Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения применение

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]


    Применение отвердителей нефти, представляющих собой синтетические или природные высокомолекулярные соединения. Применение материалов сорбирующего действия на минеральной, растительной и синтетической основах. Обработка разлива нефти ферромагнитной жидкостью [c.10]

    Возможен и другой, качественно иной, подход при использовании газо-хроматографических методов к исследованию высокомолекулярных соединений — применение обращенной газовой хроматографии. В обращенной газовой хроматографии исследуемой системой является, в отличие от классического варианта, неподвижная фаза, на которой разделяются известные летучие соединения (стандарты). Обращенная газовая хроматография основана на использовании непосредственного взаимодействия стандартных хроматографируемых соединений с исследуемой полимерной системой и установлении определенной связи между величинами хроматографических характеристик стандартных соединений и составом, строением и другими свойствами полимерной системы, используемой как неподвижная фаза. Поэтому метод обращенной газовой хроматографии можно рассматривать как прямой метод исследования высокомолекулярных соединений. На значение газо-жидкостной хроматографии для изучения термодинамики взаимодействия летучих веществ с неле- [c.253]

    Однако высокомолекулярные алифатические углеводороды не удается получать из нефти с той степенью чистоты и однородности, которые требуются для дальнейшей химической переработки. Из каменноугольной смолы фракционированной перегонкой иногда с последующей кристаллизацией легко можно получать индивидуальные соединения. Применение аналогичных методов при переработке нефти вследствие большей сложности ее состава не позволяет достигнуть этой цели. Выделение фракций с широкими пределами кипения, содержащих углеводороды с 10—20 углеродными атомами в молекуле, также непригодно для получения сырья, предназначаемого для последующей химической переработки. Наиболее пригодные для переработки углеводороды нормального строения в подобных широких фракциях представляют собой смеси с парафиновыми углеводородами изостроения (с различной сте- [c.8]

    Мочевина образует кристаллические комплексы с соединениями, содержащими длинные, неразветвленные углеродные цепи, например с нормальными парафинами, в то время как тиомочевина образует комплексы с молекулами, содержащими умеренное число ветвей или циклов, так что поперечное сечение молекулы достигает размеров приблизительно 5,8—6,8 а [57]. В области высокомолекулярных соединений оба реагента иногда дают одинаковые результаты, однако применение мочевины и тиомочевины требует хорошего понимания структурных особенностей. [c.502]


    Бурное развитие химии высокомолекулярных соединений способствовало значительному расширению количества различных мономеров, нашедших применение для синтеза новых каучукоподобных полимеров и сополимеров. К числу таких мономеров относятся органические окиси (эпокиси), из которых были получены эпоксидные каучуки [1—3]. [c.574]

    Применение ультрацентрифуг, в которых ускорение в миллион раз превосходит ускорение силы тяжести, дало возможность изучить седиментацию белков и других высокомолекулярных соединений, а также вирусов. [c.319]

    Весьма эффективным оказывается применение в качестве модификаторов водорастворимых высокомолекулярных соединений (ВМС), способных изменять не только заряд поверхности раздела фаз, но и повышать вязкость дисперсионной среды, содержание связанной влаги в материале (см. табл. 4.1) [c.80]

    Четыреххлористый кремний применяют для синтеза крем-нийорганических высокомолекулярных соединений, имеющих уникальные свойства. На основе кремнийорганических соединений получают ценные продукты, которые находят широкое применение в различных отраслях народного хозяйства для выработки синтетических смазочных масел с пологой кривой [c.266]

    Так, гидрохлорированием ацетилена синтезируют хлористый винил, полимеризацией которого получают полихлорвиниловую смолу—одно из самых распространенных высокомолекулярных соединений, находящих применение в различных отраслях народного хозяйства и в быту. [c.268]

