Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия роста цепи

    Многие олефины подвергаются полимеризации при контакте с веществами, образующими свободные радикалы. Широко известным примером является полимеризация стирола в присутствии перекиси бензоила. Свободные радикалы, образующиеся при разложении перекиси, инициируют полимеризацию. Как и следовало ожидать, атака олефина свободным радикалом приводит к образованию наиболее энергетически устойчивого радикала, обладающего минимальным запасом энергии. Рост цепи продолжается за счет присоединения следующих молекул олефина  [c.520]


    Деполимеризация представляет собой процесс, обратный полимеризации. Расщепление цепей до мономера является также цепным процессом, энергия активации которого равна энергии роста цепи и теплоте реакции полимеризации. [c.147]

    Рассматривая общую энергию возбуждения как алгебраическую сумму энергии возбуждения Е, энергии роста цепи и энергии обрыва цепи Ез, можно подсчитать ее по формуле [c.192]

    Исследования энергии активации Е разложения при различных условиях дали следующие результаты (для реакции роста цепи Е = 8,6 ккал/моль [284])  [c.279]

    После образования активных центров начинается процесс роста цепи. Цепь растет очень быстро, иногда практически мгновенно, так как величина энергии активации этой реакции относительно мала. Рост цепи обычно сопровождается значительным выделением тепла. [c.49]

    При реакциях передачи цепи плотность разветвления, естественно, определяется соотношением скоростей реакций разветвления и роста, в поликонденсационных процессах — долей полифункциональных звеньев. В связи с тем, что энергия активации реакций разветвления и, соответственно, температурный коэффициент их скорости, выше энергии активации роста цепи, разветвленность большого числа полимеров увеличивается с ростом температуры разветвленность также увеличивается с глубиной полимеризации, так как при этом возрастает вероятность взаимодействия активных центров с полимерными цепями. [c.25]

    Следует подчеркнуть, что разветвленность макромолекул каучуков эмульсионной полимеризации убывает с уменьшением температуры синтеза, что объясняется более высокой энергией активации вторичных реакций по сравнению с реакцией роста цепи [23, 24, 26]. [c.66]

    В дальнейшем молекулы бутадиена присоединяются в основном к четвертому атому углерода, так как в бутадиене облако я-электронов концентрируется преимущественно в области кратных связей. Однако вследствие делокализации неспаренного электрона и близкого значения энергий активации роста цепей в положениях 1,4- и 1,2- (28,8 и 31,5 кДж/моль соответственно) в некоторой мере образуются и звенья 1,2- [18]. [c.141]

    Рост полимерной цепи происходит с весьма высокой скоростью. Огромная молекула полимера, состоящая иа тысяч молекул мономера, образуется за несколько секунд. Энергия активации роста цепи значительно ниже энергии активации инициирования и составляет примерно 16,4—41,9 кДж/моль. Рост полимерной цепи — экзотермическая реакция. [c.142]


    В стадии роста цепей происходит взаимодействие радикало,в с молекулами реагирующего вещества. Радикал обладает большой энергией, поэтому он реагирует очень быстро, отрывая от молекулы атомы, находящиеся во внешнем слое в углеводородах это атомы водорода. Таким образом, хотя связи С—Н прочнее связей С—С, при взаимодействии радикалов с углеводородами, тем- не менее, отрываются атомы водорода. Но, как ни велика анергия радикала, [c.114]

    Помимо прочности связи значительную роль в направленности роста цепей играет большая или меньшая компенсация энергии неспаренного электрона во вновь образованном радикале за счет соседних связей. Соответственно, третичные радикалы будут стабильнее вторичных, а вторичные — первичных [c.115]

    При большой концентрации инициатора зависимость носит более сложный характер. Константы скорости и энергии активации [ р] роста цепи зависят от химической природы мономера (табл. 13). [c.193]

    Очевидно, что реакция роста цепи радикалов при темпе -ратурах крекинга алканов в кинетическом отношении сильно лимитируется низкими величинами стерических факторов реакций присоединения сложных радикалов (СНз и выше), так как энергии активации этих реакций малы. В действительности при термическом крекинге не наблюдается реакций синтеза за счет реакций роста радикалов, как это имеет место при полимеризации. Ниже будет показано, что и с термодинамической точки зрения реакции присоединения радикалов к непредельным углеводородам с образованием более сложных радикалов в условиях термического крекинга сильно смещены в сторону исходных продуктов. [c.204]

