Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптимизация ХТС аналитические методы

    Различают две стадии оптимизации статическую и динамическую. В зависимости от характера рассматриваемых математических моделей применяются различные математические методы оптимизации аналитические, методы математического программирования, градиентные и статистические. [c.161]

    Аналитический метод оптимизации предусматривает аналитическое задание соответствующих функций и определение производных от них. На значения переменных, однако, могут накладываться ограничения, связанные с конструкцией, характером работы, стоимостью и т. п. В случае наличия таких ограничений, касающихся переменных величин, полезным может оказаться хорошо известный в математике метод множителей Лагранжа, [c.362]


    Для оптимизации технологических режимов процесса разделения предпочтительнее аналитический метод поиска минимума приведенных затрат (З тш). Для решения этой задачи необходима аналитическая форма зависимости капитальных и эксплуатационных затрат от ряда технологических параметров, значения которых могут варьироваться. По существу, речь идет [c.270]

    От недостатков общей схемы метода динамического программирования можно, однако, в значительной мере избавиться, используя аналитический метод поиска оптимума на каждой стадии. Именно этот способ будет применен к решению задач оптимизации цепочек реакторов, рассматриваемых ниже. Отметим, что основные расчетные формулы, которые получим, могут быть выведены не только с помощью метода динамического программирования, но и на основе дискретного варианта принципа максимума Понтрягина [18] или классических вариационных методов. [c.384]

    Многомерность и сложность задач проектирования не позволяют получить аналитическое решение для однозначного выбора наилучшего варианта реализации технологической схемы. И эту задачу приходится решать как задачу многокритериальной оптимизации численными методами путем анализа многих возможных вариантов. На этапе технологического проектирования решается именно эта задача, и эффективность ее решения зависит [c.42]

    Математическое описание в локальной области сложного химического процесса, протекающего в аппарате с перемешиванием в объеме, можно также выполнить на вычислительной машине, использовав рассмотренный алгоритм решения этой задачи аналитическим методом. На основании полученного математического описания можно построить математическую модель и провести исследование процесса для решения задач масштабирования, автоматизации и оптимизации процесса в выбранной локальной области или даже по отысканию направления оптимума методами направленного эксперимента. [c.183]

    Аналитические методы оптимизации [c.141]

    Аналитические методы являются классическими методами определения экстремального значения функции (минимума или максимума). Они применяются, когда оптимизируемые функции заданы аналитически и число независимых переменных невелико. При большом числе переменных возникает так называемый барьер многомерности и применение аналитических методов становится затруднительным. Затрудняет применение аналитических методов также наличие ограничений. Вследствие этого использование аналитических методов в их классическом виде на практике довольно ограничено. Краткая характеристика этих методов приведена ниже. Принцип максимума для удобства изложения описан после характеристики градиентных методов оптимизации. [c.141]


    Для определения оптимальных условий могут быть использованы различные математические методы оптимизации. В некоторых случаях оптимальные условия удается найти простыми аналитическими методами определения минимума и максимума. Примером может служить определе- [c.11]

    При проектировании и развитии современных физико-технических систем аналитические методы оказались явно недостаточными, так как по существу они были ориентированы на оптимизацию вновь создаваемых объектов и не могли учитывать в полной мере дискретность диаметров и типоразмеров насосов, конкретные особенности прокладки трубопроводов, наличие существующей части системы и необходимость в реконструкции отдельных ее элементов, ограничения в виде неравенств (на допустимые значения давлений и расходов), разнообразные логические условия. Появление ЭВМ и развитие математического программирования (линейного, динамического, дискретного и др.) стимулировали разработку новых подходов и методов, так что аналитические методы уступили место алгоритмическим, хотя и сохранили известное значение. [c.170]

    Так как диаметры трубопроводов в рассматриваемой задаче должны быть заданы, то объектом оптимизации для метода ДП на этом этапе будут именно узловые давления, действующие напоры, а также рабочие состояния всех регулируемых органов (регуляторов расхода и давления, дроссельных станций и др.). В результате будут найдены оптимальные значения з,- и Щ, отвечающие их заданным (в аналитической или табличной формах) характеристикам и логическим условиям работы всех элементов с переменными параметрами, по критерию минимума эксплуатационных затрат и с учетом всей совокупности заданных ограничений. В соответствии с этими поправками коэффициентов гидравлического сопротивления и других характеристик на последующем этапе будет определяться новое потокораспределение уже для многоконтурной схемы ТПС и т.д. от итерации к итерации, пока не сработает условие сходимости вычислительного процесса. [c.241]