    Тем не менее нельзя не признать, что подавляющее большинство уже известных высокоинформативных способов исследования гетероатомных и высокомолекулярных соединений нефтей пока лишь апробированы на отдельных, норой случайных объектах. Ясно, что без систематического массового применения этих способов к достаточно большому числу образцов самого различного происхождения нельзя получить общие количественные характеристики, которые могут лечь в основу фундаментальных закономерностей изменения состава нефтей- и нефтяных компонентов под влиянием природных и техногенных факторов. Авторы надеются, что приведенный краткий обзор напомнит исследователям об исключительной важности этой нелегкой, иногда просто рутинной работы и о многих нереализованных возможностях в коллективном строительстве стройного здания современной науки о природных органических веществах. [c.46]

    По своему происхождению все волокна могут быть подразделены на природные и химические. Химические в свою очередь делятся на искусственные, изготовляемые из высокомолекулярных соединений, находящихся в природе в готовом виде (целлюлоза, казеин и др.), и синтетические волокна, получаемые из высокополимеров, предварительно синтезируемых из мономеров. Применение химических волокон растет с каждым годом. Этому способствует высокая экономическая эффективность их получения и применения, полная независимость производства от климатических и почвенных условий, практическая неисчерпаемость сырьевых ресурсов и возможность выпуска волокон с новыми, невиданными ранее свойствами. Так, затраты в человеко-днях на производство 1 т волокна составляют для шерсти (мытой) 400, для хлопка 238, а для вискозного штапеля всего 50. Если свойства природных волокон изменяются в узких пределах, то химические волокна могут обладать комплексом заранее заданных свойств в зависимости от их будущего назначения. Из химических волокон вырабатываются товары широкого потребления ткани, трикотаж, меховые изделия, одежда, обувь, обивка, спортинвентарь, драпировки, щетки, бортовая ткань, галантерея, заменители кожи, а также технические изделия корд, фильтровальные ткани, обивка для машин, рыболовные снасти, не гниющие в воде, канаты, парусина, парашюты, аэростаты, скафандры, искусственная щетина, электроизоляция, приводные ремни, брезенты высокой прочности, пожарные рукава, шланги, транспортерные ленты, хирургические нити, различная спецодежда и т. п. Химические волокна используются для герметизации и уплотнения аппаратов, работающих в агрессивных условиях. В производстве различных типов химических волокон как из природных полимеров, так и из смол имеется много общего, хотя каждый метод одновременно обладает своими характер- [c.207]

    Второе замечание относится к часто встречаемому в экспериментальной практике случаю применения смеси двух органических жидкостей в качестве растворителя. В более старой литературе такие системы рассматривали как бинарные системы, у которых свойства растворителя каким-ни-будь образом рассчитывали из свойств компонентов. Этот способ недопустим прежде всего тогда, когда (как это в большинстве случаев бывает) растворитель в сосуществующих фазах имеет различный состав. Особенно недопустимо определять критическую точку расслоения простым расчетом для бинарных систем. Скорее следует применять гораздо более сложные уравнения для тройных систем, которые в дальнейшем будут выведены. Это замечание также имеет значение прежде всего для растворов высокомолекулярных соединений. [c.226]


    Высокая селективность ПМР-спектроскопии для структурного анализа. различных нефтяных высокомолекулярных соединений была продемонстрирована рядом авторов [12, 14, 21—25]. Применение этого метода для исследований фракций битума [23] позволило в общих чертах установить их структуру. Более того, использование известных данных для модельных соединений по- [c.216]

    Огромное число возможных изомеров и близких гомологов высокомолекулярных углеводородов, сглаживание различия в их составе и свойствах и незначительные концентрации отдельных химических индивидуумов в смесях высокомолекулярных углеводородов нефти делают нецелесообразным, а часто и практически неосуществимым применение как основного направления изучения химической природы и свойства высокомолекулярных соединений нефти чисто аналитического метода исследования, т. е. метода выделения индивидуальных соединений из сложных смесей с последующей их характеристикой. [c.29]

    За эти годы в науке о нефти и ее составляющих достигнуты значительные успехи благодаря применению инструментальных методов и возможности анализа расчетных схем на ЭВМ. На этой основе существенно изменилась технология переработки нефти. Теперь из нее получают не только газообразные и жидкие, но также и твердые нефтепродукты. Начато систематическое исследование наиболее высокомолекулярных соединений нефти — нефтяных смол и асфальтенов. Эти соединения оказались ценным химическим сырьем, ранее не находившим применения. [c.3]

