Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ поляриметрия

    Поляриметрический метод анализа широко применяется в сахарной и других отраслях пищевой промышленности (производство масел, жиров), в фармацевтической промышленности (в частности, при производстве пенициллина). Следует отметить, что в некоторых случаях (сахариметрия) поляриметрия является более специфическим методом, чем рефрактометрия, так как основывается на измерении величины, значение которой определяется присутствием только оптически активного вещества. Для исследовательских целей, не связанных прямо с аналитической химией, поляриметрия находит применение в минералогии, микрохимии, а также при изучении кинетики процессов, в которых участвуют оптически активные вещества. [c.125]


    III. Измерение оптического вращения (поляриметрия). Если в реакции участвуют оптически активные вещества, то в ходе реакции меняется вращение плоскости поляризации линейно-поляризованного света. Поляриметрический метод анализа применяется при исследовании кинетики гидролиза сахарозы (см. разд. ХП1.9.4). [c.707]

    Метод поляриметрии широко используется в фармацевтическом анализе для установления оптической активности лекарственных веществ, качественной и количественной оценки их. [c.45]

    ПОЛЯРИМЕТРИЯ — метод физикохимического исследования, основанный на измерении вращения плоскости поляризации света оптически активными веществами. Чаще всего такими веществами являются органические соединения с асимметрическим атомом углерода. Измерения производят с помощью поляриметров — оптических приборов, в которых луч света последовательно проходит через систему двух поляризующих призм. Благодаря пропорциональности, существующей между углом вращения и концентрацией оптически активного вешества, поляриметрические измерения используют для количественного определения оптически активного вещества. П. является основным методом контроля в сахарной промышленности по величине угла вращения определяют содержание сахара в растворе. Методы П. используются также для анализа эфирных масел, алкалоидов, антибиотиков и др. Большое значение имеет поляриметрический метод исследования в органической химии, где на основании определения знака и величины вращения плоскости поляризации можно судить о химическом строении и пространственной конфигурации соединения, делать выводы о механизме реакций и др. Для этого в последнее время особенно успешно используется спектрополяри-метрия. [c.201]

    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]


    Оптически активные вещества подразделяют на два типа 1) твердые вещества—кристаллы (кварц, хлорат калия) 2) растворы (глюкоза, морфин, винная кислота). Вещества первого типа используют в микроскопической технике. Вещества второго типа являются предметом поляриметрического анализа (поляриметрии). [c.258]

    Различают физические и физико-химические методы анализа. Физические методы основаны на измерении какого-либо физического свойства вещества. Например, в рефрактометрии измеряют светопреломление анализируемого вещества, в поляриметрии — угол вращения плоскости поляризации света. В физико-химических методах анализа измеряют светопоглощение, величину тока, потенциала, люминесценцию, наблюдаемые в результате химических реакций в растворах. [c.448]

    Задание. Выполнить количественный анализ раствора глюкозы для инъекций с использованием метода поляриметрии. [c.87]

    Поляриметрический анализ широко используется для определения качества сахарной свеклы как сырья в сахарной промышленности, а также для контроля технологических процессов заводского получения сахара. Поляриметрическим методом ежегодно выполняются миллионы определений сахаристости растворов. Поэтому в свеклосеющих районах страны поляриметр-сахариметр обычно имеется в каждой агрохимической лаборатории. [c.391]

    ИСПОЛЬЗОВАНИЕ МЕТОДА ПОЛЯРИМЕТРИИ В ФАРМАЦЕВТИЧЕСКОМ АНАЛИЗЕ. ОЦЕНКА ДОБРОКАЧЕСТВЕННОСТИ ЛЕКАРСТВЕННЫХ СРЕДСТВ ПО ВЕЛИЧИНЕ УДЕЛЬНОГО ВРАЩЕНИЯ [c.82]