    В рамках планирования эксперимента есть по крайней мере два широко распространенных метода поиска экстремума, т. е. оптимизации. Этот метод Бокса — Уилсона или метод крутого восхождения [15] и метод последовательной симплексной оптимизации (ПСМ) [16]. Между ними наблюдается некоторая конкуренция, но каждый из них использовался сотни раз в различных задачах аналитической химии. Попытка дать систематический обзор этих приложений потребовала бы целого тома. Впрочем, мы еще скажем ниже о библиографических источниках. [c.7]

    I. Группа аналитических методов оптимизации объединяет аналитический поиск экстремума функций, заданных без ограничений, метод множителей Лагранжа, вариационные методы и принцип максимума. [c.247]

    При строгой постановке задачи оптимизация пористой структуры и размера зерна катализатора не может быть оторвана от задачи оптимизации реактора в целом, по скольку только в реакторе и могут быть реализованы те или иные качества зерна. Увеличение числа переменных, относительно которых определяется экстремальное значение критерия, существенно усложняет решение задачи оптимизации. Скорость каталитической реакции в переходном и внутридиффузионном режимах является сложной функцией параметров пористой структуры. Аналитические методы исследования и решения задачи оптимизации реактора в общем виде оказываются непригодными. Поэтому приходится использовать численные методы поиска оптимального значения функций. [c.187]

    Для сложных реакций оптимизация селективности промышленного процесса обычно играет первостепенную роль. Включение в число оптимизируемых переменных параметров пористой структуры и размера зерна катализатора для сложных реакций чрезвычайно усложняет задачу оптимизации химического реактора. В принципе аналитические методы (динамического программирования, принцип максимума Понтрягина) позволяют получить условия оптимальности для параметров, характеризующих пористую структуру катализатора. Однако факт, что для определения скорости реакции необходимо решать краевую задачу для системы дифференциальных уравнений 2-го порядка, определяющих изменение концентраций реагентов в зерне, делает бесполезными аналитические методы. [c.199]

    Выбор системы автоматического управления в настоящее время производится большей частью на основе метода поиска, хотя получает распространение аналитический метод и методы, связанные с применением теории оптимизации. После того, как система автоматического управления получена, встает вопрос, какими средствами ее реализовать — с помощью АВМ или ЦВМ. В каждом конкретном случае вопрос решается с учетом соображений экономичности и надежности. Более простые системы управления используют аппаратуру аналогового типа, очень сложные системы, особенно с развитой программой логических операций, нуждаются в ЦВМ. Однако прямое управление с помощью ЦВМ пока еще предмет эксперимента и изучения. [c.10]


    Чтобы получить эти данные обычным экспериментированием, сущность которого состоит в постановке серий опытов для изучения влияния каждого переменного в отдельности при сохранении остальных переменных неизменными, потребуется длительное время и большой объем экспериментальной работы. Математические методы позволяют упростить решение этой задачи тремя путями применением математической статистики для анализа экспериментальных данных и планирования эксперимента применением аналоговых вычислительных машин для моделирования процессов на стадии лабораторного исследования и при оптимизации работающих промышленных реакторов применением аналитических методов описания процессов. [c.11]

    Следующим логическим шагом по пути автоматизации, который обсуждался в работе [74], стала автоматическая оптимизация аналитических параметров с точки зрения улучшения хроматографического разрешения и сокращения продолжительности анализа. В некоторых устройствах газовые хроматографы могут быть включены в систему автоматического регулирования процессом. Однако при всех наших теоретических знаниях, касающихся процесса разделения, не всегда удается создать эффективную расчетную модель, и такой метод может быть осуществим только в рамках большой вычислительной системы. [c.474]

    Хемометрика — промежуточная область между математикой и аналитической химией. Используются методы математической статистики, теории информации в сочетании с применением ЭВМ для решения вопросов планирования и оптимизации аналитических процессов [21—24]. [c.9]

    Рассмотрены методы оптимизации технологических процессов, деревообработки, методика математических описаний процессов. Приведены математические модели и алгоритмы оптимизации их при помощи ЭВМ, графо-аналитические методы, методы исследования моделей процессов на ЭВМ. Изложены принципы построения математических моделей потоков. Даны рекомендации по применению оптимальных режимов конкретных процессов. [c.135]

    Переход в сороковых годах авиации на большие дозвуковые скорости полета привел к усиленным исследованиям обтекания крыла с учетом сжимаемости воздуха. Техническая задача состояла в разработке методов профилирования крыла с заданными аэродинамическими свойствами — подъемной силой, моментными характеристиками и т. д. (Эта задача, рассматриваемая в более широкой постановке, актуальна и по сей день как задача профилирования оптимального крыла, причем оптимизация проводится по большому числу технических параметров.) Отсутствие в то время быстродействующей вычислительной техники, а следовательно, и эффективных возможностей численного решения краевых задач для нелинейных уравнений газовой динамики, определило преимущественное развитие аналитических методов, развивающих, в основном, метод С. А. Чаплыгина. [c.141]

