Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография элюентный анализ

    Имеются три различных вида хроматографии элюентная (или проявительная) хроматография, фронтальный анализ и вытеснительная хроматография. Первый вид хроматографии используется только для аналитических применений его практическая реализация обсуждается подробно в последующих главах 1—4. Основы двух других видов хроматографии обсуждены кратко. [c.14]


    Наиболее распространен элюентный режим хроматографирования, позволяющий получать в чистом виде все компоненты пробы. В жидкостной хроматографии применяют также изократический и градиентный режимы подачи элюента. В изократическом режиме состав элюента в течение анализа не изменяется, в градиентном режиме состав элюента меняется по определенной программе. [c.582]

    Метод построения изотермы адсорбции на основе элюентной выходной кривой изучаемого вещества для жидкофазной хроматографии впервые предложил Глюкауф. Применительно к газовой хроматографии пригодность этого метода была впервые показана Д. А. Вяхиревым и Л. Е. Решетниковой. Дальнейшее развитие метод получил Б работах С. 3. Рогинского с сотр. и А. В. Киселева с сотр. Изотермы адсорбции, полученные на основе анализа элюентной кривой и классическим статическим весовым методом Мак-Бена, очень близки при соблюдении определенных условий опыта, в то же время хроматографические измерения значительно проще осуществимы, нежели статические. Используя выходную кривую фронтального варианта хроматографии одного вещества на выбранном адсорбенте как в жидкой, так и в газовой фазе, можно построить изотерму адсорбции данного вещества (Классом и др.). [c.250]

    Ионообменная хроматография используется как вспомогательный метод, предшествующий количественному определению веществ. При помощи хроматографического метода разделяют компоненты анализируемого раствора катионы от анионов, катионы от катионов, анионы от анионов. Ионообменная хроматография основана на обратимом стехио-метрическом обмене ионов, содержащихся в растворе, на подвижные ионы ионообменника. Одновременно с разделением элементов осуществляется их концентрирование, что имеет большое значение для повышения точности результатов анализа при определении примесей. Количественное определение веществ после их хроматографического разделения проводят химическими, физико-химическими или физическими методами. Различают три вида ионообменной хроматографии фронтальный анализ, вытеснительная хроматография и элюентная хроматография. Из них в количественном анализе применяют только вытеснительную и элюентную хроматографию. По этим методам разделяемую смесь вначале адсорбируют в верхней части колонки, а затем элюируют соответствующим растворителем (элюентная хроматография) или раствором (вытеснительная хроматография). [c.19]


    Принцип хроматографического разделения веществ может осуществляться различными способами. Наибольшее распространение получил проявительный (элюентный) метод. Этот метод считается лучшим для аналитических целей, тогда как два других метода, фронтальный и вытеснительный, пригодны для очистки веществ и препаративного выделения газов. Проявительный метод впервые был использован Цветом (1903). В газовой хроматографии его применила впервые Кремер (1950). Метод заключается в следующем. Подвижная фаза с постоянной скоростью протекает через колонку. Для каждого анализа незначительное количество подлежащей разделению пробы вводится в подвижную фазу перед входом в колонку в виде небольшой пробки вещества. В колонке отдельные компоненты неодинаково долго удерживаются неподвижной фазой. Благодаря этому они продвигаются по колонке медленнее, чем подвижная фаза, и с различными скоростями. Поэтому первоначальная пробка постепенно расщепляется на несколько зон. За данное время компоненты проходят различные по высоте участки колонки (рис. 2). [c.15]

    Разделение ионов. Методом элюентного анализа можно разделять ионы, используя их различную способность к полному обмену. Поскольку методика работы такая же, как в методе хроматографического разделения, этот метод называют ионообменной хроматографией. [c.250]