    При компаундировании нефтепродуктов, содержащих высокомолекулярные соединения, актуальны вопросы регулирования агрегативной устойчивости образующей нефтяной дисперсной системы. При смешении различных компонентов и получении товарных нефтепродуктов (котельные, судовые топлива топочные мазуты профилактические средства пластичные смазки битумы пеки, и др.) формируются структурные единицы, при определенных условиях вызывающие расслоение нефтяных дисперсных систем с образованием осадков при хранении и применении. В каждом случае специальные мероприятия (введение ПАВ-стабилиза-торов в оптимальных количествах изменение состава дисперсионной среды и т. д.) позволяют предупредить нежелательные явления. [c.44]

    В нашей стране успешно эксплуатируются автоматические линии грунтовки кузовов автомобилей электрофоретическим методом. Применение таких линий позволило резко увеличить эффективность процесса грунтовки, улучшить качество окраски, сократить расход краски. Электрофоретический метод широко применяется для покрытия катодов радиоламп, полупроводниковых деталей, нагревателей и т. д. Электрофорез используется в медицине, в биологии при выявлении биохимической и физиологической роли различных высокомолекулярных соединений. Этот метод используется также для фракционирования полимеров различной природы и минеральных дисперсий. [c.230]

    Средневзвешенная молекулярная масса может быть вычислена из данных, полученных при исследовании гидродинамических свойств разбавленных растворов полимеров (вискозиметрия, диффузия, ультрацентрифугирование), а также их оптических свойств (светорассеяние). Для молекулярных масс, определенных гидродинамическими методами, характерна существенная зависимость полученных значений Му, от степени полидисперсности высокомолекулярного соединения и от применяемого растворителя. Отсюда возникает возможность оценки полидисперсности по результатам изучения гидродинамических свойств в различных растворителях. Применение гидродинамических способов определения Му, требует предварительной калибровки по молекулярным массам. Метод светорассеяния является абсолютным. [c.31]

    Вопросам получения и технического применения сополимеров этого типа посвящена обширная литература, так как методы синтеза привитых сополимеров (как и блок-сополимеров) в значительной степени позволили разрешить проблему контролированных полимеризаций для получения высокомолекулярных соединений с заданными свойствами и заданной структуры [72]. Так, например, прививка водорастворимых боковых цепей к макромолекулам маслорастворимых полимеров, или наоборот, позволяет получать новые высокоактивные эмульгаторы и детергенты. Полиамидные волокна значительно повышают свои эластические свойства после прививки к ним боковых полиэтиленовых цепей. Тефлон (политетрафторэтилен), обладающий очень плохой адгезией к различным материалам. [c.638]

    Классический вариант газо-хроматографического метода непосредственно не может быть использован для исследования нелетучих высокомолекулярных соединений. Применение газовой хроматографии для анализа полимеров методом деструкционной газовой хроматографии по летучим продуктам химических превращений, определяемым газо-хроматографически, было рассмотрено выше. Метод деструкционной газовой хроматографии является косвенным методом, так как он основан на корреляции между характеристиками изучаемой полимерной системы и спектром продуктов ее пиролиза или других химических превращений. [c.253]

    Для определения типов углеводородов в высокомолекулярных соединениях были разработаны специальные методы, которые будут рассмотрены ниже, в разделе, посвященном применению масс-спектрометрии. За последнее время были достигнуты значительные успехи по сокращению времени, требуемого на вьршсления, благодаря примене ию быстродействующих вычислительных машин [5, 10, 13]. [c.339]

    Молекулярная подвижность в полимерах и их физические состояния. В ряду макроскопических свойств полимерных материалов, определяющих области их применения, особая роль принадлежит механическим свойствам. Они у полимеров являются уникальными, не характерными для обычных низкомолекулярных веществ. Это обусловило выделение высокомолекулярных соединений в особый класс материалов, поведение которых не может быть охарактеризовано на основе обычных представлений об агрегатных состояниях вещества. Как известно, в молекулярной физике эти состояния определяют в зависимости от интенсивности и характера теплового движения его основных структурных и кинетических единиц. В случае низкомолекулярных веществ оба типа единиц совпадают, для полимеров же такое совпадение не имеет места. --Их- структурной единицей является макромолекула, но перемещение макромолекулы — это не единовременный акт, а совокупность последовательных перемещений отдельных сравнительно независимых субчастей цепи — кинетических сегментов. Такой сегмент, содержащий от нескольких единиц до нескольких десятков мономерных звеньев, и является основным типом кинетических единиц в полимере. [c.39]