    В нашей работе под кинетическим анализом подразумеваются определение скоростей реакций, а тем самым и констант скорости и изучение промежуточных соединений. Скорости реакций определяются путем измерения концентрации реагирующих веществ как функции времени. В случае газофазных реакций, происходящих с изменением числа молекул, контроль за прохождением реакции можно осуществлять, измеряя давление с помощью манометра, наблюдая за ним визуально, как было ранее, или с помощью других приборов, позволяющих вести автоматическую запись изменения давления. Но такой метод не применим к жидкофазным реакциям, к которым и принадлежит огромное большинство органических реакций. Периодическое оттитровывание проб, как это делал, например, Меншуткин, — способ архаичный. В этой области монопольное положение заняли физические методы анализа. Поляриметрия нашла применение для этой цели уже в первой работе по химической кинетике, относящейся к 1850 г. (гл. XI, 2). [c.315]

    Определенным критерием чистоты ЛС могут служить такие физические константы, как показатель преломления луча света в растворр испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них плоскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм. [c.82]

    Измерения а проводят на поляриметрах. Погрешность измерений а при анализе лекарственных препаратов не должна превышать 0,02°. [c.589]

    Как следует из приведенных данных и анализа цитируемой литературы [29, 30, 34-37, 40, 41], на определение конформаций простых углеводов в растворах было направлено много усилий. В результате применения рентгеновской, ИК-, ЯМР-спектроскопии, диэлектрометрии, поляриметрии, теоретического конформационного анализа в настоящее время получена достаточно четкая картина состояния и поведения моно- и дисахаридов в растворах. Это вызвано большим интересом к изучению особенностей гидратации этих биологически активных веществ термодинамическими методами, так как необходимым условием правильной интерпретации термодинамических свойств и характеристик гидратации является наличие точной информации о состоянии растворенного вещества в растворе. [c.76]

    Величину угла вращения а определяют с помощью поляриметров. Визуальный поляриметр (рис. 84) состоит в принципе из источника монохроматического света /, свет которого поляризуется призмой Николя 2 (поляризатором) и затем проходит через кювету 3 с раствором исследуемого вещества. Происходящее при этом отклонение плоскости поляризации света определяют с помощью второй, вращающейся, призмы Николя 4 (анализа- [c.92]

    Физико-химические методы анализа включают электрохимические и оптические методы. К электрохимическим методам анализа относят потенциометрию, полярографию, кулонометрию, кондуктометрию, хроматографию, высокочастотное титрование и др. К оптическим методам относят колориметрию, нефелометрию, рефрактометрию, поляриметрию и др. Физические методы анализа по выполнению просты и требуют небольшой [c.5]


    Как проводится анализ посредством прецизионного поляриметра  [c.148]

    Другим важным свойством электромагнитной волны является ее поляризация. Неполяризованные электромагнитные волны имеют случайное направление своих электрических и магнитных составляющих относительно оси распространения волны. На примере рис. 18-3 это означает, что электрические и магнитные составляющие (поля), которые всегда остаются ортогональными друг к другу, имеют переменную и непредсказуемую ориентацию в плоскости, перпендикулярной направлению распространения волны. Если, однако, все осцилляции электрического (или магнитного) поля находятся в какой-либо одной плоскости (например, плоскость Ех или Мх), то говорят, что волна плоско поляризована, как это и показано на рис. 18-3. Если эта плоскость вращается с постоянной скоростью вокруг оси распространения волны, то говорят, что волна поляризована по кругу. Хотя мы не будем далее использовать эти представления, следует заметить, что эти явления положены в основу нескольких важных спектрохимических методов— поляриметрии, дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД). Эти методы зависят от способности некоторых оптически активных химических частиц изменять направление поляризации электромагнитной волны и иСпользуются в анализе для идентификации этого особого класса веществ. [c.610]

    Эти соображения могут привести к более широкому применению поляриметрии в химическом анализе. [c.235]