    Подобная закономерность в изменении s-факторов наблюдается-и для реакций радикальной полимеризации, но только при гораздо более низких температурах. Присоединение полимерного радикала ко второй молекуле мономера (этилена или пропилена) связано с резким уменьшением s-фактора, но при последующем присоединении третьей и четвертой молекул мономера к полимерному радикалу s-фактор практически не изменяется [273]. Постоянное значение стерических факторов реакций роста цепи можно рассматривать как обоснование эмпирического положения об относительно одинаковой реакционной способности полимерных радикалов различной длины, принимаемого в кинетике полимеризационных процессов [73]. В случае реакций присоединения непредельных молекул друг к другу, например при молекулярной полимеризации этилена, образование димера имеет сравнительно высокий s-фактор ( 0,1), но присоединение третьей молекулы к димеру, или образование тримера, сопряжено с резким уменьшением s-фактора на 3—4 порядка [273]. Это может объяснить задержку полимеризации на стадии димеризации [274]. В связи с этим роль катализаторов наряду с обычным понижением энергии активации состоит в устранении пространственных затруднений (на стадии образования тримера и далее) путем сильного увеличения стерического фактора. [c.181]

    Реакции поликонденсации, как и обычные конденсации, требуют некоторой энергии активации, поэтому они протекают лишь при нагревании. Процесс идет ступенчато, т. е. рост цепей происходит за счет последовательного присоединения молекул друг к другу. Поэтому поликонденсации протекают медленно, чем они отличаются от полимеризации, проходящей быстро по цепному механизму при низких температурах. Часто при поликонденсациях первичной реакцией является миграция атома водорода из одной молекулы в другую, как при альдольных уплотнениях, реакции Перкина и аналогичных процессах. [c.488]

    Определите активационные параметры стадии роста цепей при полимеризации (45 "С) бутадиена-1,3 (Ш), если энергия активации составляет 38,9 кДж моль , а константа скорости роста цепи при 60°С равна 1,0 10 л моль с .  [c.56]

    Вычислите отношения скоростей полимеризации пропилена при 70 и 60 °С в области, относящейся к начальному нестационарному участку кинетической кривой, если энергия активации инициирования и роста цепи равна соответственно 87 900 и 54 000 Дж моль .  [c.138]

    Развитие кинетической цепи сопровождается образованием материальной цепи. Энергии активации реакций роста цепи лежат в пределах 12—40 кДж/моль. [c.9]

    Константы скорости и энергия активации роста цепи в первую очередь зависят от природы мономера. Растворители, не склонные к специфическому взаимодействию с молекулами мономера и растущими радикалами, не влияют на реакцию роста радикальной полимеризации. [c.9]

    Константа скорости и энергия активации роста цепи зависят от химической природы мономера. Химическая природа растворителя не влияет на константы скоростей при радикальной полимеризации. Скорость обрыва цепи описывается уравнением [c.388]

    Рост Ц0П И отличается малой энергией активации, и скорость этой реакции очень велика. В общем виде реакция роста цепи может быть описана следующими уравнениями  [c.11]


    Теплота атомизации полиена (ХЫП) должна быть линейной функцией числа звеньев п. Действительно, расчеты по методу ППП в параметризации Дьюара приводят к выводу о том, что связи в полиенах локализованы и их энергия практически не меняется с ростом цепи сопряжения (рис. 8.13). [c.302]

    Рост цепи отличается малой энергией активации, и скорость этой реакции очень велика. Тепловой эффект реакции роста цепи всегда положителен. [c.63]

    В результате реакции роста цепи я-связь превращается в а-связь. Эта реакция всегда сопровождается выделением тепла за счет разности энергий я- и а-связей  [c.64]

    Это, по-видимому, объясняется тем, что полимеризация связана с возникновением напряжений и дефектов в кристаллической решетке мономера. Последнее, в свою очередь, обусловлено изменением межатомных расстояний при переходе от мономера к полимеру, так как полимеризация происходит в результате раскрытия внутримолекулярных связей мономера, например л-связи ненасыщенного соединения, и образования новых связей в макромолекуле полимера. Изменение межатомных расстояний при полимеризации неизбежно вызывает напряжения и дефекты в кристалле. Появившиеся дефекты затрудняют, а иногда и вовсе прекращают рост цепи. Для продолжения роста необходимо устранить дефекты кристалла, что может быть достигнуто некоторой перегруппировкой молекул, которая, по-видимому, требует высокой энергии активации и лимитирует скорость полимеризации. [c.124]

    Энергия возбуждения передается на крайние атомы углерода в образовавшейся цепи. По мере роста цепи и увеличения молекулярной массы бирадикала его активность снижается и создаются условия для обрыва цепи. Как известно из гл. V, обрыв цепи в реагирующей системе может произойти или в результате столкновения акт-ивного центра с молекулой нереагирующей примеси, или за счет удара о стенку реакционного сосуда, или за счет тройного столкновения. [c.490]