    В данном разделе рассматривается установка для концентрирования растворов высокомолекулярных соединений (ВМС) с применением ультрафильтрации. Концентрирование растворов ВМС путем выпаривания обычно неэффективно вследствие разрушения ВМС (особенно биохимических препаратов). Применение ультрафильтрацпи позволяет довести концентрацию ВМС до уровня, при котором возможно непосредственное использование раствора в технологическом процессе или извлечение из него ВМС другими методами разделения. [c.201]

    Высокомолекулярные соединения и лиофильные коллоиды являются стабилизаторами по отношению к лиофобным золям. Так, если прибавить к раствору соли серебра небольшое количество желатина, белка (или некоторых продуктов распада его) и восстановить серебро до образования золя, то степень дисперсности коллоидного серебра в этих условиях получения оказывается более высокой и золь менее- подвержен влияниям факторов, вызывающих коагуляцию. Такой золь серебра можно путем выпаривания превратить в твердый продукт, который обладает способностью снова растворяться в воде, образуя золь. Вследствие защитного действия, которое в подобных случаях оказывают лиофильные коллоиды, повышая стабильность необратимых золей, их называют защитными коллоидами. При применении защитных коллоидов золи могут быть получены с более высокими концентрациями, чем обычна. Примером концентрираванного золя, получаемого с применением защитного коллоида, является медицинский препарат колларгол, содержащий более 70% серебра. [c.532]

    Громадное значение в народном хозяйстве имеют природные и синтетические высокомолекулярные органические соединения целлюлоза, химические волокна, пластмассы, каучуки, резина, лаки, клеи, искусственная кожа и мех, пленки и др., обладающие совокупностью замечательных свойств. Они могут быть эластичными или жесткими, твердыми или мягкими, прозрачными или непрозрачными для света и даже сочетать самые неожиданные свойства прочность стали при малой плотности, эластичность с тепло- и звукоизоляцией, химическую стойкость с твердостью и т. п. Подобная универсальность свойств наряду с легкой обрабатываемостью позволяет изготовлять детали и разнообразные конструкции любой формы, величины и окраски. Без синтетических материалов сейчас немыслим дальнейший технический прогресс в самолето-, машиио- и судостроении, радио- и электротехнике, реактивной и атомной промышленности и других областях науки и техники. Из пластмасс можно изготовлять корпуса судов, автомобилей, тракторов, части станков, изоляцию. Применение пластмасс в станкостроении позволяет по-новому решать ряд конструктивных задач. Высокомолекулярные соединения надежно защищают металл, дерево и бетон от коррозии. Использование новых синтетических материалов в дополнение к сельскохозяйственному сырью позволяет значительно увеличить производство тканей, одежды, обуви, меха и различных предметов домашнего и хозяйственного обихода. [c.185]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, кор/поненты которой разделяются или идентифицируются лучще, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматограсЬических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводорсдов, селективно поглон1,ая их в реакторе с силикагелем, обработанным серной кислотой. Прп реакционной газовой хроматографии используются также реакции гидрирования и дегидрирования, этерификации (для анализа карбоновых кислот в виде эфиров), лиролиза высокомолекулярных соединений. [c.86]

    Из сказанного выше следует, что Г( тероатомные высокомолекулярные соединения иефти, считавши( ся до недавнего времени вредным балластом или, в лучшем случае, отходами при переработке нефтн, могут служить ценным сыэьем для производства ряда промышленных продуктов. Широкое применение этого сырья является актуальной задачей. [c.219]

