Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Надмолекулярная структура зависимость от ПАВ

    Одним из возможных факторов, определяющих высокую склонность асфальтенов к ассоциации и способствующих стабилизации надмолекулярных структур является наличие в них устойчивых свободных радикалов. Наличие свободных радикалов обуславливает явление парамагнетизма, свойственное асфальтенам. Установлено,, что между степенью ароматичности и количеством парамагнитных центров наблюдается прямолинейная зависимость. Концентрация парамагнитных частиц у асфальтенов имеет порядок Ш пмч/г. При средней молекулярной массе асфальтенов около 2000 содержание парамагнитных фрагментов составляющих молекул может достигать до 40% на ассоциат [21]. В смолах их содержание не более 2% от общего числа свободных радикалов, обнаруживаемых в исходном остатке [22]. [c.25]


    Процесс релаксации напряжения в эластомерах, в частности в резинах, связан с протеканием в них как физических, так и химических процессов (см. 2 гл. П). Физическая релаксация объясняется перегруппировкой различных структурных элементов, выведенных из состояния равновесия внешними силами, и происходящими в поле действия межмолекулярных сил. Процессы ориентации свобо)1ных сегментов определяют быструю стадию физической релаксации, протекающую при обычных температурах практически мгновенно. Именно подвижность свободных сегментов ответственна за основной процесс стеклования, которому соответствует а-процесс в уже знакомом нам (гл. I) спектре времен релаксации, приведенном на рис. П. 14 для резин из диметилстирольного каучука при 20°С. Медленная стадия физической релаксации связана с молекулярной подвижностью сегментов, входящих в элементы надмолекулярной структуры с временами релаксации, находящимися в пределах 10 —10 с (при 20 °С). Это как раз сегменты с максимальной взаимной корреляцией движений. В зависимости от размеров и типа упорядоченных микрообластей, [c.99]

    Факт зависимости проницаемости от надмолекулярной структуры полимерных мембран связан также с линейной зависимостью между поглощением влаги и долей аморфной фазы в целлюлозе. Более того, при гидролизном нли микробном разложении полимерных мембран наиболее уязвимы аморфные области, которые разрушаются первыми. Этот факт является основой экспериментального метода определения сопротивляемости, а следовательно, и доли аморфной фазы по кинетике гидролиза. [c.71]

    Происходящие при разложении гидратцеллюлозного волокна процессы сопровождаются потерей массы с усадкой. Из кривых дифференциальных потерь массы в зависимости от температуры нагрева (рис. 9-65) видно, что максимальные скорости разложения находятся в интервале 200-350 С и зависят от структуры ГЦ волокна [9-137] и вида пропитки. Определенное влияние на разложение оказывают надмолекулярная структура, распре- [c.619]

    Минимумы представленных кривых - точки перехода к надмолекулярной структуре на основе асфальтенов для более активных вторичных асфальтенов крекинг-остатка лежат в области более низких концентраций, чем для смеси с гудроном. Та же тенденция наблюдается и для экстремумов описываемых зависимостей, характеризующих прочность коагуляционной структуры остатков. [c.8]


    Во-вторых, характер зависимостей на основе КГФ каталитического крекинга и замедленного коксования (рис. 1.17 и 1.18) указывает на определяющую роль дистиллята в формировании надмолекулярной структуры смесей кривые последних имеют вид, аналогичный соответствующим дистиллятам. Важно подчеркнуть, что данный эффект четко просматривается на описанных выше функциях распределения частиц и степени аномалии течения. Отличие кривых сравниваемых образцов друг от друга также несет важную информацию о коллоидных свойствах композиций. [c.24]

    Для смесей на основе КГФ каталитического крекинга с теми же остатками имеет место принципиально иной характер зависимостей (см. рис. 1.17 и 1.18). Резкое снижение величины энергетических параметров активации вязкого течения свидетельствует об интенсивном разрушении надмолекулярной структуры, ее хрупком характере. [c.25]