    Однако система может находиться в состоянии не полного, а частичного равновесия. Например, если скорость реакций меж-цепного обмена существенно больше скорости реакций роста цепи, то они могут выровнять распределение молекул до термодинамически равновесного в соответствии с энергиями молекул [171]. При этом значение конверсии р функциональных групп может быть, вообще говоря, неравновесным. Для таких систем параметр L уже не равен константе равновесия и должен выражаться, например, через конверсию р и р . [c.213]

    Так, например, стадия инициирования при фторировании метана весьма эндотермична и, следовательно, должна иметь очень высокую энергию активации (см. кривую Б на рис. 3-8). Если вы больше ничего не знаете об этом процессе, то может показаться, что высокая энергия активации будет препятствовать взаимодействию фтора с метаном. Однако если даже небольшая часть молекул фтора диссоциировала на атомы фтора, то уже может начаться рост цепи. Обе стадии роста цепи при фторировании имеют очень низкие энергии активации, а следовательно, они протекают очень легко и при этом выделяется большое количество тепла (АЯ = = —102 ккал/моль). Это тепло в свою очередь обеспечит дальнейшую диссоциацию молекул фтора на атомы, инициируя новые цепные реакции. Таким образом, легкость фторирования метана объясняется двумя факторами низкой энергией активации стадий роста цепи и большой отрицательной величиной АЯ роста цепи. [c.106]

    Стадии инициирования и обрыва цепи опущены. Медленной ста дней в обоих процессах является реакция атома галогена с метаном она соответствует первой показанной стадии. Соединения, заключенные в скобки, представляют собой соответствующие активированные комплексы. Энергии выражены в ккал/моль. ---первая реакция стадии роста цепи X- + СН4 ->. СН, + [c.107]

    Ни хлористый водород, ни иодистый водород не способны к такому аномальному присоединению. В случае НС] процесс энергетически невыгоден вследствие прочности связи Н—С1 (препятствующей стадии роста цепи), для Н1 процесс невыгоден из-за высокой энергии активации присоединения I. к двойной связи. (Напомним, что в эндотермическом процессе Е т должно быть выше, чем А//.) [c.324]

    Реакция роста цепи протекает по обычному механизму, как это было показано ранее. Ион-карбониевый механизм довольно легко объясняет о<сно1Вные закономерности реакции высокую скорость полимеризации при низких температурах, низкую энергию активации, получение полимеров с высокой молекулярной массой. Однако имеются экспериментальные данные, которые, по-видимому, трудно объяснить, исходя из этого механизма полимеризации изобутилена. [c.333]

    Из различных составляющих сопротивления материала росту трещины, входящих в выражение (9.13), слагаемое, связанное с пластическим деформированием, dVpilBda обычно наибольшее. Предпринята также попытка в табл. 9.2 отождествить поверхностное натяжение у и (гипотетическую) плотность энергии разрыва цепи UjqNL. Наименьшей составляющей в выражении (9.13) является удельная поверхностная энергия у (свободная поверхностная энергия, поверхностное натяжение). Значения у полимеров лежат в интервале 0,020—0,046 Дж/м [31]. Энергия упругого втягивания концов цепей является произведением плотности энергии деформации и ширины втягиваемых слоев. Если слои состоят из полностью ориентированных цепей, напряженных до состояния разрыва и, таким образом, обладающих наибольшей допустимой плотностью энергии ( 1000 МДж/м ), то энергия втягивания концов цепей длиной L = 5 нм равна 8 Дж/м . [c.360]

    Энергия активации реакций передачи цепи больше энергии кгивации роста цепи, поэтому с повышением температуры молекулярный вес образующегося полимера снижается. Молекулярный вес поливинилхлорида практически не зависит от концентрации инициатора, если количество его в реакционной смеси составляет 0,5—2%. При дальнейшем увеличении концентрации инициатора [c.262]

    Энергия активации реакции обрыва цеПи при катионной полимеризации больше, чем при свободнорадикальной, так как для ее осуществления при катионной полимеризации требуется разрыв а-связи в растущей полимерной цепи (см. схемы реакций). Энергия же активации реакции роста щ пи, определяющей весь процесс полимеризации, при катионной полимеризации меньше, чем при свободнорадикальной, так как рост цепи связан с атакой двойной связи мономера положительно заряженным ионом карбония. По этой причине повышение температуры реакции катионной полимеризации ведет к снижению ее скорости, а также средней молекулярной массы полимера. [c.39]