    К таким промышленно-технологическим процессам относятся производство остаточных смазочных масел и процесс глубокой вакуумной перегонки. В первом случае смолисто-асфальтеновые вещества осаждаются из вакуумного гудрона прп обработке последнего жидким пропаном. Получаемый при этом углеводородный рафпнат обрабатывается селективно действующими растворителя-лш, в результате чего из него удаляются нолпядерпые конденсированные ароматические углеводороды и некоторые другие группы соединений, присутствие которых ухудшает физико-химические и эксплуатационные свойства смазочных масел. Применение высокого вакуума при перегонке нефтей позволяет выделить из смеси высокомолекулярных соединений нефти углеводороды, выкипающие выше 500° С. Использование этих углеводородов в качестве сырья в процессах каталитического крекинга и гидрокре-кпнга позволяет значительно повысить выходы из нефти автомобильных бензинов, авиационных керосинов и дизельных топлив и значительно повысить степень использования потенциально содержащихся в нефти углеводородов. [c.244]

    Химия высокомолекулярных соединений как самостоятельная область науки появилась в начале 20-х годов XX века. Это новое направление в органической химии получило весьма бурное развитие в связи с возникновением и ростом таких важных в жизни современного общества ветвей науки и отраслей промышленности, как производство синтетического каучука, искусственного волокна, плгГстических масс и др. В настоящее время химия высокомолекулярных сое рнений является одним из мощных факторов воздействия науки на технический прогресс. Непрерывно и систематически создаются новые вещества, не имеющие себе аналогов в природе, которые находят самое широкое применение в технике в качестве конструктивных материалов, в быту, в медицине и др. [c.11]

    Следовательно, чем более жесткому и длительному термическому воздействию подвергаются нефть и нефтепродукты, тем меньше остается в их составе гроздьевидпых высокомолекулярных соединений с изолированными кольцами и тем больше в них появляется конденсированных ароматических систем. Этим и объясняется наличие существенных противоречий между данными разных исследователей, изучавших состав одних и тех же нефтей, но разными способами выделявших высококипящие фракции (выше 300° С) — ири воздействии высоких температур на исходную нефть или без их применения. [c.15]

    В. Д. Тюрин с соавторами [170] сообщили о разработке процесса обессеривания топлив с применением карбонилов железа, особенно додекарбонила Рез(СО)12, которые восстанавливают меркаптаны, сульфиды и дисульфиды до элементной серы, образуя прочные комплексы, в которые в качестве лигандов входят остатки КЗ (комплексные меркаптиды). Последние отделяются фильтрованием и адсорбцией и могут использоваться для получения концентрированных смесей сернистых соединений либо сульфоновых кислот. Благодаря высокой прочности комплексов удаляются не только низшие, но и высокомолекулярные соединения, содержа-Щ иеся как в легких светлых, так и в тяжелых нефтепродуктах — вплоть до мазута. Так, при очистке мазута содержание серы снижается с 0,56 до 0,23% (масс.). Наряду с уменьшением содержания серы понижается содержание азотистых и кислородных соединений (а в легких продуктах и диенов), так как эти соединения также образуют комплексы с карбонилами жел-еза. [c.268]

    В процессе переработки нефтп возможно получение твердых продуктов не только кристаллической структуры (церезина, парафина), ио и аморфной структуры с весьма низкой симметрией (асфальтит). Ас( )альтит может быть получен деасфальтизацией прямогонных нефтяных остатков (мазута) бензином (процесс Добей ). Применение этого процесса дает возможность получать деасфальтизат — сырье для гидрогенизационных процессов, а в качестве второго продукта — асфальтит, представляющий собой дисперсную систему с развитой внутренней поверхностью. Ядрами ССЕ являются наиболее высокомолекулярные соединения нефтп — асфальтены, а в адсорбционно-сольватном слое располагаются смолы и масляные углеводороды. При обыч- [c.168]