    Элюентный анализ — это разделение в стадии элюирования. В элюентной хроматографии ионы элюента должны обладать меньшим сродством к иониту, чем элюируемые ионы. Элюирование градиентное — в ходе элюирования постепенно меняют химический состав элюента. Элюирование селективное — для каждого иона или группы ионов применяют специфические, избирательно действующие элюенты. Элюирование ступенчатое — в ходе элюирования ступенчато меняют химический состав элюента. [c.27]

    Обработка данных элюентной хроматограммы в целях количественного анализа сводится, таким образом, только к измерению площадей 51, 5г, , отдельных выходных кривых. Так как каждый компонент поступает из колонки в фильтрат без примесей других растворенных веществ, он легко может быть идентифицирован обычными аналитическими методами. Поэтому элюентный анализ весьма удобен для препаративных целей и обладает существенным преимуществом по сравнению с фронтальным анализом, при котором лишь один, наиболее слабо удерживаемый адсорбентом, компонент смеси может быть выделен в чистом виде. Особенно целесообразно применять элюентную хроматографию для выделения небольших количеств различного рода ценных веществ. [c.32]

Рис. 36. Выходная кривая элюентного анализа в ионообменной хроматографии (С — концентрация в мг-экв мл определяемого иона в порциях фильтрата) Рис. 36. <a href="/info/39480">Выходная кривая</a> <a href="/info/219891">элюентного анализа</a> в <a href="/info/5708">ионообменной хроматографии</a> (С — концентрация в мг-экв мл определяемого иона в порциях фильтрата)
    Ионообменная хроматография за последние годы стала одним из важнейших методов препаративного разделения и аналитического исследования смесей различных неорганических и органических соединений. Она основана на обратимом стехиометрическом обмене ионов, содержащихся в растворе, на ионы, входящие в состав ионо-обменника. Образование хроматограмм в этом случае происходит вследствие неодинаковой способности к обмену различных ионов хроматографируемого раствора. В ионообменной хроматографии, так же как и в адсорбционной, можно применять фронтальный, вытеснительный, элюентный методы анализа. [c.141]

    По технике проведения эксперимента каждый из вышеуказанных видов хроматографии может быть осуществлен тремя методами а) элюентным анализом (анализ промыванием) б) фронтальным анализом в) вытеснительным анализом (рис. 1). [c.9]

    Метод вытеснения. Расчет требуемого количества адсорбента, выбор геометрических размеров хроматографических колонок и их подготовка при вытеснительной хроматографии, а также растворение топлив и масел в метановом низкокипящем растворителе и предварительная промывка этим растворителем хроматографических колонок проводятся так же, как в элюентном анализе. [c.39]

    Лучшие результаты при хроматографическом разделении ароматических углеводородов по числу циклов в молекуле получаются при элюентном анализе. Вытеснительная хроматография также позволяет провести разделение по числу циклов, однако результаты получаются несколько хуже. [c.66]

    Целевым назначением хроматографии как разновидности динамического опыта является разделение смесей в аналитических или препаративных целях. В динамике обмена смесей, связанной со взаимным вытеснением ионов [1] или перераспределением промывающего комплексообразующего реагента [2], требуется одновременный учет всех присутствующих в смеси компонентов, что весьма затрудняет, а часто делает невозможным точный расчет процесса. Б хроматографии, главным образом, в варианте анализа промыванием (элюентный анализ) вследствие малых (по сравнению с полной обменной емкостью) степеней отработки ионита по компонентам разделяемой смеси и, соответственно, низких их концентраций на выходе из колонки часто допустимы существенные упрощения последние сводятся к предположению о независимости обмена всех компонентов разделяемой смеси на ионите, а в простейшем варианте тарелочного метода — и к предположению о симметричности выходных кривых [3]. [c.91]


    За годы, прошедшие со времени открытия хроматографии, усилия многих ученых были направлены на усовершенствование этого метода. В настоящее время известны шесть основных способов осуществления хроматографического процесса элюентный анализ, вытеснительное проявление, термическая десорбция, фронтальный анализ, распределительная хроматография, ионно-обменная хроматография. [c.4]

