Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственное строение органических соединений конфигурации

    ПОЛЯРИМЕТРИЯ — метод физикохимического исследования, основанный на измерении вращения плоскости поляризации света оптически активными веществами. Чаще всего такими веществами являются органические соединения с асимметрическим атомом углерода. Измерения производят с помощью поляриметров — оптических приборов, в которых луч света последовательно проходит через систему двух поляризующих призм. Благодаря пропорциональности, существующей между углом вращения и концентрацией оптически активного вешества, поляриметрические измерения используют для количественного определения оптически активного вещества. П. является основным методом контроля в сахарной промышленности по величине угла вращения определяют содержание сахара в растворе. Методы П. используются также для анализа эфирных масел, алкалоидов, антибиотиков и др. Большое значение имеет поляриметрический метод исследования в органической химии, где на основании определения знака и величины вращения плоскости поляризации можно судить о химическом строении и пространственной конфигурации соединения, делать выводы о механизме реакций и др. Для этого в последнее время особенно успешно используется спектрополяри-метрия. [c.201]


    Первые электронные теории строения органических соединений были основаны на понятии ионной связи и, следовательно, закономерно сошли со сцены. Но их авторы в свое время придавали им преувеличенное значение. И, например, тот вытекавший из электростатической электронной теории вывод, что двойная связь может быть образована двумя путями С 1 С и С С, где стрелки означают переход электрона от одного атома к другому, Фальк и Нельсон в 1909 г. [Б И, стр. 33 и 35] трактуют как возможность объяснения изомерии этиленовых соединений и не прибегая к понятию о различных пространственных конфигурациях. Беркенгейм, автор еще более широкой электронной теории того же типа, вопроса о объяснении геометрической изомерии, однако, не поднимает даже в параграфе о сущности двойной и тройной связи [28, стр. 55 и сл.], но четыре валентных электрона атома углерода располагает в вершинах правильного тетраэдра. [c.167]

    В повседневной практике химика-органика несравненно большее значение имеют спектроскопические методы, и здесь на первое место выдвинулся (открыт в 1946 г.) метод ядерного магнитного резонанса (ЯМР), основанный на взаимодействии магнитных моментов ядер (например, ядра водорода) с внешним магнитным полем. Метод протонного магнитного резонанса дает исчерпывающие сведения о химической природе, пространственном положении и числе атомов водорода в молекуле и тем самым о ее строении. Методы инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, обусловлен взаимодействием неспаренного электрона парамагнитного соединения со внешним магнитным полем. Масс-спектроскопия (спектрометрия) путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов устанавливает конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). [c.10]


    Использование результатов анализа. Поляриметрический анализ широко применяют для определения качества сахарной свеклы как сырья сахарной промышленности. Метод экономичен, отличается простотой выполнения, быстротой и высокой точностью. Поляриметрия имеет большое значение и для теоретических исследований. По величине и направлению вращения плоскости поляризации света можно получить представление о химическом строении и пространственной конфигурации органических соединений, а также о механизме реакций, продукты которых имеют асимметричный атом углерода. [c.31]

    Основные научные работы посвящены физической органической химии, основателем которой он является. Изучал (1926—1933) электронную структуру ароматических соединений. Развил (1926—1934) теорию электронных смещений, или теорию мезомерии, отправляясь от схем Р. Робинсона. Ввел представление об электро- и нуклеофильных реагентах и реакциях, уточнил классификацию эффектов электронных смещений, рассмотрел их причины, осуществил широкое обобщение материала, относящеюся к определению зависимости физических свойств и реакционной способности соединений (по данным химической кинетики) от их электронного строения. Изучал механизм галогенирования и гидратации алкенов. Совместно со своим учеником и сотрудником Э. Д. Хьюзом провел (1933—1946) серию фундаментальных исследований кинетики реакций замещения у насыщенного углеродного атома. Вместе с В. Прелогом разработал общепринятую систему Н- и 8-обозначений для пространственных конфигураций. Автор книги Теоретические основы органической химии (1953), выдержавшей два издания и переведенной на русский язык. [22, 80, 81,322,332,339] [c.209]