    Для оптимизации объекта применяют аналитические методы, методы математического программирования, поисковые методы. [c.174]

    Многообразие методик показывает необходимость создания единой универсальной методики. Естественно, эта методика должна быть основана на уравнениях теплоотдачи и гидроаэродинамики, которые используются при расчете теплообменников, а вычисления критериев сопоставления поверхностей не должны требовать большого О бъема работ. В этом отношении аналитический метод с использованием отношения критериев является более универсальным, чем графический. Однако аналитический метод реализуется в литературе лишь для простейшего случая— одностороннего наружного обтекания. Двухстороннее обтекание остается до сих пор неизученным. Причина ЭТОГО в том, что аналитическое решение для двухстороннего обтекания относительно сложно, так как нахождение сопряженных чисел Ке (или скоростей) в широком диапазоне чисел Ке при ручном счете весьма трудоемко. В этом случае единственным путем решения задачи является применение ЭВМ. Кроме того, существующие работы по рациональной компоновке гладкотрубных пучков при различных схемах обтекания и сравнение этих схем недостаточно полны, так как не охватывают весь диапазон режимных параметров теплоносителя, и часто основаны на устаревших формулах по теплоотдаче и аэродинамике поперечное обтекание исследовано лишь при большом числе труб по ходу потока сравнение коридорной и шах)матной компоновок т1рубного пучка проведено для фиксированных решеток с определенными значениями относителыных шагов. Оптимизация геометрии решетки пр ведена лишь для одностороннего обтекания трубного пуч ка шахматной компоновки, а коридорный пучок не рассматривался. Доста- [c.15]

    Эквивалентная задача (впрочем, как и исходная) представляет собой задачу на условный экстремум, для решения которой использовалась условная оптимизация метод уровней и метод модифицированной функции Лагранжа. Для выполнения безусловной минимизации составной функции (нижний уровень оптимизации) применялись методы квазиньютоновского типа — DFP, BFGS, SSVM [см. (III, 81), (111,84)1. Расчет производных минимизируемой функции выполнялся как аналитически — с привлечением сопряженного процесса [3, с. 142], так и методом конечных разностей, что позволило провести сравнение результатов оптимизации по эффективности и точности решения .  [c.146]

    Кроне того, нормальность распределений значений рассматриваеной характеристики на заданных классах биополимеров "I" и "II" является необходинын в достаточным условием применимости аналитических методов оптимизации "свободных параметров большинства методов распознавания образов и кластер-анализа (4, 5), традиционно используемых для автоматической классификации объектов. [c.206]

    В ходе оптимизации аналитического процесса или прибора возможен з чет лишь ограниченного числа факторов. Часто выбор наиболее важных факторов не представляет труда и диктуется просто природой изучаемого явления. Например, при разработке новой спектрофотометрической методики такими факторами служат величины pH и концентраций реагентов, в методе ВЭЖХ важнейшие факторы связаны с качественным и количественным составом подвижной фазы и т. д. [c.495]

    Георгий Максимович внес большой вклад в теорию и развитие аналитических методов расчета различных видов пневмотранспорта сыпучих материалов (в закрученном потоке с высокой концентрацией в заторможенном плотном слое). При его участии разработаны программное обеспечение оптимизации работы автоцементовозов и камерных питателей и различная аппаратура для специальных видов пневмотранспорта пульсационный аэрожелоб для транспортирования порошкообразного материала в состоянии, близком к рыхлой насьши, как в наклонном, так и в горизонтальном положении установка для перегрузки глинозема заторможенным плотным слоем из емкостей с высоким давлением в емкости с низким давлением независимо от их положения в пространстве пневмотранспорт с высокой концентрацией и вихревая печь для обжига цемента. [c.3]

    Анализ показателей, определяющих экономическую эффективность любого технологического процесса в химической промьшшенности позволяет отнести к определяющим параметрам степень превращения основного вида сырья на стадии го химического взаимодействия [60]. Использование этого параметра в роли единственного и независимого переменного при заданной совокупности остальных параметров на каждой последующей стадии сложной химико-технологической системы позволяет весьма приближенно решать задачу оптимизации процесса ректификации. Зная оптимальное значение степени превращения сьфья, можно определить тип и размеры основной аппаратуры, используемой на каждой последующей стадии технологической схемы. Применительно к стадии, на которой осуществляется разделение продуктов реакции путем ректификации, это позвопит сузить границы изменения остальных параметров и облегчит возможность использования аналитических методов поиска оптимума с учетом описания только технологических параметров. [c.60]