    Кроме указанного так называемого элюентного метода хроматографического анализа, может применяться метод вытеснительной хроматографии. Вытеснительный метод заключается в том, что поглощенное адсорбентом вещество, в частности тот или иной углеводород, вытесняется из адсорбента другим веществом, адсорбируемым в еще большей степени. Известны и другие варианты хроматографического анализа. [c.171]

    Элюентный способ газовой хроматографии. При анализе углеводородных газов применяется в основном элюентный способ, разные варианты которого можно разделить на две группы в зависимости от того, наполнены ли разделительные колонки только твердым адсорбентом или последний служит лишь в качестве носителя , па который наносится слой соответствующего жидкого, прочно удерживаемого им растворителя. Эта жидкость выполняет ту же роль, что и твердый адсорбент. [c.191]

    Использование в элюентном анализе колоночной хроматографии [13, 27, 53, 55], на наш взгляд, вообще не перспективно, поскольку этот вариант сочетает в себе низкую (по сравнению с тонкослойной хроматографией) чувствительность и в то же время не позволяет учитывать легколетучие компоненты нефтепродуктов. [c.217]

    В соответствии с принятой терминологией ионообменную хроматографию по способам выполнения подразделяют на фронтальный, вытеснительный и элюентный анализы. Во всех этих видах используется многократное повторение процесса ионного обмена. Наибольшее применение имеет элюентный анализ. [c.309]

    При фронтальном анализе исследуемый раствор подают сверху, а затем пропускают его через адсорбент. В элюентном анализе образец сначала наносят на верхний конец столбика сорбента (или близко от верхнего конца), после чего через колонку пропускают чистый растворитель. При хроматографии на бумаге применяют, как правило, элюентный анализ. В этом случае первая стадия состоит в нанесении образца на бумагу в виде маленькой капли или поперечной черточки. На следующей стадии производится хроматографирование чистым растворителем или смесью растворителей. Цвет назвал эту стадию проявлением в связи с тем, что в процессе этой операции происходит разделепие перекрывавшихся сначала (в стадии фронтального анализа) зон. Зоны, содержащие отдельные компоненты смеси, разделяются настолько, что менаду ними образуются пустые промежутки (см. стр. 58 и рис. 20). При хроматографии на бумаге редко применяют метод, при котором производят постепенную замену проявляющих агентов с целью последовательного увеличения полярности проявителя от наименьшей ( слабый проявитель) к большей ( сильный проявитель) (см. стр. 113—115 и табл. 9 и 10). Этот метод широко применяют в колоночной хроматографии. При его использовании можно добиться хорошего разделения не только более слабо адсорбированных веществ, но и веществ, адсорбированных более сильно. На этот метод в какой-то [c.42]

    Ионообменная хроматография, так же как и адсорбционная, подразделяется в соответствии с методикой эксперимента на фронтальный анализ, элюентную и вытеснительную хроматографию. [c.116]

    В первом случае разделение происходит в стадии поглощения, во втором случае как в стадии поглощения, так и при промывании (элюировании). Кроме того, О. Самуэльсон предлагает различать, как это обычно делают, фронтальный анализ, селективное поглощение и элюентный анализ. Особенно подробно он подразделяет элюентный анализ элюентная хроматография, вытеснительная хроматография, селективное элюирование. [c.13]

    Основным в газовой хроматографии остается классический элюентный способ с его многочисленными методическими и аппаратурными видоизменениями. Это наиболее старый и в то же время наиболее распространенный и универсальный способ. Этим способом разделяют не только газовые смеси, но и смеси любых жидких и даже твердых веществ, обладающих хотя бы незначительной упругостью пара при температуре разделительной колонки. При этом упругость пара должна быть достаточна, чтобы применяемый детектор мог четко зафиксировать разделяемые компоненты на выходе из колонки. Таким образом, термин газовая хроматография отнюдь не означает, что этот вид хроматографии применим лишь для анализа газовых смесей. Этот термин означает прежде всего то, что разделяемые компоненты смеси находятся в парообразном или газообразном состоянии, а подвижной фазой является газ-носитель, играющий роль проявителя. Температура кипения веществ, которые можно разделять методом газовой хроматографии, может колебаться в пределах от —200 до 400 С. [c.23]