    Описываемые зависимости однозначно отражают характер модификации надмолекулярной структуры последних асфальтенами первичного и вторичного происхождения более поверхностно-активными, более ассоциированным асфальтенам крекинг-остатка отвечают более высокие значения теплоты активации. А в целом, введение тяжелого остатка делает более пологой зависимость теплоты активации от скорости деформации и температуры (см. рис. 1.17), то есть должно улучшать вязкостно-температурные свойства и агрегативную устойчивость смесей данного типа в эксплуатационном интервале температур. [c.26]

    Таким образом, в зависимости от степени ассоциации молекул асфальтенов в надмолекулярных структурах колеблется как молекулярная масса ассоциатов, так н их размеры. Следовательно не может быть единой структурной модели молекулы асфальтенов, как это пытаются доказать некоторые исследователи [169, 176]. [c.30]

    По мнению автора и Глаголевой, изменение РС среды приводит к более сложным явлениям, вызывающим изменение толщин сольватной оболочки и надмолекулярной структуры сложной структурной единицы. В зависимости от природы связей в ССЕ. могут быть два случая взаимодействия дисперсной фазы с дисперсионной средой. Первый, когда иод действием РС дисперсионной среды могут разрушаться сольватная оболочка (в нерастворителе и хорошем растворителе) и надмолекулярная структура (в хорошем растворителе) в случае ассоциата. Во втором случае дисперсионная среда НДС способна разрушать только сольватную оболочку, не затрагивая надмолекулярной структуры — в случае кристаллита. [c.59]

    На первой стадии (слабые взаимодействия) надмолекулярные структуры (центры кристаллизации) формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и другие ассоциаты). Парафиновые надмолекулярные структуры при повышении температуры дезагрегируются полностью или подвергаются одновременно дезагрегированию и химическому разрушению. Асфальтеновые ассоциаты с повышением температуры склонны к физическому и далее к химическому агрегированию. [c.158]

    Следует особо отметить зависимость изменения толщины сольватного слоя и устойчивости нефтяной дисперсной системы от растворяющей способности дисперсионной среды. Повышение растворяющей способности среды вызывает непрерывное увеличение сольватного слоя сложной структурной единицы до максимума и одновременное уменьшение размеров надмолекулярной структуры. При этом нефтяная дисперсная система имеет максимальную устойчивость против расслоения, то есть максимальную коллоидную стабильность. При дальнейшем увеличении растворяющей способности среды, при переходе от плохого растворителя к хорошему, дисперсионная среда оказывает интенсивное влияние на сольватный слой и толщина его уменьшается, за счет чего повышается движущаяся сила процесса расслоения системы на фазы. Дисперсионная среда начинает взаимодействовать непосредственно с надмолекулярной структурой. После полного растворения сольватной оболочки и надмолекулярных структур нефтяная дисперсная система переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения. В этом случае система термодинамически устойчива. [c.48]

    Классификация по активности. Наполненные системы различаются по активности. Надмолекулярные структуры нефтяных дисперсных систем характеризуются поверхностной и объемной активностью, обусловливающей определенные физико-механические свойства системы, С учетом необходимости направленного регулирования этих свойств нефтяных дисперсных систем предлагается их классифицировать в зависимости от поверхностной и объемной активности. [c.69]

    Полимеры, обладающие одномерным остовом. Линейные макромолекулы обладают большим избытком свободной энергии, вследствие чего принимают такую конфигурацию, при которой каждый их атом окружен возможно ббльшим количеством соседей эффективное внутримолекулярное взаимодействие между ними в значительной мере понижает уровень свободной энергии. В зависимости от характера строения и состава цепные молекулы скручиваются спиралями или складываются гармошкой и упаковываются в таком виде как можно плотнее, образуя так называемые надмолекулярные структуры. [c.39]


    Мы видим, что конструирование твердого вещества связано с особыми подходами. Эти подходы разрабатывает структурная механика, которая изучает закономерности упаковки молекул и макромолекул, а также зависимость термомеханических свойств от молекулярной и надмолекулярной структуры синтезируемого вещества. [c.244]

    В случае больших у надмолекулярная структура некристаллических полимеров претерпевает весьма существенные изменения, влияя на характер их течения. При, переходе от малых (0,1 с ) к большим (4,0 С ) у зависимости Р = [ Т) для регулярного бута-170 [c.170]

