефинами, по-видимому, являются адсорбированные молекулы алкилалюминийхлоридов. Эффективные катализаторы могут быть получены и из других компонентов. В общем катализатор состоит из диспергированного восстановленного соединения металла, поверхность которого имеет основные свойства, и адсорбированных на ней групп кислотного характера. [c.184]

    В дополнение к сказанному Милликен, Миле и Облед предложили новую, однако чисто гипотетическую, концепцию природы и происхождения кислотных центров крекинг-катализаторов. Они высказали предположение, что при температуре крекинга фактически вся окись алюминия катализатора имеет структуру с координационным числом 6, иначе говоря, что структура кислоты Льюиса имеется лишь в потенциальном виде. Ионы алюминия, наиболее близкие к тетраэдрическому иону кремния, находятся в напряженном состоянии и испытывают индуцированное координационное смещение , т. е. вынуждены приобрести тетраэдрическую структуру (координационное число 4) при приближении молекулы даже со слабыми основными свойствами, например молекулы парафинового углеводорода. Другими словами, кислотные центры катализатора в действительности создаются только в момент приближения основания. Доля поверхности катализатора, ставшей кислотной, зависит от количества ионов кислорода на поверхности, соединенных одновременно с кремнием и с алюминием, то есть от степени дисперсности окиси алюминия в окиси кремния, от содержания гидроксила в окиси алюминия и от поляризующей способности основания, приближающегося к потенциальному кислотному центру. Слабо основные молекулы (слабые основания по Льюису — например парафины), хотя и обладают лишь слабой спосо бностью поляризовать другие молекулы, однако, по мнению Милликеиа и др., способны изменить координационное число ионов алюминия, наиболее близко расположенных к тетраэдрическим ионам кремния. Более сильные основания, например хинолин, могут индуцировать координационное смещение ионов алюминия, более удаленных от окиси кремния. Таким образом, кислотность катализатора становится функцией основности вещества, применяемого для измерения этой кислотности. [c.22]

    Изучение свойств гидратов окислов элементов указывает, что в главных подгруппах основные свойства усиливаются сверху вниз и в том же направлении ослабляются кислотные свойства. Так, если Ве(0Н)2 — амфотерное соединение, Mg(0H)2—основание со слабощелочными свойствами, то Са(0Н)2 — щелочь. Щелочами, причем более сильными, чемСа(0Н)2, являются и соединения5г(ОН)г, Ва(ОН)з и Ra(0H)2. Гидрат окиси бора Н3ВО3 — кислота, а гидраты окисей алюминия А1(0Н)з, галлия Са(ОН)зИ индия 1п(0Н)з— амфотерные соединения. [c.103]

    Разнообразие соединений со структурами, включающими ураниловую связь, как следует из изложенного выше, обусловлено амфотерным характером гидрата трехокиси урана с достаточно четко выраженными как основными, так и кислотными свойствами. Поскольку основные свойства выражены больше, чем кислотные, реакционная способность трехокиси по отношению к кислотам со сколь-угодно слабыми свойствами проявляется больше, чем по отношению к слабым основаниям. Трехокись урана не реагирует с окисью бериллия, образующей амфотерную гидроокись, и с окисью алюминия, гидрат которой вступает в реакцию только с сильными кислотами. Образующая слабое основание окись цинка с трехокисью урана дает сложный окисел ZnUaOio- [c.60]


Смотреть страницы где упоминается термин Алюминий соединения, кислотно-основные свойства: [c.485]    [c.65]    [c.320]    [c.462]    [c.502]    [c.173]    [c.123]    [c.553]    [c.76]    [c.242]    [c.74]    [c.462]    [c.111]    [c.242]    [c.381]    [c.279]    [c.346]   
Справочник по общей и неорганической химии (1997) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий Свойства

Алюминий кислотная

Кислотно-основное

Кислотно-основные свойства

Кислотные свойства

ЛИЗ кислотно основной

Основность соединений



© 2024 chem21.info Реклама на сайте