    Мы уже упоминали об этой реакции, с которой начались все систематические кинетические исследования вообще. При постоянно температуре, давлении и концентрации кислоты по данным поляриметрии, химического анализа, дилатометрии и калориметрии реакция мономолекулярна по сахарозе. Наблюдаемая константа скорости первого порядка растет с повышением концентрации ионов водорода, хотя и не строго пропорционально. Каталитический коэффициент /ск = = /с/сн+ несколько увеличивается с ростом сн+ и концентрации сахара. Скорость гидролиза не зависит от присутствия недиссоциированных кислот и ионов, отличных от ионов водорода. Таким образом, в данном случае мы имеем дело со специфическим катализом ионами водорода. Каталитический коэффициент для ионов дейтерия к Сц+ превышает /с/сн+ в 1,80 раз нри 18,71 °С и в 1,55 раз при 37,13 °С [55, 56], в отличие от реакции мутаротации глюкозы, для которой это отношение равно 0,64 (25 °С). Известно, что последняя из названных реакций относится к случаю общего (неспецифического) катализа. По-видимому, нри экспериментальных отношениях А б+//сн+ < 1 процесс относится к общему кислотно-основному катализу, а прн отношениях, превышающих единицу, имеет место специфический катализ ионами водорода. Для гидролиза сахарозы уже давно был предложен следующий механизм  [c.320]

    Очевидным преимуществом спектрополяриметрии перед обычной поляриметрией является то, что спектрополяриметры дают возможность выбрать область спектра, наиболее благоприятную для измерений. Особенно ясно эти преимущества обнаруживаются при анализе смесей. Так, например, используя своеобразный ход кривых дисперсии вращения эфедрина и сильную зависимость вращения этого вещества от растворителя, мы предлол Или метод анализа смесей эфедрина и псевдоэфедрина [1]. Метод основан на выборе длины волны и растворителя, нри которых эфедрин становится как бы оптически неактивным веществом проведенные в этих условиях измерения вращения неносредственно указывают количество псевдоэфедрина в смеси. [c.317]

    Преимуществом спектрополяриметрии перед обычной поляриметрией является то, что спектрополяриметры дают возможность выбрать область спектра, наиболее благоприятную для измерения. Это особенно важно при анализе смесей. Так, при [c.351]

    К физико-химическим методам относятся оптические (рефрактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электрохимические (потенциометрический и полярографический м.ето-ды), хроматографические методы. [c.25]

    Разделы, посвященные спектральным и оптическим исследованиям, включают в себя описание методов анализа по ИК-, УФ-и масс-спектрам, поляриметрию нефтей, а также определение микроэлементов и металлопорфириновых комплексов. Нашли отражение методы с использованием резонансных спектро.в (ЯМР я ЭПР). [c.4]

    Перед началом измерений определяют нулевую точку поляриметра с пустой трубкой или с чистым растворителем (в случае растворения). При последующих вычислениях этот отсчет следует вычитать из результата, полученного при анализе исследуемой фракции. [c.279]

    Все приемы и методы анализа, в основе которых лежат явления испускания или поглощения инфракрасных, видимых, ультрафиолетовых, рентгеновских лучей анализируемым веществом или продуктами его реакции (колориметрия, турбидиметрия, нефелометрия, спектрофотометрия, поляриметрия, рефрактометрия и др.), называются оптическими методами анализа. [c.7]

    П44. Приборы для анализа состава и свойств веществ оптическими методами (рефрактометры, интерферометры, колориметры, сахариметры, абсорбциометры, поляриметры) [c.13]