    Существуют две основные принципиально различные схемы хроматографического анализа. Первая, которой в наибольшей степени соответствует термин элюентная, соответствует случаю, когда после хроматографического разделения по элюентной схеме последующее определение разделенных веществ осуществляется в потоке элюата, выходящего из колонки. Чтобы не вносить дополнительной терминологической путаницы, эта схема хроматографического анализа в дальнейшем будет рассматриваться как традиционная. Вторая схема — хроматографическое разделение с определением разделенных веществ непосредственно в хроматографической колонке или в плоском слое. Наибольшее распространение нашла первая схема, причем на начальном этапе развития хроматографии стадии разделения и послед)тощего определения веществ были разнесены во времени и в пространстве. Для определения каждого из выделенных компонентов мог применяться свой метод определения в отдельных фракциях элюата, но при этом хроматографический анализ был лишен своих основных достоинств — универсальности и экспрессности. Качественным скачком в развитии аналитической хроматографии явилось создание газового хроматографа, в котором были совмещены принципы хроматографического разделения и неселективного детектирования разделенных веществ непосредственно в потоке подвижной газовой фазы, называемой газом-носителем. Подобно тому, как создание газового хроматографа привело к появлению первого важнейшего раздела в науке о хроматографических методах анализа — газовой хроматографии, решение проблемы непрерывного детектирования веществ в потоках жидких фаз способствовало появлению и развитию второго аналитического направления — жидкостной хроматографии. [c.180]

    Наряду с адсорбционной, существуют и другие виды хроматографии ионообменная, распределительная, осадочная. Основные способы анализа — фронтальный, элюентный и вытеснительный. Все эти методы рассматриваются в специальных курсах. [c.178]

    Более совершенная классификация в основе имеет углеводородный состав нефти, который определяется по результатам разделения с помощью элюентной хроматографии после адсорбции нефти на активированном силикагеле группы углеводородов выделяются десорбцией последовательно изооктаном, бензолом и ацетоном. По выходу элюата нефти делятся на три класса, а каждый класс — на три группы по данным анализа и выходу бензина (табл. 1.6). [c.12]

    В элюентной хроматографии проба вводится точно в начало потока на входе в колонку в виде цилиндрической пробки пара, разбавленного газом-носителем. Каждый компонент смеси перемещается так, как будто существует только он один, и элюируется в виде узкой зоны. Если условия анализа выбраны пра- [c.14]

    Значения Rf и применение адсорбционной хроматографии. Элюентный анализ обычно продолжают до тех пор, пока через колонку не пройдут зоны всех растворенных веществ. Однако можно использовать другой метод, при котором элюирование прекращают до того, как фронт растворителя достигнет конца колонки. Затем весь столбик сорбента извлекают из колонки и проявляют зоны индивидуальных компонентов путем обработки поверхности сорбента реагентом, образующим окрашенные соединения с компонечтами смеси. [c.460]

    В соответствии с принятоГ терминологией ионообменную хроматографию по способам выполнения подразделяют на ([фронтальный, вытеснительный и элюентный анализы. Во всех этих видах используется мно- [c.284]

    Фронтальный анализ. В отличие от элюентной и вытеснительной хроматографии фронтальный анализ не дает возможности выделить в чистом виде компоненты анализируемой смеси, а только позволяет определить ее качественный и количественный состав. Фронтальный хроматографический метод был также предложен Тизелпусом [61 ] и затем развит Классоном для хроматографического анализа некоторых кислородных соединений, относящихся к одному гомологическому ряду [23]. По мнению Н. Ф Ермоленко [62], фронтальный анализ незаменим в двух случаях 1) когда один из компонентов анализируемой смеси адсорбируется на адсорбенте необратимо и 2) когда компоненты смеси очень мало различаются по адсорбируемости.,  [c.41]

