Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилхолин ионов

    При изучении гидролиза ацетилхолина была установлена следующая зависимость константы скорости реакции от ионной силы раствора [5]  [c.58]

    Каков механизм действия медиатора на постсинаптическую мембрану В случае ацетилхолина он состоит в деполяризации мембраны и увеличении проницаемости по отношению к ионам натрия и калия. Собственно, это, по-видимому, те же изменения мембраны, которые обусловлены возникновением потенциала действия (гл. 5, разд. Б, 3) при проведении нервного импульса. Ацетилхолин связывается со специальным рецептором, в результате чего натриевые каналы в мембране каким-то образом открываются. Из электрических органов электрического угря недавно был выделен белок большого молекулярного веса, обладающий, по полученным данным, свойствами рецептора ацетилхолина [45]. Имея мол. вес 330 ООО, этот белок представляет собой, видимо, тример из субъединиц с мол. весом =110 000, в свою очередь состоящих из 2—4 пептидов с мол. весом 34 ООО—54 ООО. Каким образом функционирует этот рецептор, пока неизвестно (гл. 5, разд. В, 5). [c.332]


    В общих чертах картину участия ацетилхолина в осуществлении передачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (везикулы) диаметром 30—80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180000). В холинергических синапсах каждый пузырек диаметром 80 нм содержит 40000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит квантами , т.е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора—количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са в клетку. Временное увеличение внутриклеточной концентрации ионов Са стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са . Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны —резко увеличивается ее пропускная способность для ионов Ка. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса. [c.638]

    Рассмотрим конкретный пример, где использовался шумовой анализ. Работу ионного канала могут регулировать различные параметры его проводимость ограничивается либо скоростью, с которой молекула медиатора (в случае постсинаптического канала) диффундирует от рецептора или деградирует, либо реакцией канала на сигнал. В настоящее время принято считать, что конформационные изменения мембранных белков обусловливают изменение проницаемости в мембране нерва. С помощью шумового анализа было показано, что в случае постсинаптического ацетилхолинового рецептора закрывание канала в большей степени, чем удаление и гидролиз ацетилхолина, определяет продолжительность тока через концевую пластинку. [c.127]


    ИОНОВ аммония, лекарственными препаратами типа кураре и замещенными сложными эфирами с положительно заряженным центром привело к предположению о существовании анионных центров, участвующих в образовании связи ацетилхолина с ферментом посредством его положительного заряда. На каждый активный центр может приходиться два таких места. [c.145]

    Характерной особенностью холинэстераз, отличающей их от других гидролаз эфиров карбоновых кислот, является специфическая чувствительность к ингибирующему действию ионов тетраалкиламмония, (R)4N . Это, очевидно, связано с тем, что специфический субстрат холинэстераз — ацетилхолин (VII) — сам содержит аммониевую группировку  [c.185]

    На этом основании было высказано предположение, что одним из факторов, определяющих взаимодействие фермента с субстратом при образовании комплекса Михаэлиса, служит ионная реакция между катионным центром ацетилхолина и анионным центром на активной поверхности фермента. Такое взаимодействие должно быть первичным в реакции фермента с субстратом, поскольку ионные силы проявляются на большем расстоянии, чем другие виды химических взаимодействий. Образованию ионной связи приписывали лишь якорную функцию, в результате реализации которой молекула субстрата ориентируется на поверхности фермента, чем значительно облегчается образование других необходимых химических связей (уже ближнего действия) с группировками активного центра фермента. В связи с этим исследованию кинетики и механизма ингибирования холинэстераз ионами тетраалкиламмония было уделено особое внимание. Задача этих исследований — изучение особенностей строения и роли анионного центра холинэстераз в каталитическом действии указанных ферментов. [c.185]

    Наибольший интерес представляет вопрос о значении измеренных термодинамических констант ингибирования холинэстераз для суждения о реакции фермента с субстратом — ацетилхолином. Конечно, сопоставление ионов ацетилхолина (VII) и, например, тетраметиламмония (XI) должно проводиться с учетом различий в их строении  [c.191]