    Русское издание справочника состоит из четырех томов, разделенных на 0 выпусков. В первом выпуске первого тома содержатся сведения по организации и п[юек-тированию лабораторий, по отбору проб и организации работы. Далее описаны ос швы качественного анализа иеоргаиических и органически.х соединений, а также методы количественного анализа объемный анализ, электроанализ, потенциометрия и конду1Сто-метрия. Во втором выпуске первого тома описаны физические методы исследований измерение температуры, давления, удельного веса и др., оптические измерения (1 оло-риметрия, спектральный анализ, поляриметрия, рентгеновский анализ), а также методы TexHH4f K0r0 анализа газов, микрохимического и коллоидно-химического анализа. Первый выпуск первой части второго тома содержит описание методов анг.лиза топлива, воды и воздуха. [c.485]

    Настоящая работа —пример использования физико-химического метода анализа — поляриметрии — в кинетическом исследовании. Угол вращения определяют с помощью поляриметра (рис. XIII. 14,а). Основные узлы прибора поляризатор 3, состоящий из двух поляризационных призм 3 и 3", и анализатор 5. Монохроматический пучок света, проходя через поляризатор, становится линейно-поляризованным. Маленькая призма 3", закрывающая половину оптического поля, установлена по отношению к призме 3 так, что плоскости поляризации света в двух половинах светового пучка образуют небольшой угол. Анализатор 5, представляющий собой тоже поляризационную призму, вращается вокруг оптической оси прибора. Если анализатор повернут так, что плоскость поляризации света, входящего в него, перпендикулярна к плоскости поляризации выходящего света, то свет через анализатор не пройдет. Соответствующая половина поля, наблюдаемого в окуляр 6, будет темной, а другая —светлой (рис. XIII. 14,б). Между двумя положениями анализатора, отвечающим затемнению одной из [c.794]

    Химический функциональный анализ далеко не всегда позволяет однозначно установить структуру органических соединений. Некоторые группы дают сходные реакции. Иногда вещества в условиях определения оказываются неустойчивыми. Функциональный анализ не нозволяет судить о составе смесей, числе тех или иных групп и о макроструктуре вещества (простраиствеином строении, структуре кристаллов или жидкости, межмолекулярных взаимодействиях и т, п.). Вследствие этого существенную роль в исследовании строения и свойств соединений играют физико-химические, или инструментальные, методы анализа спектральные, электрохимические, хроматографические, радиометрические и др. Для установления структуры вещества чаще всего используют методы, основанные на взаимодействии вещества или смеси веществ, их растворов с различного вида излучениями. К ним относятся ультрафиолетовая, видимая, инфракрасная спектроскопия, метод люми-иесценцин, оптический и рентгеновский спектральный анализ, рефрактометрия, поляриметрия, метод ядерного магнитного резонанса. На взаимодействии с магнитным полем основан метод электронного парамагнитного резонанса, а последовательно с электрическим и магнитным — масс-спектрометрия. Некоторые из этих методов рассмотрены в посебии. [c.82]

    В любом приборе для поляриметрического анализа (поляриметре) есть поляризатор и анализатор, между которыми находится трубка с анализируемым раствором. Если поляризатор и анализатор установлены так, что их плоскости поляризации параллельны между собой, то в отсутствие анализируемого вещества свет будет беспрепятственно проходить через оба устройства и наблюдаться в зрительную трубу. Если в отсутствие анализируемого вещества анализатор повернуть на 90°, т. е. ориентировать так, что его плоскость поляризации будет перпендикулярна плоскости поляризатора, то, очевидно, поляризованный свет через анализатор проходить не будет. Это положение на темнот у . При введении между поляризатором и анализатором оптически активного анализируемого раствора в зрительной трубе появится свет. Чтобы вновь добиться темноты , анализатор необходимо повернуть на некоторый угол, равный углу вращения плоскости поляризации анализируемым веществом. Величина угла вращения может быть непосредственно прочитана на отсчетном устройстве зрительной трубы. [c.156]

