Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства воды дипольные

    Все галогеноводороды хорошо растворимы в воде. Водные растворы их обладают кислотными свойствами и носят название галогеноводородных кислот. Объясняется это сильной полярностью связей Н — Г, приводящей к диссоциации под действием дипольных молекул воды по этой связи НГ + (п + т) Нр -> Н+ пИЛ + Г- тН О = НЧ- Г. [c.63]

    Трифторид азота NF3 в обычных условиях — бесцветный газ (т. кип. —129°С, т. пл. —209°С). Получают его при окислении аммиака фтором. Молекула NFs имеет пирамидальное строение (см. рис. 38), dNF=l,37A, FNF=102°. В отличие от H3N дипольный момент NF3 очень мал, всего 0,2D (стр. 81). Электронодонорных свойств NF3 практически не проявляет. По отношению к нагреванию и различным химическим воздействиям трифторид весьма устойчив, вступает в реакции только выше 100°С. В воде он практически нерастворим, гидролиз начинает протекать лишь при пропускании электрической искры через смесь его с водным паром. [c.397]


    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    При рассмотрении электрических свойств молекул было показано, как ведут себя дипольные молекулы в поле заряженной частицы или иона. Попытаемся распространить изложенное воззрение на процесс обезвоживания веществ активны.ми молекулами или ионами. Процесс обезвоживания сводится к удалению из вещества молекул растворителя. Если растворителем вещества являются жидкости, молекулы которых обладают постоянным дипольным моментом, то при сообщении (ему энергии первыми, как правило, вырвутся из него молекулы, обладающие максимальным дипольным моментом. По всей вероятности, такие молекулы лри вылете из вещества могут иметь и своих спутников — молекул с меньшим дипольным моментом. При этом вылет комплексных молекул из вещества происходит в результате взаимодействия молекул с различным дипольным моментом. Дипольные молекулы в силу асимметрии обладают большей способностью к колебательным и вращательным движениям и находятся как бы в неустойчивом положении в веществе. В качестве примера можно привести процесс обезвоживания окрашенной ацетилцеллюлозы (вальцмассы), растворителем которой являются ацетон и вода. Дипольный момент [c.187]


    Особенно показательно сопоставление структур и физических свойств воды и диметилового эфира. В жидкой воде молекулы держатся вместе благодаря диноль-дипольным взаимодействиям между положительными атомами водорода и отрицательными атомами кислорода. Форма молекулы воды допускает разнообразные расположения в молекулярных агрегатах лишь бы только частичные заряды были обращены к (противоположным) зарядам близлежащих молекул. В молекулах диметилового эфира эти частичные заряды загорожены относительно неполярными углерод-водородными связями. Отсюда следует, что диполь-дипольные взаимодействия должны преодолевать большие расстояния и их эффект соответственно уменьшается. Модели молекулярных агрегатов воды и эфира изображены на рис. 7.4. [c.161]

    Многие свойства воды, такие, как значительный дипольный момент, амфотерный характер, большая диэлектрическая проницаемость и, наконец, ее доступность и легкость очистки, ставят воду как растворитель в особое положение. Но в некоторых случаях неводные среды могут быть применены с большим успехом. Началом исследований в этой области является применение теории Дебая—Хюккеля к неводным растворителям, используемым в качестве среды в органических реакциях. Некоторые неводные растворители, например безводный фтористый водород, применяются в промышленном масштабе. Поэтому удивительно, что еще так мало известно о многих неводных растворителях. [c.505]

    Наиболее важным свойством молекулы воды является наличие у нее дипольного момента. Именно это определяет ее структуру (см. гл. V) и в значительной мере функциональную активность растворенных в ней макромолекул. Молекулы, играющие основную роль в живых клетках, при растворении в воде оказываются заряженными и подвергаются гидратации. Они окружены оболочками из молекул воды, которые притягиваются к ним, благодаря взаимодействию электрических зарядов. Небольшая, но все-таки ощутимая диссоциация воды на ионы Н+ и ОН позволяет регулировать кислотно-основное равновесие в клетках. Все эволюционное развитие определялось и формировалось в соответствии со свойствами воды. Однако если бы все части клетки были раство- [c.176]