    В той же статье Бартон пишет, что для точного описания молекул органических соединений надо знать три К , их характеризующих конституцию, конфигурацию и конформацию. Заметим, что для полного описания молекул необходима еще и характеристика их электронного строения. Понятие конституции в определении Бартона, так же как и у многих других химиков XIX и XX вв., совпадает по содержанию с термином химическое строение . Конфигурация молекул характеризуется, по Бартону, расположением ковалентных связей в пространстве относительно друг друга, а конформация определяется как пространственное расположение всех атомов молекулы, обусловленное взаимодействием непосредственно не связанных структурных частей молекулы . Таким образом, конфигурация молекулы определяется валентными силами, действующими между атомами, а влияние невалентных сил приводит к искажению валентных углов и длин связей по сравнению с невозмущенной конфигурацией и даже к появлению изомерии, не предусмотренной классической стереохимией. Такого рода [c.283]

    Кроме ряда научных данных, используемых в теории строения вещества, рентгеноструктурный анализ органических кристаллов оказывает помощь органической химии при установлении строения отдельных соединений. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. Рентгеновский анализ был применен для исследования строения многих десятков стероидов при этом выяснилось, что некоторым стероидам приписывались неправильные пространственные конфигурации. При помощи этого метода была полностью расшифрована структура такого сложного вещества, как фталоцианин. Рентгеновский метод позволяет надежно определять молекулярные веса белков для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки. [c.742]

    Модификация полимеров при помощи привитой и блоксопо-лимеризации обладает рядом преимуществ перед методом совместной полимеризации мономеров. В некоторых случаях прививка мономера на полимер или взаимодействие между собой макромолекул различной химической природы или пространственной конфигурации позволяют синтезировать сополимеры, которые невозможно получить другими способами. Возможность применения этого метода для модификации любых высокомолекулярных соединений делает его практически универсальным. В привитых и блоксополимерах удается совмещать сегменты самых различных полимеров аморфных и кристаллических, органических и минеральных, синтетических и природных, что позволяет получать полимерные материалы с разнообразными, заранее заданными свойствами. О широком интересе исследователей к этому новому направлению в синтезе высокомолекулярных соединений свидетельствует появление многочисленных работ , в которых описаны процессы привитой и блоксополи-меризации и сделаны попытки систематизировать методы синтеза, выделения и идентификации полученных продуктов. Рядом авто-ров о, 31, 32 предложена классификация привитых сополимеров, в основу которой положен структурно-химический принцип, позволяющий охарактеризовать основные и боковые ветви как гомо-или гетероцепные, аморфные или кристаллические. В последнее время в литературе появились монографии, посвященные привитым и блоксополимерам Относительно более полной является работа Церезы , в которой использована номенклатура, развитая на основе предложенной ранее Пиннером и учитывающая строение продуктов привитой сополимеризации, а также описано около 1400 привитых и блоксополимеров, в том числе и содержащих поливинилхлорид. [c.369]


    Приведенные примеры, как и многие другие, свидетельствуют о том, что тонкие особенности строения органических соединений, обнаруживающиеся, в частности, в виде такого специфического и отвлеченного свойства, как оптическое вращение, имеют большое значение для биохимических процессов. Дело здесь, конечно, не в том, что живые организмы по-разному реагируют на само правое или левое вращение оно служит только признаком, приметой, позволяющей отличить один антипод от другого. Подлинной же причиной различия физиологического действия является различие пространственного строения — конфигурации. [c.418]

    Органические соединения в целом образуют колоссальный фонд молекулярных структур, составленных из относительно прочных каркасов (цепи и циклы из звеньев С—С и С = С), способных создавать множество пространственных конфигураций, стабилизированных небольшими энергетическими барьерами. В каталитически активных структурах—в активных группах ферментов— энергетические барьеры для определенных движений очень малы. Согласно взглядам Кошланда, получившим и опытное подтверждение, фрагменты активных групп ферментов движутся в процессе каталитического превращения, приспосабливаясь к строению молекулы субстрата. Следовательно, органические соединения строят отношения со средой главным образом на языке геометрии взаимодействующих частиц. Для них пространственные коды имеют хотя и не исключительное, но первостепенное значение. По сравнению с общим числом соединений углерода число определенных типов органических соединений, вовлеченных в процесс образования живого вещества, не слишком велико. [c.167]

    Поляриметрия имеет большое значение для теоретических исследований в области органической химии. По величине и направлению вращения плоскости поляризации света судят о химическом строении и пространственной конфигурации органических соединений, а также [c.391]