    Несмотря на то, что применение смолисто-асфальтеновых веществ (САВ) известно более ста лет, настоящий этап характеризуется значительными и возрастающими успехами [147, 148]. Ранее было известно, что они могут быть использованы для производства битумов, разновидностей нефтяного углерода, природных депрессаторов, для изоляции трубопроводов. Все эти области не учитывали специфических особенностей, разнообразных и ценных свойств САВ. В 1936 г. Черножуковым и Крейном была показана стабилизирующая роль САВ в окислении минеральных масел. Более поздними работами была выявлена стабилизирующая способность асфальтенов в процессах термо- и фотодеструкции, окисления углеводородов и синтетических полимеров [149—150]. Ингибирующими центрами САВ являются гетероатомы и функциональные группы, имеющие подвижный атом водорода (гидроксипроизвод-ные ароматических фрагментов, аминные и серусодержащие компоненты). Ингибирующая способность высокомолекулярных соединений нефти повышается с ростом их общей ароматичности, концентрации гетероатомов и функциональных групп. В зависимости от этих факторов константа скорости ингибирования может изменяться в широких пределах от ж 10 до 10 л/(моль-с). Ингибирующая активность асфальтенов на 1—2 порядка выше, чем смол. [c.347]

    При жидкофазной гидрогенизации углей в температурном интервале 300—500 °С происходит разрушение сложной матрицы угля, сопровождающееся разрывом химических связей и образованием активных свободных радикалов. Последние, стабилизируясь водородом, образуют молекулы меньшего размера, чем исходные макромолекулы. Рекомбинация свободных радикалов приводит также к образованию высокомолекулярных соединений [74]. Водород, необходимый для стабилизации радикалов, частично обеспечивается за счет применения растворителей — доноров водорода. Это — соединения, которые, взаимодействуя с углем, при высоких температурах дегидрируются, выделяющийся при этом атомарный водород присоединяется к продуктам деструкции угля. Растворитель-донор водорода является также пастообразователем. Чтобы находиться в условиях гидрогенизационного процесса в жидкой фазе, он должен иметь температуру кипения выше 260°С. Хорошими водо-родно-донорными свойствами обладают конденсированные ароматические соединения, прежде всего тетралин. Более высо-кокипящие соединения этой группы (нафталин и крезол) менее активны, но при их смешении с тетралином возникает эффект синергизма смесь равных частей тетралина и крезола обладает более высокой донорной способностью, чем каждый в отдельности [70]. [c.72]

    Растворы высокомолекулярных соединений являются термодинамически устойчивыми (лиофильными) коллоидными система-ми — молекулярными коллоидами. В соответстви с закономерностями образования лиофильных систем растворение полимеров происходит самонроизвольпо (самопроизвольное диспергирование). Термодинамическая устойчивость, обратимость лиофильных коллоидов указывают иа воз.можность применения к таким системам правила фаз Гиббса в той же форме, что и для истинных растворов. [c.320]

    Полимеризация представляет собой процесс образования высокомолекулярных соединений (полимеров) из низкомолекулярных (мономеров), которые присоединяются друг к другу без выделения побочных продуктов реакции. В последние годы этот процесс получил большое распространение как в нефтепереработке, так и в нефтехимии из-за чрезвычайно больший потребности в полимерах в народном хозяйстве. Продукты полимеризации применяют в качестве высокооктановых компонентов авиа- и автобензинов (изооктилен), синтетических масел для пропитки электрокабелей, загустителей смазочных масел, добавок к синтетическим каучукам для придания им ряда специфических свойств (полиизобутилен). Широкое применение полипропилена в электро- и радиотехнике, машиностроении обусловлено его высокими диэлектрическими и механическими показателями и стойкостью к воздействию кислот. [c.38]

    ВОЗМОЖНО И без применения катализаторов. Однако при получении синтетического жидкого топлива в промышленном масштабе применение катализаторов даст определенные преимущестыа. Основная функция катализаторов состоит в том, что оии увеличивают скорость реакции и предотвращаЕот возможность образования высокомолекулярных соединении, трудно поддающихся расщеплению на низкокипящие фракции. [c.258]


Библиография для Высокомолекулярные соединения применение: [c.175]   
Смотреть страницы где упоминается термин Высокомолекулярные соединения применение: [c.360]    [c.34]    [c.153]    [c.435]    [c.452]    [c.500]    [c.588]    [c.95]    [c.413]    [c.488]   
Общая химическая технология (1977) -- [ c.335 , c.354 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2024 chem21.info Реклама на сайте