    Полярность карбонильной группы обусловливает многие из свойств альдегидов и кетонов. Температуры кипения для низших членов этих рядов на 50—80° выше, чем для углеводородов той же молекулярной массы это можно видеть из данных табл. 14-3 (физические свойства альдегидов и кетонов) и табл. 3-3 (физические свойства -алканов). Дипольные моменты большинства альдегидов и кетонов близки к 2,7 Д, что соответствует 40—50% ионного характера связи в карбониле. Для альдегидов и кетонов с низкой молекулярной массой характерна большая растворимость в воде. [c.470]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа ионизированных молекул к общему числу растворенных. Степень ионизации в основном определяется электроно-донорными и электроно-акцеп-торными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи НаО- -H l в донорно-акцепторную [НгО—Н] +  [c.161]

    Внимательный анализ показывает, что это не так. Свойства воды в сущности не неожиданны, это вполне закономерный переход количественных факторов в качественные. Размеры молекул гидридов теллура, селена, серы и кислорода уменьшаются от теллура к кислороду, дипольный момент растет, напряженность электрического поля около молекулы увеличивается. Вместе с тем уменьшается число электронов, окружающих атом неметалла, от- [c.40]

    Наличие дипольных моментов у адсорбционных комплексов влияет на структуру и структурно-механические свойства паст и суспензий, а также частично и на процессы твердения вяжущих веществ. Две формы связей воды с поверхностью твердых частиц (адсорбционная и свободная) оказывают влияние и на процессы сушки сырьевых смесей. [c.260]

    Водородные связи. Соединения, содержащие кислород-водородные или азот-водородные связи, обнаруживают признаки ассоциации, которая, если судить по молекулярному весу, дипольным моментам и молекулярной поляризуемости этих соединений, превышает все ожидания. К примеру, вода, у которой атомы не обладают высокой поляризуемостью, плавится при 0° и кипит при 100°, между тем как диметиловый эфир, метиловый спирт и ацетон-соединения с более высоким молекулярным весом — кипят при —24, 65 и 57° соответственно и плавятся при очень низких температурах. Нет большой разницы и в дипольных моментах этих веществ. Следовательно, исключительно высокая степень ассоциации воды должна объясняться каким-то коротко дистанционным взаимодействием, которое находит свое отражение не во всех макроскопических свойствах молекул воды. Из сопоставления физических свойств воды, метилового спирта и диметилового эфира следует, что гидроксильная группа имеет резко выраженное специфическое влияние на физические свойства. [c.161]


    Спектроскопические исследования молекул воды в газообразном состоянии позволили сделать вывод о нелинейном их строении. Ядра атомов молекулы воды образуют равнобедренный треугольник с двумя протонами в основании и кислородом в вершине. Причем угол связи Н—О—Н для низшего колебательного уровня равен 105° 03, а межъядерные расстояния О—Н и Н—Н 0,9568 и 1,54 A [66,319] молекуле воды свойственен дипольный момент 1,86 D, но несмотря на это, при решении многих вопросов правильное истолкование свойств воды возможно только на основе изучения строения электронного облака ее молекулы. Описание молекулы воды в этом плане проводят при помощи электростатических моделей, моделей, [c.159]

    Из предыдущего изложения видно, что определенные свойства воды можно довольно удовлетворительно объяснить исходя из величины углов, образуемых химическими связями, и из электростатических сил, обусловленных распределением зарядов. Поскольку размеры и заряды простых ионов сравнимы с размерами и заряда ш молекул воды, естественно ожидать, что ионы должны притягивать эти молекулы, следствием чего будет образование ион-дипольных связей. Поэтому в растворах, содержащих ионы, структура воды должна быть существенно изменена. [c.15]