    Физические методы органической химии. Сборник под ред. А. Вайсбергера. М -датинлит. Том I, 1950,(532 стр.). Рассмотрены главным образом методы определения физических свойств ра 1личных веществ температуры плавления, температуры кипения, растворимости и др. Том II, 1952, (587 стр.). Описаны методы регулирования и измерения температуры, колориметрия, микроскопия и др, Том III, 1954, (216 стр.). Диполь-ный момент, масс-спектрометрия, определение радиоактивности. Том IV, 1955, (747 стр.). В этом томе рассмотрены главным образом физико-химические методы анализа спектроскопия и сиектрофотометрия, поляриметрия, полярография, магнитная восприимчивость, калориметрия и др. [c.486]

    Взаимодейстнне квантов света с атомами и функциональными группами вещества зависит от энергии квантов, поэтому при разных длинах волн X светового излучения меняется угол вращения плоскости поляризации раствором вещества. Это явление называют дисперсией оптического вращения а и изображают в виде кривых дисперсии оптического вращения (рис. 33.7). Если в соединении содержатся оптически активные группы, то на кривых оптического вращения возникают максимум и минимум, которые называют эффектом Коттона. Вид эффекта Коттона характеризует структуру вещества. Для измерения дисперсии оптического вращения используют спектрополяримет-ры, представляющие собой поляриметры, к которым подключен спектрофотометр или другой источник монохроматического излучения. Метод анализа с применением спектрополяриметров называют спектрополяриметрическим. [c.804]

    На чем основан рефрактометрический анализ 2. Для чего применяется рефракто-метрический анализ 3. Как работает погружной рефрактометр 4. На чем основан поляриметрический анализ 5. Как работает круговой поляриметр СМ 6. На чем основан эмиссионный спектральный анализ 7. Как устроен кварцевый спектрограф ИСП-28 На чем основана пламенная фотометрия 9. Как устроен пламенный лабораторный фотометр ФПЛ-1 10. На чем основана атомно-абсорбционная спектрофотометрия 11. Каковы основные узлы атомно-абсорбционного спектрофотометра 12. Где применяют атомно-абсорбционную спектро-фотометрию  [c.253]

    Поляриметрический анализ основан на измерении вращения (изменения) плоскости поляризации света оптически активными веществами. Это свойство обусловлено наличием в молекуле органического соединення хотя бы одного асимметрического атома углерода. Оптически активны большинство углеводов, а также антибиотики, глюкози-ды, алкалоиды, эфирные масла, некоторые другие соединения. Существуют количественные зависимости между концентрацией оптически активных веществ в растворах и направлением (или углом) вращения поляризованного света. Количественный анализ оптически активных веществ осуществляют при помощи поляриметров. [c.391]

    Учебник предназначен для учаш,ихся аналитической специальности средних специальных учебных заведений. В нем изложены теоретические основы физико-химических методов анализа колориметрии, нефелометрии и турбидиметрии, рефрактометрии, поляриметрии, люминесцентного анализа, кондуктометрии, потенциометрии, полярографии, электроанализа, хроматографии. Описана современная аппаратура, обеспечивающая выполнение соответствующих определений, а также приемы работы и приведен ряд практических задач по всем указанным выше методам анализа. [c.2]

    В техническом анализе наибольшее распространение получили электрохимические и оптические физико-химические методы. К электрохимическим методам анализа относят кондуктометрню, потенциоме-трию, полярографию, кулонометрню, высокочастотное титрование и др. Они обладают высокой чувствительностью и позволяют относительно легко в ряде случаев автоматизировать контроль технологического процесса. К оптическим методам относят поляриметрию, рефрактометрию, колориметрию, нефелометрию и спектральный анализ. Используя оптические методы, можно быстро и с большой чувствительностью анализировать всевозможные вещества. Результаты определений в большинстве случаев регистрируются фотографическим или механическим путем. Применяя фотоэлементы, легко автоматизировать выполнение анализа этими методами. [c.7]