    Другой разновидностью элюентного анализа является вытеснительная хроматография, предложенная Тизелиусом [38] и подробно изученная Клэссоном [5]. При вытеснительной хроматографии в состав элюента входит ион-проявитель , имеющий [c.109]

    В элюентном анализе подвижная фаза в идеальном случае служит только для перемещения растворенного вещества через хроматографическую систему. Разделение в этом случае происходит благодаря разному сродству компонентов определяемой смеси к неподвижной фазе и, следовательно, разным скоростям перемещения через систему. Типичная хроматограмма, получаемая в этом методе, представлена на рис. 1.3. Вероятно, с помощью элюентно-го анализа даже наиболее сложные смеси можно полностью разделять на отдельные компоненты, которые затем следует анализировать подходящим методом. Благодаря высокой эффективности разделения этот метод получил широкое распространение и практически полностью вытеснил другие варианты разделения, поэтому эта глава посвящена исключительно элюентной хроматографии. [c.23]

    Классификация на основе методики про-ведени я анализа. Помещенные в табл. 1 виды хроматографии осуществляют различными способами. Приведем подробную характеристику трех наиболее универсальных способов 1) фронтального 2) элюентного 3) вытеснительного (рис. 5), [c.15]

    Принцип градиентно-элюентного варианта заложил Цвет. Он для ускорения вымывания из колонки зеленых, наиболее сильно сорбирующихся пигментов к проявляющему растворителю — петро-лейному эфиру — добавлял, этиловый спирт. Этим приемом до сих пор пользуются многие исследователи (в основном биологи), причем в процессе опыта часто добавляют к проявляющему растворителю не одно сильно сорбирующееся вещество, а несколько в последовательности, соответствующей увеличению их полярности. Такая последовательность определяется так называемым элюотроп-ным рядом. Усовершенствовали градиентно-элюентный вариант шведские ученые Тизелиус и его сотрудники в начале пятидесятых годов. Но теория не была разработана. Жуховицкий и Туркельтауб в 1954 г. предложили назвать этот вариант адсорбционным спектральным анализом и сделали попытку разработать теорию применительно к газовой хроматографий. Однако практического применения в газовой хроматографии в отличие от жидкофазной хроматографии этот вариант не получил. Основными препятствиями здесь являются трудности, возникающие при детектировании разделяемых компонентов, поскольку одновременно детектируется переменная концентрация вытеснителя, а также возникает необходимость менять или регенерировать адсорбент после каждого опыта. Это смещает нулевую линию на выходной кривой и вызывает потерю времени на замену и регенерацию адсорбента. [c.20]

    В качественном хроматографическом анализе многокомпонентных смесей следует всегда представлять себе, что пиковая емкость колонки ограничена. Пиковая емкость отражает число пиков, которые могут быть разрешены друг за другом за определенный промежуток времени (рис. 5.1-7). Согласно Гвд-динсу, в элюентной хроматографии пиковую емкость п можно приблизительно рассчитать по следующему уравнению  [c.243]

    ФПП является элюентным методом, как и хроматография, однако, строго говоря, не является хроматографией. Если в хроматографии разделение является результатом различного распределения компонентов пробы между подвижной и неподвижной фазами, то разделение в ФПП достигается за счет различия в ск<фостях компонентов в потоке под влиянием приложенного поля. Эго поле удерживает частицы более мягко, и его тегче контролировать по сравнению с межмолекулярными силами, используемыми для разделення в хроматографии. Методы ФПП поэтому особенно полезны для изучения макромолекул и коллоидных частиц, поскольку такие объекты анализа на активной границе раздела фаз часто подвергаются неблагоприятным илн необратимым превращениям или разлагаются при прохождении через нг1бивные хроматографические колонки. [c.309]