    Ассоциация воды и спиртов приводит к заметному изменению их физических свойств. По сравнению с веществами, не образующими водородных связей, они при относительно малом дипольном моменте имеют более высокую температуру кипения, более высокую диэлектрическую проницаемость и т. д. [c.248]

    Точные нейтронографические исследования показали, что чем короче (сильнее) связь А-Н, тем длиннее (слабее) водородная связь А-Н...В. Водородная связь является важнейшей формой взаимодействия между молекулами воды и обусловливает вместе с электростатическим притяжением электрических дипольных моментов удивительные свойства воды и льда. Водородная связь ограничивает размеры белковых молекул и обусловливает их геометрическую структуру. [c.74]

    Эти величины, выраженные в логарифмических единицах и приведенные в последней графе таблицы, изменяются от 3,5 для уксусной кислоты до 0,8 для 2,6-динитрофенола. Это показывает, что различное влияние ацетона на силу кислот при переходе от смеси диоксана с водой (смешанный растворитель обладает химическими свойствами, близкими к воде, но диэлектрической проницаемостью ацетона) определяется прежде всего отличием в энергии сольватации (взаимодействия) анионов кислот с дипольными [c.338]

    Рассмотрим результаты расчета некоторых свойств объемной фазы воды для двух моделей. В модели межмолекулярного потенциала ST2 [340] используются четыре точечных заряда, расположенных в вершинах тетраэдра. Электростатическое взаимодействие плавно выключается при малых расстояниях между молекулами. Короткодействующие силы отталкивания учитываются потенциалом Леннарда — Джонса 6-12 между атомами кислорода. Дипольный момент. молекулы воды равен 2,35 Д, а абсолютный минимум энергии.-димера воды составляет 28,4 кДж/моль при расстоянии 0,285 нм между атомами кислорода. [c.120]

    Наиболее удобными методами изучения кластеров (НгО) (л>2) являются различные варианты масс-спектроскопической техники [363]. Естественно, что чем ниже температура эксперимента, тем более крупные кластеры (с большим п) удается наблюдать. Так, удалось зарегистрировать в спектре пик, соответствующий п= [368] и /г = 36 (температура 77 К) [369]. При температуре жидкого азота были зарегистрированы положительно заряженные кластеры с л от 1 до 40 [370]. В работе [371] удалось наблюдать отрицательно заряженные кластеры, содержащие вплоть до 50 молекул воды. В этой работе была сделана попытка изучить структуру этих кластеров методом электронной дифракции. Авторы приходят к выводу, что по своей структуре эти кластеры не являются фрагментами кристаллов льда, а аморфны. Были также оценены дипольные моменты кластеров с л от 2 до 6 дипольные моменты кластеров с п = = 3- 6 близки к нулю, что, по мнению авторов, свидетельствует о циклическом характере их структуры [361]. Много экспериментальных данных о существовании и свойствах кластеров, состоящих из нескольких десятков молекул воды, приводится в работе [372]. [c.133]

    В работе [43] показано, что изменение диэлектрической проницаемости и тангенса угла диэлектрических потерь пленочной воды с утончением пленки свидетельствует о вырождении дипольной ориентационной поляризуемости молекул воды в пленке, обусловленном действием полей поверхностных молекул сорбента. Поэтому уменьшается вклад пленочной воды в диэлектрические свойства обрабатываемого материала по мере утончения пленки. Если принять, что фактор потерь связанной жидкости зависит от толщины пленки h по некоторому закону 62" = Л )> то формулу (7.34) можно записать в [c.168]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]

    Углеводородный радикал (в простейшем случае прямая насыщенная алкильная цепочка) имеет дипольный момент, равный нулю или близкий к таковому, и проявляет гидрофобные свойства, т. е. практически не имеет молекулярного сродства к воде. Вместе с тем он проявляет сродство к близким по полярности фазам — углеводородам и другим нерастворимым или слаборастворимым в воде органическим соединениям (маслам). [c.5]