    Более совершенный метод обозначения изомеров — система Фишера. В соответствии с системой Фишера для органических соединений можно произвольно приписать изомеру (- -)-[Со(еп)з] + Д-конфигурацию и сравнивать с ним другие частицы. Если их пространственное строение подобное, то это >-изомеры, а если оно отлично от 1)-[Со(еп)з] +, то это Ь-изомеры соответствующих комплексов. Следует иметь в виду, что прописные буквы О и Е не обозначают правое или левое вращение плоскости поляризации, а указывают [c.339]

    В этом разделе мы рассмотрим развитие того направления в классической стереохимии, которому было уделено наибольшее внимание в первоначальных работах Вант-Гоффа и Ле Беля. Идя от более простого к более сложному, мы рассмотрим сначала методы получения оптически активных соединений, затем способы определения их конфигурации и в заключение — установление и толкование зависимостей между пространственным строением и оптической деятельностью органических молекул. Конечно, упомянуты будут только важнейшие вехи в истории этой области стереохимии. [c.68]

    В 1858 г. Кекуле опубликовал свою теорию строения молекул, а в 1873 г. на основании этой теории Вислиценус установил, что право- и левовращающие молочные кислоты имеют одинаковое строение, и отметил, что если установлено, что молекулы структурно идентичны, но все же обладают различными свойствами, то это можно объяснить только тем, что эта разница обусловлена неодинаковым расположением этих атомов в пространстве . В 1874 г. Вант-Гофф и одновременно Ле Бель выдвинули концепцию пространственного расположения четырех заместителей при атоме углерода. Вант-Гофф развил свою идею на основании представлений Кекуле и Вислиценуса, тогда как Ле Бель базировался на работах Пастера. Это создало основы для современных представлений о строении, причем была установлена связь между конфигурацией и оптической изомерией органических соединений. Однако образование оптически активных соединений в живых системах все еще оставалось загадкой, причем это явление объяснялось с точки зрения ненаучной концепции жизненной силы [1]. [c.16]

    В развитии пространственных представлений классическая теория химического строения вплотную подошла к другому положению, имеющему особенно важное значение для органической химии -. Именно, классическая стереохимия установила различие в геометрической конфигурации заместителей вокруг атома углерода в предельных соединениях, где атом углерода осуществляет четыре ординарные связи, в тех непредельных соединениях, где атом углерода осуществляет одну двойную связь и две ординарных, и, наконец, в тех непредельных соединениях, где атом углерода осуществляет две двойные связи или одну тройную связь и одну ординарную связь. Различие в геометрическом расположении заместителей вокруг атома углерода в этих трех случаях (тетраэдрическое, плоское и линейное, подробнее см. ниже) ясно говорило о том, что способы осуществления химических связей атомов углерода в этих трех случаях различны. Отсюда напрашивался вывод о том, что связи одинаковой кратности между данным атомом и атомом углерода в соединениях указанных трех типов должны различаться по своим свойствам. Отсюда вытекала возможность понять причину различий между свойствами связей данной кратности между атомами данных элементов в разных молекулах. Однако эти факты не стали до сих пор отправным пунктом дальнейшего исследования причин различий в свойствах химических связей одинаковой кратности между данными атомами в разных соединениях. [c.53]

    После краткого изложения вопросов о природе и строении органических соединений в нем с привлечением теории МО описывается элек-тронное строение молекул, которое в свою очередь определяет ее пространственную конфигурацию. Затем на основании анализа взаимосвязи структуры и термодинамических функций осуществляется переход к теории химических реакций. В заключение рассматриваются важнейшие взаимоотношения меоюду структурой и реакционноспособностью органических соединений. [c.17]

    Огромное число химических соединений (например, практически все органические молекулы) образованы ковалентными связями, которые являются направленными. Благодаря этому молекулы с ковалентной связью имеют вполне определенное геометрическое (пространственное) строение. Геометрию (структуру) молекул в первую очередь определяют электронные конфигурации атомов, образующих молекулу для объяснения структуры многих молекул оказывается очень важным понятие гибридизации атомных орбита-лей (зр , зр , зр и др.). Структура молекул, в свою очередь, определяет полярность молекулы (не путать с полярностью отдельной химической связи ), количественно выражаемую диполъным моментом. Для оценки полярности связи очень полезным оказалось понятие электроотрицательности (ЭО) атомов. Л. Полинг определил ЭО как способность атомов в молекуле притягивать электроны. [c.31]