    Однако на основании близости структуры катионной части молекулы ацетилхолина и тетраметиламмония и, вследствие этого, близости их в отношении сродства к холинэстеразам (ср. величины Кт и Кс в табл. 12 и 23), можно высказать предположение, что при взаимодействии холинэстераз с четвертичным ионом ацетилхолина первоначально образующаяся ионная связь имеет не только якорное значение. Образование этой связи приводит, по-видимому, к существенным конформационным изменениям молекулы фермента, и именно на этом этапе процесса организуется необходимый для высокого каталитического эффекта активный центр. [c.191]

    Как следует из полученных данных, значительные изменения в структуре фермента должны происходить при взаимодействии с ионом тетраметиламмония, имеющим большее сходство с ацетилхолином, чем ион тетраэтиламмония. Видно также, что эти изменения в большей мере выражены для холинэстеразы сыворотки крови, чем для ацетилхолинэстеразы эритроцитов. [c.191]

    Ацетилхолин и ионы тетраалкиламмония, как было показано выше, образуя комплексы с холинэстеразами, вызывают существенное уменьшение энтропии. Если это связано с созданием более стабильной конформации белковой молекулы, то можно ожидать защитный эффект соединений этого типа против тепловой инактивации. Эксперименты подтверждают такое предположение. На рис. 53 и 54 показано защитное действие тетраметиламмония (ТМА) и тетраэтиламмония (ТЭА) при тепловой инактивации ацетилхолинэстеразы эритроцитов (рис. 53) и холинэстеразы сыворотки крови (рис. 54) (очищенные препараты ферментов). Тепловая инактивация проводилась при pH 7,5 в течение 20 мин. в отсутствие ионов тетраалкиламмония, а также в их присутствии в разных концентрациях (показаны на оси абсцисс). Для выяснения специфичности действия аналогичные опыты проводились с КВг (в тех же концентрациях). Температура инактивации ацетилхолинэстеразы 51, холинэстеразы— 58° С. Замечено, что ацетилхолинэстераза менее термоустойчива, чем холинэстераза 50%-ная инактивация достигается соответственно при 49 и 56,5° С. [c.192]

    Что касается химической природы этих участков белковой молекулы, то здесь также пока нет оснований для каких-либо конкретных соображений, за исключением того, что эти участки имеют-, по-видимому, неполярный, гидрофобный характер, поскольку взаимодействуют с неполярной углеводородной цепочкой [173, 178]. Возможно, впрочем, что нет полной аналогии между взаимодействием метильных групп ацетилхолина и метильных групп исследованных ингибиторов с соответствующими группировками активных центров холинэстераз. Выше проводились некоторые экспериментальные данные, свидетельствующие о том, что положительный заряд четвертичного иона тетраметиламмония рассредоточен между атомом азота и углеродными атомами метильных групп (см. стр. 186). Таким образом, можно думать, что метильные группы ацетилхолина взаимодействуют с заряженными (поляризованными) функциональными группировками белка, что не было отмечено в случае метильных групп исследованных ингибиторов. [c.236]


    В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль аксона, пока не достигнет его окончания-места контакта с мышечной, клеткой. Здесь под его воздействием открываются потенциал-зависимые кальциевые каналы, и ионы Са входят в аксон, в результате чего клетка путем экзоцитоза высвобождает ацетилхолин. [c.96]

    Эфиры фосфорной кислоты и соединения адени-ловой системы, участвующие во внутриклеточном обмене веществ, требуют для своего действия обязательного присутствия солей калия. Дефицит ионов К+ нарушает фосфорилирование. Подобный процесс наблюдается при хирургических вмешательствах, при тиреотоксикозе и ряде других патологических состояний. Ионы К+, На+, Са + участвуют в синтезе АТФ, ацетилхолина. Ионы a + являются ингибитором фермента трансфосфорилазы, принимающего участие в обмене АТФ, пировиноградной кислоты, биосинтезе никотиновой кислоты и т. д. Известна роль ионов a + в функциях нервной, сердечно-сосудистой систем, пищеварении, мышечном сокращении и других процессах. [c.175]

    Какова роль ацетилхолина, ионов кальция, тропонина и тропомиозина в мышечном сокращении и расслаблении  [c.305]