    Укажите строение молекул по методу молекулярных орбиталей, их протолитические (по отношению к воде), окислительно-кос-становительные, обменные, лигандные и другие (по Вашему выбору) свойства, склонность молекул к димеризации. Составьте уравнения необходимых для ответа реакций. На основе этих сведений сделайте вывод о реакционной способности указанных веп еств. При ответе воспользуйтесь справочными данными по энергии и длине связи, дипольному моменту, стандартной энтальпии и энергии Гиббса образования, стандартной энтропии и растворимости в воде. [c.154]

    Ни одна из предложенных моделей не учитывает сразу все три типа взаимодействий, однако подход с позиций микроскопииеской модели позволяет учесть также и ион-дипольные эффекты. Наличие кислотных или основных групп в молекулах N приводит к появлению дополнительных взаимодействий, описываемых с помощью других механизмов, а именно с помощью изменения сольватации неэлектролита в результате образования водородных связей, которое определяется нарушением кислотно-основных свойств воды- Специфические взаимодействия, учитываемые уравнением (1.29), имеют такую же природу, как и всякая сольватация ионов вообще (см. гл. 2, разд. 6). [c.53]

    Поскольку вода является сильно ассоциированной жидкостью, а энергия водородных связей составляет в среднем 20 кДж-моль связей, то следует ожидать определяющего вклада Н-связей в термодинамические свойства воды. С другой стороны, по этой причине логично сопоставлять свойства воды прежде всего со свойствами жидкостей, также характеризуемых наличием сильных межмолекулярных взаимодействий, т. е. с другими ассоциированными жидкостями (спирты, амины и т. д.), а также жидкостями с сильными диполь-дипольными взаимодействиями (диметилсульф-оксид — ДМСО, пропиленкарбонат — ПК, ацетон и др.). [c.7]

    Угловое расположение атомов в молекуле воды и образование ионо-дипольиых и водородных связей между молекулами имеют суш,ественное значение для свойств воды. В этом проявляется дипольная природа молекул воды. [c.59]

    Диэлектрическая постоянная воды. Одним из наиболее важных свойств воды, которое необходимо рассмотреть в связи со свойствами растворов электролитов, является ее диэлектрическая постоянная. Как отмечалось выше, молекула воды имеет дипольный момент. Этого, естественно, можно было ожидать из нашего описания строения молекулы воды, содержащего представление олокализации положительных зарядов на одной стороне молекулы и отрицательных — на другой. Электрический диполь будет стремиться ориентироваться в электрическом поле таким образом, чтобы уменьшить энергию системы, и, кроме того, электронные оболочки молекул будут несколько деформированы благодаря взаимной поляризуемости. Предположим, что мы имеем два электрических заряда и е . Предположим, далее, что эти заряды удалены друг от друга настолько, что они взаимодействуют как точечные заряды. Если бы они находились в вакууме, [c.394]

    Другим свойством воды, которое имеет решающее значение для ее характеристики как растворителя, является способность создавать ионизованную среду с высокой диэлектрической проницаемостью. Этим и объясняется ее поразительная растворяющая способность полимерных электролитов. Необходимо, например, заметить, что такие материалы, как полиакрилат натрия и поливинилпиридинийхлорид, обладающие высоким сродством к воде и смешивающиеся с ней во всех соотношениях, совсем нерастворимы (и мало набухают) даже в метаноле, который по своим свойствам весьма напоминает воду. Следует предположить, что понижение диэлектрической проницаемости приводит к почти полной ассоциации фиксированных зарядов полимера с противоионами и что взаимодействие ионных пар слишком сильно и не может быть нарушено под действием сил сольватации. То же замечание можно сделать и в отношении взаимодействия диполей в полимерных амфолитах, в частности белках [136], хотя в последнее время и было показано, что, например, гидразин, этилендиамин [137] и безводный фтористый водород [138] — активные растворители для белков (см. обзор Зингера [139]). При работе с синтетическими амфотерными полимерами следует помнить, что дипольная структура иона имеет большее значение лишь в том случае, если незаря- [c.70]