    Поликонденсация протекает по ступенчатому механизму. Как мы только что видели, образование полимера происходит шаг за шагом — ступенями, через стадию димера, тримера, тетрамера и т. д. Промежуточные соединения стабильны, способны вступать в реакцию, если им сообщить энергию. При поликонденсации необходимая энергия затрачивается на каждый акт роста цепи равномерно, тогда как при цепном механизме она перенимается от предыдущих актов роста цепи и в основном затрачивается на образование активных центров. Поликонденсация может быть прервана в любой стадии и затем снова возобновлена. [c.39]

    Инийолве вероятны процессы обрыва и передачи цепи при повышенных темцературах, так как энергия активации передачи цепи на 5—7 ккал/моль выше энергии активации роста цепи. Поэтому с повышением температуры молекулярный вес полимера уменьшается, а разветвленность цепей увеличивается. [c.120]

    Так же как в низкомолекулярных сопряженных системах, с ростом цепи сопряжения (например, при переходе от бензола к пентацену) изменяется энергетическая характеристика вещества и соответственно его электрические и магрштные свойства и реакционная способность. Свойства полимеров с системой сопряжения зависят от молекулярной массы, и вследствие этого полимергомологи могут значительно различаться по свойствам. С возрастанием молекулярной массы полимеров изменяется длииа сопряженной системы и ее энергетическая характеристика— значение энергии возбуждения. С изменением последней изменяется реакционная способность и физические свойства молекул. Реакционная способность функциональных групп полимера, если они входят в систему сопряжения, зависит от его молекулярной массы. [c.412]

    Бромирование метана на стадии инициирования характеризуется величиной АЯ, находяш ейся между АЯ для фторирования и АЯ для хлорирования. Определяюш ей стадией этого четырехстадийного процесса является первая стадия роста цепи (АЯ = + 15 ккал/моль). Как и следует ожидать (кривая В на рис. 3-8), Для этого процесса высока (18 ккал/моль). Следовательно, только атом брома с высокой энергией сможет преодолеть этот барьер и прореагировать с молекулой метана. При умеренных температурах бромирование метана протекает медленно, поскольку в этих условиях невелико число атомов брома с высокой энергией. Бром менее реакционно-способен по отношению к метану, чем хлор, хотя все же процесс бромирова-ния в целом несколько экзотермичен. [c.106]

    Иодирование метана протекает очень медленно, поэтому реакцию считают практически неосуш ествимой. Это может вызвать удивление, поскольку стадия инициирования протекает легко (АЯ = 36 ккал/моль). Первая стадия роста цепи эндотермична (АЯ = + 31 ккал/моль) и имеет Еакт = = 34 ккал/моль, именно эта стадия и обусловливает трудности протекания процесса. Даже при 300°С доля атомов иода с необходимой энергией настолько ничтожна, что ун е на первой стадии тормозится весь ход процесса. [c.106]

    Значительные успехи были достигнуты и в регулировании реакции роста цепи при полимеризащ-1и диенов [8] и различных полярных мономеров, В результате проведенных опытов было показано, что стереоспецифическая полимеризация олефинов может быть проведена также и в гомогенной системе. При анионной или катионной гомополимеризации с управляемой реакцией роста цепи несомненно важную роль играет промежуточный комплекс мономера с противоионом. При таком методе получения стереорегуляр-ных полимеров удается снизить свободную энергию активации реакции роста цепи, ведущую к образованию полимера с определенной степенью тактичности. К сожалению, этот метод трудноосуществим при полимеризации неполярных, высоколетучих мономеров, какими являются, в частности, этилен и пропилен. Реакцию полимеризации этилена в высокомолекулярный разветвленный продукт долгое время осуществляли только по радикальному механизму при высоких давлении и температуре. Аналогичные опыты по радикальной полимеризации пропилена не имели успеха, так как на третнчном атоме углерода легко происходит передача цепн, вследствие чего образуется полимер небольшого молекулярного веса, который не может быть использован для получения пластмасс. Высокомолекулярные линейные полимеры этилена и пропилена можно синтезировать при низком давлении только при наличии твердой фазы катализатора. Мономер и металлорганический компонент сорбируются на поверхности твердой фазы, чем достигается ориентация каждой молекулы мономера перед ее присоединением к растущей полимерной цепи. [c.10]


Смотреть страницы где упоминается термин Энергия роста цепи: [c.44]    [c.10]    [c.196]    [c.22]    [c.34]    [c.120]   
Кинетический метод в синтезе полимеров (1973) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Рост цепи



© 2024 chem21.info Реклама на сайте