    Совершенно иная картина наблюдалась в отношении развития методов расчета полезных объемов водохранилищ, входящих в состав сложных по структуре ВХС. Здесь с самого начала не было возможности ориентироваться на ручные методы вычислений вследствие резкого нарастания объемов вычислительных работ с ростом числа элементов в составе таких систем. Детальные аналитические методы здесь оказались непригодными не только из-за своей высокой трудоемкости, но и вследствие возникновения непреодолимых методических трудностей, а также из-за невозможности их погружения внутрь схем многовариантной оптимизации. Не последнюю роль в причинах неприменимости аналитических методов сыграло несоответствие их детальности объему и точности доступных исходных данных на начальных стадиях проектирования сложных ВХС. Поэтому на первых порах основной упор делался здесь на статистические методы и применение имитационного моделирования [Бусалаев, 1980 Великанов и др., 1983 Методы гидрологических расчетов..., 1984]. При этом многие модели указанного класса вовсе не были ориентированы на повышение обоснованности [c.121]

    Среди аналитических методой общим методом оптимизации реакторов является математическая теория оптимальных процессов, развитая Л.С.ПонТ рягиным, В.Г.Болтянским, Р.В.Гамкрелидзе и Н.Ф.Мищенко. Она позволяет учеать огра- [c.11]

    Новый метод анализа аминокислот быстро развивался. Появилась возможность с его помощью приступить к решению ряда сложных, казавшихся неразрешимыми проблем, и прежде всего проблёмы определения первичной структуры белков. Вскоре стало очевидным, что анализ аминокислот в его первоначальном варианте слишком трудоемок и недостаточно эффективен. Ввиду этого был поставлен ряд исследований по механизации трудоемких операций и совершенствованию организации эксперимента. Основной вклад в решение этих задач вновь внесла группа исследователей под руководством Мура и Стайна [4]. Благодаря проведению реакции аминокислот с нингидрином в проточном капиллярном реакторе и измерению интенсивности окраски на регистрирующем проточном фотометре трудоемкая обработка фракции была преобразована в непрерывный процесс. Таким образом, на основе аналитического метода был создан новый прибор — аминокислотный анализатор. Выпуск и дальнейшее усовершенствование этого прибора были предприняты промышленными фирмами. Последующие усилия были направлены на повышение эффективности и чувствительности анализа. Первое время причиной низкой эффективности прибора служила длительность элюирования. Основой для дальнейшей оптимизации процесса послужила теоретическая работа Гамильтона [5], в которой было показано, что повышения эффективности можно достигнуть путем увеличения скорости подачи элюента и уменьшения размеров зерен ионита. В результате многочисленных модификаций ионитов (а эта работа все еще продолжается) удалось более чем в 10 раз сократить время элюирования без снижения разрешения. Сокращение продолжительности анализа [c.306]

    При систематическом изучении гель-хроматографии олигомеров в качестве стандартов для калибровки колонок использовали соединения ряда олигофениленов [131]. Вследствие жесткой структуры отдельных гомологов их можно использовать при изучении свойств системы в зависимости от условий эксперимента [132]. На модельных систем.ах было показано, что для оптимизации условий разделения олигомеров необходимо подбирать гели с соответствующим распределением пор. Эффективность разделения на гомогенных гелях зависит не только от степени сшитости, но в определенной степени и от отношения объема пор к размерам молекул разделяемых соединений. Качество разделения резко падает, если эффективный объем анализируемого вещества близок к объему доступных пор геля. Для разделения смесей олигомеров в препаративных масштабах (на уровне нескольких граммов) с успехом использовали циркуляционную хроматографию [134]. Оптимальное разрешение достигалось за три цикла. По эффективности разделения этот прием не уступает лучшим аналитическим методам. Осуществив подбор оптимальных условий препаративной гель-хроматографии, на сополимере стирола с 2% дивинилбен-зола удалось осуществить полное разделение первых 15 членов гомологического ряда олигомерных стиролов (рис. 49.6), олигомеров метилметакрилата (рис. 49.7), полигликолей и нескольких детергентов. [c.299]


Смотреть страницы где упоминается термин Оптимизация ХТС аналитические методы: [c.11]    [c.203]    [c.93]    [c.117]    [c.114]    [c.47]    [c.228]    [c.144]   
Методы кибернетики в химии и химической технологии (1985) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая оптимизация процессов, метод

Аналитическая оптимизация процессов, метод вариационные

Аналитическая оптимизация процессов, метод множителей Лагранжа

Аналитическая оптимизация процессов, метод поиска экстремума

Аналитическая оптимизация процессов, метод принцип максимума

Лагранжа метод множителей, оптимизация аналитическая

Метод аналитические

Метод оптимизации



© 2025 chem21.info Реклама на сайте