    Хлор-ион обнаруживают в виде Ag l. Ацетилхолин осаждают рядом алкалоидных реактивов, так йод выделяе бурый осадок перйодида. [c.233]

    Нейроны характеризуются необыкновенно высоким уровнем обмена веществ, значительная часть которого направлена на обеспечение работы натриевого насоса в мембранах и поддержание состояния возбуждения. Химические основы передачи нервного импульса по аксону уже обсуждались в гл. 5, разд. Б, 3. Последовательное раскрытие сначала натриевых и затем калиевых каналов можно считать твердо установленным. Менее ясным остается вопрос, сопряжено ли изменение ионной проницаемости, необходимое для распространения потенциала действия, с какими-либо особыми ферментативными процессами. Нахманзон указывает, что ацетилхолинэстераза присутствует в высокой концентрации на всем протяжении мембраны нейрона, а не только в синапсах [38, 39]. Он предполагает, что увеличение проницаемости к ионам натрия обусловлено кооперативным связыванием нескольких молекул ацетилхолина с мембранными рецепторами, которые либо сами составляют натриевые каналы, либо регулируют степень их открытия. При этом ацетилхолин высвобождается из участков накопления, расположенных на мембране, в результате деполяризации. Собственно, последовательность событий должна быть такова, что изменение электрического поля в мембране индуцирует изменение конформации белков, а это уже приводит к высвобождению ацетилхолина. Под действием аце-тилхолинэстеразы последний быстро распадается, и проницаемость мембраны для ионов натрия возвращается к исходному уровню. В целом приведенное описание отличается от описанной ранее схемы синаптической передачи только в одном отношении в нейронах ацетилхолин накапливается в связанной с белками форме, тогда как в синапсах — в специальных пузырьках. Существует мнение, что работа калиевых каналов регулируется ионами кальция. Чувствительный к изменению электрического поля Са-связывающий белок высвобождает Са +, который в свою очередь активирует каналы для К" , последнее происходит с некоторым запозданием относительно времени открытия натриевых каналов, что обусловлено различием в константах скоростей этих двух процессов [123]. Закрытие калиевых каналов обеспечивается энергией гидролиза АТР. Имеются и другие предположения о механизмах нервной проводимости [124]. Некоторые из них исходят из того, что нервная проводимость целиком обеспечивается работой натриевого насоса. [c.349]

    Механизм токсич. действия включает специфич. рецепцию нейротоксина иа мембранах холинергич. мотонейронов центр, нервной системы. После этого легкая субъединица отделяется от тяжелой, проникает внутрь нейрона и по его отростку поступает внутрь синаптич. бляшки, где нарушает регулируемое ионами Са выделение ацетилхолина в синаптич. щель, в результате чего нарушается проводимость нервного импульса в холинергич. синапсах и развиваются мышечные параличи. [c.314]

    С использованием метода вольтамперометрии с треугольным импульсом (рис. 10.8) можно регистрировать вольт-амперные кривые растворов ионов тетрабутил- и тетраметадаммония, натрия, калия, цезия, ацетилхолина, холина, СЮ4 , 804 , тиоционата, лау-рилсульфата с пределом обнаружения до 10 моль/л. Создан электрод, у которого фаза нитробензола заключена в матрицу из поли- [c.411]

    Важным фактором, влияющим на подвижность всех трех тппов, является ионный состав водной среды, окружающей мембрану [11]. Катионы повышают температуру фазового перехода. Связывание катионов с отрицательно заряженными головками фосфолипидов зависит от величин их положительных зарядов ионы щелочных металлов связываются слабее, чем иены щелочноземельных металлов, Ыа+ — примерно так же, как К, а Са + сильнее, чем все другие ионы его группы. Связывание усиливается в следующем ряду (СНз)4Ы+л (С2Н5)4М+л яй ацетилхолин < Ма+л K+двухзарядные ионы переходных элементов. [c.75]