    Для изучения дисперсии оптической активности в видимой и ультрафиолетовой областях спектра применяется автоматический сиектроноляриметр СПУ-М. Оптическая схема прибора представлена на рис. 102. Для получения рабочего спектрального диапазона, составляющего 230—600 нм, используется двойной призменный монохроматор. Отработка угла поворота плоскости поляризации производится с помощью автоматической поляризационной следящей системы. При этом погрешность отсчета понижена до +0,0025°. Подготовка фракций к анализу и все расчеты производятся так же, как и при использовании поляриметра Цейса. [c.279]

    Определение структуры биомолекулы. Из мьшщ кролика вьщелили неизвестное вещество X. Его структура была установлена на основе следующих наблюдений и экспериментов. Результаты качественного анализа показали, что это вещество содержит только углерод, водород и кислород. Взвешенный образец вещества X бьш подвергнут полному окислению и определены количества образовавшихся НдО и СО2. Исходя из данных этого анализа, было сделано заключение, что весовое содержание С, Н и О в X составляет соответственно 40,00%, 6,71% и 53,29%. Молекулярная масса вещества X, по данным масс-спектроме-трии, оказалась равной 90,0. Методом инфракрасной спектроскопии было установлено, что в молекуле X имеется одна двойная связь. Вещество X легко растворяется в воде, образуя кислый раствор. При исследовании этого раствора с помощью поляриметра было установлено, что X обладает оптической активностью, причем удельное вращение плоскости поляризации [а]п равно -1-2,6°. [c.78]

    Успех работы с новыми приборами превзошел все ожидания. Это объясняется тем, что, хотя структурный анализ проводился с помощью того же самого принципа аналогий, который применяли и тогда, когда оптическое вращение ограничивалось измерением при О-линии натрия, метод вращательной дисперсии давал значительно большие преимущества по сравнению с монохроматической поляриметрией. Прежде всего непосредственное окружение хромофора играет основную роль в возникновении наблюдаемой оптической активности, обусловленной этим хромофором (вицинальный эффект Фрейденберга), сводя, таким образом, всю проблему определения структуры молекул к изучению структуры разнообразных асимметрических центров, таких, например, которые существуют в стероидах и терпенах. Последовательное присоединение хромофора к соответствующим частям скелета иолициклической молекулы путем простых химических реакций позволяет исследовать структуру участков сочленения колец. Помимо этого, знание кривой эффекта Коттона, включая его амплитуду, знак и тонкую структуру, дает более полную характеристику асимметрии, создаваемой окружением около данного хромофора. Например, довольно легко отличить 3-А/В-гранс-кетон от 11-кетона по кривым вращательной дисперсии этих соединений, тогда как инкремент оптического вращения при О-линии натрия относительно исходного стероида без кетогруппы практически был бы одним и тем же в обоих случаях. Более того, если считать, что такие аналогии установлены, то исследования кривой вращательной дисперсии обычно достаточно для решения вопроса о структуре молекулы. Иначе обстоит дело в случае использования только вращения на О-линии натрия здесь приходится вычислять разность между оптическим вращением исследуемого вещества и вращением родственного соединения без хромофора. Последнее соединение, однако, часто нельзя получить из-за отсутствия необходимых исходных веществ или из-за трудностей его синтеза. Таким образом, вращательная дисперсия является более привлекательным методом для химика по сравнению с обычным поляримет- [c.14]

    При разделении смеси, содержащей 97,2% 3-метилбутаио-ла, получен продукт с содержанием последнего<99,7%, что является пределом чувствительности поляриметрического метода анализа (в работе использовали поляриметр марки Хилгер ). [c.54]

    Поляриметрия 4—256 1 — 93 Полярная связь 4—257, 254, 621 Полярографический анализ 4—257 Полярография 4—257 5—892, 979, 986 Помарсол 5—2U4 [c.577]


Смотреть страницы где упоминается термин Анализ поляриметрия: [c.470]    [c.591]    [c.538]    [c.167]    [c.607]   
Аналитическая химия (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поляриметр

Поляриметрия



© 2025 chem21.info Реклама на сайте