    Во времена алхимии универсальный растворитель искали так же ревностно, как философский камень. Нечего и говорить, что эти поиски оказались тщетными. Спустя много столетий вода — наиболее известный, удобный и часто используемый растворитель — оказалась ближе всего к такому универсальному растворителю. Из-за удобства в обращении с ней и разнообразия свойств она едва ли когда-нибудь будет заменена другим растворителем. В самом деле, до 1900 г. считали, что только вода растворяет ионные соединения. В нлстоящее время признана неправильность этой точки зрения, и можно только удивляться, почему ее так долго придерживались. С начала нового столетия сделаны большие успехи в изучении и использовании неводных растворов. Несмотря на все усилия, свойства неводных растворов знают еще поверхностно они представляют собой малоизученную область. Многие свойства воды, такие, как значительный дипольный момент, амфотерный характер, большая диэлектрическая проницаемость и, наконец, ее доступность и легкость очистки ставят воду в особое положение как растворитель. Однако в некоторых случаях неводные среды могут быть применены с большим успехом. Началом исследований в этой области является применение теории Дебая — Хюккеля к неводным растворителям, используемым в качестве среды в органических реакциях. Некоторые неводные растворители, например безводный фтористый водород, применяются в промышленном масштабе. Поэтому удивительно, что так мало известно о многих возможных неводных растворителях. [c.334]

    Соли Ре + во мнбгом похожи на соли Mg +, что обусловлено близостью радиусов ионов (у Nig + г, = 66 пм, у Ре + п — 74 пм] , Это сходство относится к свойствам, определяемым, в основном, межионными и ион-дипольными взаимодействиями (кристаллическая структура, энергия решетки, энтропия, растворимость в воде, состав и структура кристаллогидратов, способность к комплексообразованию с лигандами, обладающими слабым полем). Наоборот, не проявляется аналогия в свойствах, связанных с электронными взаимодействиями (способность к реакциям окисления-восстановления, образование комплексов со значительной долей "ковалентной связи). На рис. 3.127 сопоставлены энтропии кристаллических соединений Ре + и М +. При сравнении рис. 3.127 и 3.125 прослеживается степень сходства и различия двухвалентных состояний элементов семейства железа между собой и между Ре и Мд, принадлежащим к разным группам периодической системы элементов. [c.562]

    Мицеллы воды в водно-тоштивных эмульсиях также не проявляют свойств дипольности. Картина резко меняется при наложении на эмульсию внешнего электрического поля, когда молекулы воды в каплях получают строгую ориентацию и капли превращаются в диполи. Одинаковая напряженность электрического поля во всех его точках, а также равенство отрицательного и положительного зарядов капли приводят к тому, что она растягивается. Это происходит до тех пор, пока силы поверхностного натяжения, стремящиеся придать капле сферическую форму, не станут равными электростатическим силам внутреннего давления, стремящимся разорвать каплю. [c.45]

    Подобная С груктура объясняет физические свойства аминокислот. У них высокие температуры плавления (200.. 300 °С), они не испаряются, а разлагаются, обладают большими дипольны. ш моментами. у минокислоты не растворяются в неполярш>1х органических растворителях, но довол1зНо хорошо растворимы в воде. Константы кислотности и огкпвности у них очень малы. [c.239]

    При растворении вещества, сосюящего из полярных молекул или имеющего ионное строение, в жидкости, также составленной из полярных молекул, между молекулярными диполями растворителя и молекулами или кристаллами растворяемого вещества возникают электростатические силы диполь-дипольного или ион-дипольного взакмоде с твия, способствующие распаду растворяемого вещества на ионы. Поэтому жидкости, состоящие из полярных молекул, проявляют свойства ионизирующих растворителей, т. е. способствуют электролитической диссоциации растворенных в них веществ. Так, хлороводород растворяется и в воде, и в бензоле, но его растворы в воде хорошо проводят электрический ток, что свидетельствует о практически полной диссоциации молекул НС1 на ионы, тогда как растворы НС1 в бензоле не обладают заметной электрической проводимостью. [c.142]