    Причиной высвобождения ацетилхолина является деполяризация нервного окончания в результате достигающего его потенциала действия. Однако в отсутствие ионов кальция во внеклеточном пространстве высвобождения медиатора не происходит. Мы уже упоминали, что ионы кальция влияют и на пороговую величину потенциала действия. Сейчас кажется очевидным, что они играют ключевую роль в химической синаптической передаче. Деполяризация нервного окончания увеличивает проницаемость мембраны для ионов кальция и, следовательно, их внутриклеточную концентрацию. Однако кальций, попадающий в нервное окончание, должен выделиться снова, если стимуляция Синапса временно прекращается. Имеются многочисленные доказательства того, что внутриклеточная концентрация кальция регулируется митохондриями и такими белками, как кальмодулин и кальциневрин (гл. 7). Митохондрии располагают очень эффективным кальциевым насосом, а ингибиторы митохондриальной функции вызывают, кроме того, количественное увеличение миниатюрного потенциала концевой пластинки, что также свидетельствует об ингибировании поглощения кальция митохондриями. Неясно, куда именно кальций переносится митохондриями с тем, чтобы они сами не перенасытились этими ионами. Еще меньше известно о молекулярном механизме кальциевой стимуляции высвобождения медиатора. Высказаны соображения о вкладе актомиозиниодобного комплекса, но экспериментальных доказательств этого еще нет. Зависимость кальциевого эффекта от его концентрации показывает, что несколько ионов (возможно, четыре) кооперативно активируют высвобождение кванта медиатора. Ионы Mg + конкурируют с [c.200]

    Классификация медиаторов как стимуляторных или ингибиторных нецелесообразна, так как их функция зависит от конкретного синапса и постсинаптического рецептора. Ацетилхолин, например, является стимулирующим медиатором в нейромышечной концевой пластинке, и в то же время проявляет ингибирующее действие в синапсе между блуждающим нервом и волокном сердечной мышцы. Мы уже упоминали о различии между никотиновыми и мускариновыми ацетилхолиновыми рецепторами. Однако на примере Aplysia было показано, что функция медиатора может оказаться еще более сложной. У этого организма имеется по крайней мере три типа холинэргических синапсов, или ацетилхолиновых рецепторов два ингибиторных и один возбуждающий. Ингибиторные синапсы различаются по ионной специфичности на одной постсинаптической мембране ацетилхолин увеличивает проницаемость для ионов калия, а на другой — для ионов хлора, в обоих случаях вызывая гиперполяризацию мембраны. На возбуждающем синапсе ацетилхолин вызывает деполяризацию, открывая натриевые каналы. Аналогичная двойная функция описана для медиаторов допамина и серотонина. Поэтому можно сказать только то, что ацетилхолин и глутамат, как правило, являются стимулирующими медиаторами, а глицин, 7-аминомасляная кислота и нор-адреналин — ингибиторными. [c.214]

    Подобно ацетилхолину, катехоламины высвобождаются из пресинаптической мембраны посредством экзоцитоза и связываются постсинаптически с рецепторными белками. Эти рецепторы, видимо, не связаны непосредственно с ионными каналами, как в случае никотиновых ацетилхолиновых рецепторов, а вместо этого взаимодействуют с ферментом аденилатциклазой, продукт которой, вторичный мессенджер сАМР, в дополнение к другим своим функциям опосредованно регулирует ионную проницаемость постсинаптической мембраны. Такое взаимодействие с рецептором может носить либо активирующий, либо ингибиторный характер, что приводит к увеличению или снижению концентрации сАМР в клетке-мишени. [c.220]

    Примеры известных веществ-медиаторов четко идентифицированы амины ацетилхолин, допамин, норадреналин и серотонин (5-НТ) менее четко — аминокислоты у-аминомасляная (GABA), глутаминовая и глицин предполагаемые медиаторы или нейромодуляторы — гистамин, пуриновые нуклеотиды, энкефалины и другие нейропептиды. Объектом действия является рецепторный белок в постсинаптической мембране (иногда также и в пресинаптической мембране), и механизм действия состоит в изменении ионной проводимости возбудимой мембраны  [c.238]