    Теория строения в ее первоначальном виде дала методы определения способа и последовательности связи атомов в молекулах. Одпако она не предложила способов определения относительного расположения атомов в трехмерном пространстве (несмотря на то, что с самого начала эта теория не исключала возможности пространственного распределения атомов). Необходимость учитывать пространственное строение молекул,-их конфигурацию возникла в тот момент, когда стало ясно, что некоторые формы изомерий не могут быть предсказаны на основании первоначальной теории строения. Существуют два вида пространственной изомерии, или стереоизомерии (от стереос — пространство или твердое тело) оптическая и геометрическая. Новая глава теории строения, стереохимия, появилась в силу необходимости объяснить эти формы изомерии, однако вскоре она нашла применение и в других областях органической химии, главным образом в химии циклических соединений при исследовании механизмов реакций и в различных областях биохимии.  [c.27]

    Один из пионеров современной стереохимии Д. Бартон около 40 лет назад отметил, что для "точного описания" молекул органических соединений надо знать "три К" конституцию, конфигурацию и конформацию [56]. Понятие "конституция" совпадает с понятием химического строения молекулы, т.е. ее валентной схемы. Конфигурация молекулы означает пространственное расположение атомов, обусловленное валентными силами, поэтому ее изменение сопряжено с разрывом химических связей. Конформация - это также расположение атомов в пространстве, но определяемое, помимо валентных, также невалентными силами. Влияние последних проявляется в искажении валентных углов и длин связей по сравнению с идеальными углами в невозмущенной конфигурации молекулы, инверсии ("выворачивании") пирамидальных структур и, прежде всего, в появлении особого вида стереоизомерии, вызванной заторможенным вращением вокруг ординарных связей. Конформации - это неидентичные геометрические формы, которые может принимать молекула без нарушения ее целостности, т.е. без разрыва химических связей. Повышение энергии молекулы из-за образования неблагоприятных невалентных контактов, следствием которого является деформация валентных углов и длин связей, принято называть "байеровским напряжением", а ведущее к изменению конформационного состояния молекулы - "питце-ровским напряжением". [c.110]

    Под структурой в химии понимают расположение частиц. Исходной точкой для определения структуры органического соединения является его брутто-формула. Следующий и важнейший шаг состоит в определении строения. Строение можно считать установленйым, если определены вид и число атомов, в молекуле, а также соединяющих их химических связей. Заключительной стадией определения структуры молекулы является установление ее пространственного строения (конфигурации и конформации). В дальнейнгем мы пока не будем говорить об онределенни пространственного строения. Следует иметь в виду два случая. [c.35]

    Классическая теория строения, хотя и была дополнена представлением, что атомы соединения расположены в пространстве и что структурные формулы являются проекциями пространственной конфигурации на плоскость, все же имела статический характер. Открытие таких явлений как циклизация, цис-транс изомерия, взаимный переход кето- и енольной форм — таутомерия, чередование двойной связи в конъюнгированных системах, наконец, ротация, — наглядно показала, что органическое соединение, как и всякая частица материи, не покоится на месте, а находится в состоянии непрерывного движения. Все это обогатило классическую теорию строения представлением о динамичности органических соединений. [c.19]

    Современные электронографические, роитхенографические и спектроскопические методы исследования геометрической конфигурации атомов в молекулах и кристаллах органических веществ подтвердили правильность стереохимических представлений органической химии. Эти методы позволили определить межатомные расстояния и валентные ух- лы в молекулах многих органических соединений, составить детальную картину геометрической конфигурации атомов в этих молекулах и установить, приблизительное постоянство межатомных расстояний и валентных углов для связей одних и тех же типов. Данные о геометрии молекул и отдельных атомных групп с успехом применяются для предсказания геометрической конфигурации молекул многочисленных соединений, для анализа возможных пространственных препятствий и напряжений валентных углов в циклах, а также для учета влияния этих факторов на особенности химическо1"о строения и химического поведения ряда молекул. [c.25]

    В истории открытия и изучения влияния невалентных межатомных сил па пространственное строение молекул применялись и применяются различные экспериментальные и теоретические методы. Сначала выдвигались на передний план одни методы, затем другие. По ходу нашего изложения мы будем упоминать о них. Но уже сейчас следует заметить, что представление о внутримолекулярном межатомном невалентном взаимодействии в органических соединениях было подготовлено тем, что вопрос о межмолекулярном невалентном взаимодействии атомов не раз уже обсуждался с теоретической точки зрения, и была даже разработана система так называемых вандерваальсовых радиусов, аналогичная в большой степени системе ковалентных радиусов, рассмотренных в главе VI. По этой причине разделам, посвященным искаженным конфигурациям, поворотной изомерии и конформационному анализу, мы предпосылаем раздел, тема которого относится не столько к стереохимии органических соединений, сколько к химической физике. [c.284]