    Электростатические представления оправдываются для целого ряда других комплексных соединений, содержащих дипольные молекулы. Молекула воды (диполь, характеризующийся большой жесткостью) обладает дипольным моментом, равным 1,8. Дипольный момент молекулы ЫНз равен 1,5 (по сравнению с Н2О отличается меньшей жесткостью). Так как величина дипольного момента ЫНз меньше, чем у Н2О, то аммиакаты должны быть менее устойчивыми, чем гидраты. Действительно в случае соединений лития дело обстоит именно таким образом. Однако в некоторых случаях могут наблюдаться обратные соотношения. Часто устойчивость соединений нельзя объяснить с позиций электростатических представлений. Например, известно большое количество соединений с формально нульвалентным центральным атомом. Сюда относится ряд комплексных соединений платины, палладия и других металлов, например комплекс палладия с фенилизонитрилом, для которого были изучены реакции замещения с триарилфосфитами. Подобные реакции не могут сопровождаться окислительно-восстановительными процессами, так как оба вступающих в реакцию вещества характеризуются восстановительными свойствами. [c.239]

    Явление сольватации обязано тому,, что заряженная частица (ион), появившаяся среди молекул растворителя, изменяет свойства и порядок распределения последних в растворе. Если молекулы растворителя имеют дипольный момент, то они взаимодействуют с ионами, образуя сольватные оболочки. При этом электростатическое бзаимодействие не является единственной причиной сольватации ионов. Сольватация может возникать и за счет некулоповских — химических сил. Многие соли образуют гидраты и сольваты не только в растворах, но и в твердом состоянии. К такому комплексообразованию склонны почти все соли. Например, образование гидратов солей меди является типичным процессом комплексообразования. В таких соединениях связь между ионами и молекулами воды чисто химическая, она обусловлена обычной координационной валентностью, типичной для комплексных соединений. [c.137]

    Отсутствие направленности ионной связи приводит к важному свойству — ненасыщаемости связи. Это, в частности, означает, что электрические поля, например катионов, могут взаимодействовать с частицами, расположенными вне кристалла. Так, катионы на поверхности кристалла могут притягивать дипольные молекулы воды. Это явление обусловливает существование кристаллогидратов многих солей, содержащих в своем составе несколько молекул воды (например, Си504-5Н20). Это же явление лежит в основе процессов поглощения воды поверхностью минералов и смачивания минералов. [c.162]

    При использовании метода Хартри—Фока—Рутаана главной характеристикой расчетной модели является выбор базиса орбита-лей. Чем полнее этот базис, тем точнее воспроизводится полная энергия молекулы. Однако способность расчета предсказывать другие молекулярные свойства не всегда монотонно зависит от выбранного базиса и учета корреляционных эффектов. Наглядный пример — расчет дипольного момента (/х) молекулы воды при минимальном базисе /i = 1,82 D, в расширенном почти до хартри-фоковского предела 6ii3H e ц = 2,57 D, в расширенном базисе с наложением конфигурационного взаимодействия ц=1,99 D, в эксперименте /i=l,85 D. Аналогичные примеры можно найти и для некоторых других характеристик. Важно знать, какие ряды базисных орбита-лей следует использовать для получения надежных результатов в расчетах различных характеристик молекул. [c.205]


Смотреть страницы где упоминается термин Свойства воды дипольные: [c.86]    [c.54]    [c.44]    [c.44]    [c.70]    [c.127]    [c.66]   
Физическая химия силикатов (1962) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Вода, свойства



© 2024 chem21.info Реклама на сайте