    Имеются примеры ионных регуляторных комплексов, в которых рецептор и ионный канал, по-видимому, находятся в разных молекулах. Так, некоторые ацетилхолиновые рецепторы, найденные в нейронах Aplysia, после связывания с ацетилхолином увеличивают натриевую проводимость. Другие ацетилхолиновые рецепторы того же организма вызывают быстрое возрастание проводимости ионов хлора, тогда как третьи — медленное возрастание калиевой проницаемости [6]. Если принять, что связывающий компонент этих рецепторов один и тот же, что никак не доказано, то он должен действовать в комбинации то с калиевыми, то с натриевыми, то с хлорными каналами [7]. Хотя такие комбинации и казались постоянными, следующие наблюдения привели к выдвижению гипотезы плавающего , или мобильного , рецептора. Согласно этой гипотезе рецепторы не связываются в постоянные комплексы, а плавают в мембране и взаимодействуют с различными активными структурами транспортными системами, ферментами и т. д. (рис. 9.6). Имеется, например, только один тип рецептора для инсулина, который, однако, раздельно регулирует целый ряд мембранных функций транспорт глюкозы, аденилатциклазную, фосфодиэсте-разную, Ка+,К+-АТРазную, Са +-ЛТРазную активности, а также транспорт аминокислот. Напротив, в жировых клетках крыс имеются, по крайней мере, восемь различных рецепторов, и все они регулируют аденилатциклазную активность. Связывание [c.255]

    Фрагменты постсинаптической мембраны проявляют одно важное свойство, использование которого помогает переброспть мост понимания между физиологией интактного организма и его биохимией. Они легко образуют замкнутые везикулы (не путать с синаптическими везикулами, содержащими пресинаптическпй медиатор), которые сохраняют основные биологические свойства мембраны так, например, поток ионов через мембрану активируется ацетилхолином и другими агонистами и ингибируется а-нейротоксинами и другими антагонистами. В эти везикулы вводили суспензию разбавляли физиологическим буфером, взятую через известные промежутки времени аликвоту отфильтровывали с тем, чтобы измерить количественно выход радиоактивности (рис. 9.9). Если растворяющий буфер содержал агонист, выход 2 Na+ увеличивался. Зависимость доза — ответ, построенная по полученным данным, была очень близка кривой, полученной при измерениях in vivo. [c.261]

    Если постсинаптическая мембрана подвергается действию увеличенных концентраций ацетилхолина (и если одновременно блокируется ацетилхолинэстераза), то наблюдается медленное снижение постсинаптпчеокого ответа. По-видимому, мембрана становится менее чувствительной к агонистам. Это явление, называемое десенсибилизацией, наблюдается на всех трех уровнях организации в интактной ткани, в мембранных везикулах и в изолированном рецепторе. Ионный поток через мембрану ингибируется, но не потому, что рецепторы связывают агонисты слабее, а потому, что ионные каналы не открываются. Фармакологическая десенсибилизация наблюдается не только для ацетилхолинового рецептора, но и для многих других систем, например для рецепторов пептидных гормонов и р-адренэргиче-ских рецепторов. [c.263]

    Наряду с изложенным вьшае гидролазы выполняют нтрокий спектр других биологических функций. Некоторые примеры уже приводились — это ацетил.чо-линэстераза, гидролизующая избыточный ацетилхолин 1юсле передачи с его помощью возбуждения в синапсе, и зависимая от ионов нат зия и ка. и1Я адено-144 [c.144]

    Связывание ацетилхолина с мускариновыми рецепторами сопровождается увеличением концентрации циклических нуклеотидов, а взаимодействие с никотиновыми рецепторами приводит к открытию ионных каналов и соответственно изменению ионной проницаемости постсинаптической мембраны. Как следствие происходит деполяризация клеточной мембраны за счет быстрого входа ионов натрия, что в конечном итоге ведет к возбуждению мышечной клетки. Следовательно, биологическая функция никотинового ацетилхолинового рецептора заключается в изменении ионной проницаемости постсинаптической мембраны в ответ на связывание ацетилхолина. После зтого ацетилхолин гидрюлизуется ацетилхолинэсте-разой до холина и рецептор переходит в исходное состояние, [c.628]

    Таким образом, ионные каналы непосредственно участвуют в передаче сигнала возбудимыми клетками. Существуют хемовозбу-димые (рецепторы ацетилхолина, у-аминомасляной кислоты, глута-мата, глицина и др.) и электровозбудимые (натриевые, калиевые, кальциевые, хлорные и др.) каналы. В эти транспортные системы входят участки связывания нейромедиаторов или сенсоры изменения силы электрического поля мембраны, а также непосредственно ионные поры, образованные несколькими трансмембранными белковыми фрагментами. [c.634]