    Ионная хроматография. В основе метода лежит элюентное ионообменное разделение ионов на первой (разделяющей) колонке с последующим подавлением фонового сигнала элюента на второй (подавляющей) ионообменной колонке. Ионообменные колонки заполняют неподвижными фазами, содержащими ионогенные фуппы, способные к реакции обмена и обладающие высокой проникающей способностью. При анализе катионов колонку для разделения заполняют сульфированными катионитами низкой емкости, а подавляющую колонку — анионитом высокой емкости. В качестве элюентов используют растворы НС1 и HNO3, гидрохлорид пиридина. В качестве подвижной фазы — растворы карбоната и гидрокарбоната натрия. [c.247]

    Браутон и сотр. [23] использовали ступенчатую модель для анализа системы парекс. Они предсказали, что в ПДС-системах требуется только 1/25 количества адсорбента, необходимого в элюентной хроматографической системе, и 1/2 требуемого десорбента. Последнее обстоятельство весьма существенно, так как оно означает сильное уменьшение размеров ректификационных колонн, применяемых затем в схеме этого процесса. Точные детали элюентной хроматографической системы, с которой они сравнивали результаты по ПДС-системе, не были приведены. Очевидно, в хроматографической системе не был использован метод циркуляции. Оптимизированный элюентный хроматограф даст характеристики, которые будут намного ближе к ПДС-си-стеме. Это неудивительно, так как ПДС можно рассматривать как усложненное применение техники переключения колонок и рециклов. К сожалению, нельзя непосредственно сравнить ПДС-процесс и систему элюентной хроматографии Сэко и сотр. [4], так как были использованы различные адсорбенты. [c.166]

    В соответствии с методикой проведения анализа различают три варианта хроматографии (рис. 6.1) фронтальный (а),про-явительный, или элюентный, (б) и вытеснительный (в). [c.118]

    Когда способные к обмену ионы элюента (Н+) имеют мень-,шее сродство к иониту, чем разделяемые ионы (N3+ и Ы+), в элюате в течение всего процесса элюирования обнаруживаются ионы элюента (Н+). Поэтому важно выбирать элюент так, чтобы его ионы легко отделялись от разделяемых ионов. В этом особенность элюентной хроматографии — когда все разделяемые ионы можно в принципе получить в виде отдельных фракций (в отличие от метода фронтального анализа). Однако полосы некоторых элементов могут быть сильно размытыми, и чистыми такие элементы можно получить лищь в виде очень разбавленного раствора. В этом случае полезно применять ступенчатое элюирование. Так как наибольшее размазывание наблюдается для наиболее сорбируемых ионов смеси, сначала элюируют не-, сколько ионов одним элюентом, а затем завершают элюирование другим раствором, более эффективно выделяющим ионы, оставшиеся в колонке. Можно применять непрерывное повышение концентрации элюента (градиентное элюирование). [c.159]

    Во фронтальном анализе поток чистого газа-носителя в заданное начальное время быстро заменяется потоком газа, содержащего разбавленный пар пробы. Если этот пар достаточно разбавлен, поведение каждого компонента можно снова рассматривать как независимое от других компонентов. На выходе из колонки состав элюируемого газа изменяется последовательными ступенями до тех пор, пока состав элюата не станет таким же, как состав смеси, поступающей в колонку. Можно показать, что в рамках теории линейной хроматографии записываемый сигнал пропорционален интегралу сигнала, получаемого в элюентной хроматографии. Преимуществом этого метода над элюентной хроматографией является более сильный сигнал. Недостатками являются требования намного большего объема пробы, трудности в ее испарении и приготовлении смеси постоянного состава, и трудности в обработке данных обычными методами— при помощи ленточного самописца и цифрового интегратора. Достаточно сложными являются и проблемы ввода проб. [c.15]


Смотреть страницы где упоминается термин Хроматография элюентный анализ: [c.159]    [c.12]    [c.22]    [c.4]    [c.159]   
Аналитическая химия (1980) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматография анализ

Хроматография элюентная



© 2025 chem21.info Реклама на сайте