    Главная задача спектроскопии ЯМР — определение структуры чистых органических соединений. Метод особенно важен для изучения конфигурации основной цепи, изомерии и пространственной геометрии молекулы. Последнее из указанных применений связано с присутствием в органических молекулах магнитно-анизотропных групп, пространственное расположение которых сильно влияет на вид спектра. К таким группам относятся ароматические и трехчленные кольца, карбонильные группы, ацетиленовые инитрильные группы. Возможность сравнительно простого определения пространственного строения определила широкое применение ЯМР-спектроскопии для исследования природных соединений. ЯМР-спектроскопия неоценима при определении цис-транс-шгои жа относительно двойной связи, изомерии производных бензола, состава смеси кето-енолов и других таутомеров. Основные ограничения метода определяются сложностью интерпретации спектра при наличии большого числа магнитных ядер, а также возможностью подбора подходящего растворителя (не поглощающего в области резонанса исследуемого вещества). Первое ограничение в значительной степени преодолевается совершенствованием техники математического анализа спектров и применением специальных методов. К последним относятся двойной ядерный магнитный резонанс, изотопное замещение, использование приборов с более высокой напряженностью магнитного поля, исследование резонанса на ядрах при природном содержании и др. (гл. IV). Второе же ограничение устраняется использованием набора растворителей, в том числе изотопнозамещенных (главным образом, дейтерированных) соединений. [c.47]

    Во многих случаях анизотропные группы при соответствующей конфигурации сложной молекулы вызывают экранирование или деэкранирование протонов, которые непосредственно с ними не связаны, а удалены на две и более связи. Такие случаи, называемые дальним экранированием, незаменимы для установления пространственного строения сложных органических соединений. Недавно был приведен интересный пример использования анизотропии ароматических соединений — установление пространственного строения диарилспнрокетонов VHI. [c.78]

    Очевидно, что бекмановская перегруппировка может быть исноль-.зована для определения конфигурации стереоизомерных кетоксимов конечно, для этого необходимо, чтобы обмен местами между гидроксильной группой и органическим остатком всегда проис.ходил одинаковым образом. Как уже было указано, б большинстве случаев перемещается и присоединяется к атому азота группировка, пространственно удаленная от гидроксила. Однако это ие всегда удается подтвердить опытным путе.м. Кроме того, существует мнение, что бек.ма-иовская перегруппировка иногда протекает таки е по старой схеме, т. е. местами обмениваются соседние группы, и что то или иное течение реакции зависит от особенностей строения нретерневающего перегрун-пировку соединения. [c.636]

    В соответствии с рассмотренной конфигурацией молекулы аммиака надо представлять себе и строение его органических производных. Это подтверждается результатами физических исследований данных веществ. Например, для газообразного состояния найдены следующие величины HgNH , /х = 1,33 4-0,01 D ( Hg)2NH, 1,02 0,01 D (СНз)зН, = 0,62 0,01 D. Угол С—N—С в димеТиламине составляет 111 3°, в триметиламине — 113 3° . Давно уже известный химический факт — возможность построения насыщенных циклов, в которых группа СН заменена на группу NH, — также свидетельствует в пользу этой конфигурации. В соответствии с такой конфигурацией у надлежащим образом замещенных соединений типа N(a, Ь, с) можно ожидать появления оптической активности. Поиски в этом направлении велись очень интенсивно, но долгое время оставались безуспешными. Инверсия молекулы N(a, Ь, с) делает понятной причину отсутствия оптических антиподов. Энергетический барьер, который необходимо преодолеть для перехода к противоположной пространственной конфигурации, слишком низок для Того, чтобы было возможно раздельное существование этих соединений. Если же с помощью включения атома азота в относительно жесткую систему исключить возможность инверсии. То для соединений типа N(a, Ь, с) можно получить оптически активные формы. Это показал Прелог [2] иа примере так называемого основания Трогера  [c.190]


Смотреть страницы где упоминается термин Пространственное строение органических соединений конфигурации: [c.53]    [c.110]    [c.5]   
Курс теоретических основ органической химии (1959) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Органические соединения строение

Органические строения



© 2025 chem21.info Реклама на сайте