    Биохимический эффект ацетилхолина заключается в том, что его присоединение к рецептору открывает канал для прохождения ионов Ка и К через мембрану клетки, что ведет к деполяризации мембраны. Блокирование действия ацетилхолина чревато серьезными проблемами, вплоть до смертельного исхода. Именно в этом заключается биохимическое действие нейротоксинов. Ниже показаны структуры двух наиболее сильных нейротоксинов - хистрионикотоксина и хлорида О-тубокурарина. Как и ацетилхолин, молекула О-тубокурарина содержит аммониевые фрагменты. Она блокирует место присоединения ацетилхолина к рецептору, исключает передачу нервного сигнала, предотвращает перенос ионов через мембрану. Создается ситуация, называемая параличом живой системы. [c.407]

    Используя полное уравнение, можно определить Ка и Къ при низких концентрациях субстрата, в то время как при высоких его концентрациях можно определить К п и К ъ- Знание этих констант диссоциации позволяет проникнуть в природу групп в комплексе и свободном ферменте на основании этих данных можно определить, какие группы подвергаются влиянию комплексообразования, и поэтому получить некоторые сведения о группах, являющихся активными при образовании комплекса с субстратом. Лэйд-лер [62[ составил таблицу данных, показывающих влияние на величину К комплексообразования, протекающего по тем местам молекулы, которые подвергаются ионизации, и, кроме того, связывающих эти эффекты с изменениями скорости и константы Михаэлиса при изменении pH. Там, где такие сведения оказываются непол ными, иногда для вычисления Ка или Къ можно воспользоваться методом, предложенным Диксоном (381. Сведения о группах, участвующих в комплексообразовании, были получены для взаимного превращения ионов фумаровой и малеиновой кислот в присутствии фумаразы [63J, для гидролиза сахарозы в присутствии сахаразы [64[, для гидролиза ацетилхолина при наличии холинэстеразы и ацетилхолинэстеразы [65[ и для окисления 2-амино-4-оксиптеридина в присутствии ксантиноксидазы [38]. [c.135]

    Согласно расчетам Уилсона и Кабиба (стр. 176), образование комплекса Михаэлиса — ацетилхолинэстераза-ацетилхолин — характеризуется весьма значительным уменьшением энтропии и энтальпии. Эти величины соизмеримы с найденными нами для ионов тетраалкиламмония. На этом основании можно сделать вывод о весьма существенном вкладе ионного взаимодействия в те изменения конформации, которые наблюдаются при образовании комплекса Михаэлиса. [c.191]

    Исследование кинетики ингибирующего действия четвертичных солей алкиламмония позволило установить различия в свойствах холинэстеразы и ацетилхолинэстеразы. Первоначально на основании, по-видимому, ошибочных экспериментальных данных Адамс и Уиттекер [133] сделали заключение, что активный центр холинэстеразы сыворотки вовсе не содержит анионной группировки, в то время как в ацетилхолинэстеразе она имеется. Однако Бергман и Вурцель [127] в результате подробного изучения влияния ионов тетраэтиламмония и других ингибиторов на активность холинэстеразы плазмы показали, что последняя содержит анионную группировку. Блокирование этой группировки приводит к снижению каталитического эффекта. Интересно, что четвертичные соли алкиламмония тормозили ферментативный гидролиз не только катионных субстратов типа ацетилхолина, но также и субстратов, не содержащих катионного центра, например, алкилгалогенацетатов или ди-ацетина. Очевидно, такой эффект солей тетраалкиламмония связан с их влиянием на конфигурацию активной поверхности белковой молекулы. [c.193]


Смотреть страницы где упоминается термин Ацетилхолин ионов: [c.289]    [c.335]    [c.139]    [c.229]    [c.266]    [c.106]    [c.640]    [c.373]    [c.121]    [c.323]    [c.630]    [c.631]    [c.97]    [c.188]    [c.206]    [c.228]   
Токсичные эфиры кислот фосфора (1964) -- [ c.178 , c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилхолин



© 2025 chem21.info Реклама на сайте