    Информацию о связи молекулярного строения и надмолекулярной структуры полимеров с их физическими свойствами обычно получают, изучая их физические превращения (или переходы). К таким превращениям относятся процессы стеклования и плавления. Анализ экспериментальных данных, полученных для разных полимеров, показывает, что оба эти процесса наблюдаются вместе лишь у кристаллических полимеров, содержащих неупорядоченные и упорядоченные области. Из сопоставления температурных зависимостей термодинамического потенциала Ф, коэффициентов термического расширения Р и изотермической сжимаемости Хт следует [10.7], что характер их изменения в области стеклования и плавления полимеров оказывается примерно одинаковым (рис. 10.21). [c.271]

    Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для Я-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением надмолекулярных структур — микроблоков. Различие между про- [c.347]

    Экстремальный характер представленных зависимостей обусловлен конкуренцией надмолекулярных структур компонентов смесей. Левые ветви парабол для смесей с крекинг-остатком описывают низкотемпературные качества надмолекулярных структур на основе асфальтенов остатков, в которых соотношение парафино-нафтено-вых и ароматических углеводородов не превышает единицы. Последнее, отношение доли содержания асфальтенов и смол, средневзвешенное значение радиусов частиц, как видно, являются однонаправленными факторами. Уменьшение их величины приводит к сниже- [c.14]

    Кривая 1, соответствующая дистилляту вторичного происхождения (КГФЗК), отражает температурную зависимость, характерную для надмолекулярных структур кристаллизационного типа [17, 31,38]. [c.19]

    Кинетика старения битумов обусловлена спецификой протекания в них химических реакций и процессов формирования равновесных надноде-кулярных структур. Как известно, кинетика химических реакций и формирования надмолекулярных структур находится в пряной зависимости от структурного состояния битумов и интенсивности молекулярных движений. Вследствие увеличения молекулярной подвижности по мере повышения температуры скорость химических превращений в органических соединениях, в том числе и у битумов, всегда возрастает. В то же время скорость формирования равновесных надмолекулярных структур в битумах при определенных температурах имеет экстремальную величицуГ 1J. [c.77]

    Исследованиями зарубежных и отечественных ученых усгановлено, что эксплуатационные свойства углеродных материалов находятся в прямой зависимости от структуры и, в частности, кристаллической структуры нефтяных коксов. При высокотемпературной обработке нефтяных коксов при прокаливании и графитации происходит целый ряд физико-химических превращений, в результате которых несоверщенный по своей структуре кокс перестраивается в кристаллический материал с трехмерно упорядоченной структурой. Особый интерес представляет перестройка тонкой кристаллической структуры, так как многообразие переходных форм углерода, многообразие свойств углеграфитовых материалов определяется сочетанием углерода в различных гибридных состояниях с разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев и степенью их совершенства. [c.117]

    С помощью МУР изучено распределение пор по размерам в структуре коксов стандартной прокалки. У игольчатого кокса субструктурная пористость состоит, в основном, из макропор с радиусом инерщ1и около 500 А, у рядового - из переходных и макропор с радиусом инерции 350 А, у коксов КНПС пористость определяется микропорами с радиусом инерции около 20 А. Содержание закрытых пор меняется довольно значительно, составляя 30 % для коксов игольчатой структуры и 67 % для изотропного кокса. Сопоставление характеристик структурной пористости с характеристиками сырья коксования показало зависимость надмолекулярной структуры и пористости от содержания асфальтенов. Чем больше содержание асфальтенов в сырье, тем выше структурная пористость, меньше величина сростков кристаллитов. Чем больше суммарное содержание ароматических углеводородов, тем больше величина последних. Следовательно, по характеристикам сырья можно прогнозировать структуру кокса. [c.118]

    Полученные данные свидетельствуют о том, что в результате механоактивационной обработки происходит изменение качественного и количественного состояния надмолекулярных структур нефтяных остатков. В зависимости от количества дисперсной фазы ультразвуковая обработка может вызывать как уменьшение размеров надмолекулярных образований, так и их увеличение. Наибольший эффект механоактивации наблюдается в основном для асфальта, характеризующегося наибольшим количеством дисперсной фазы для исследованного сырья. [c.123]

    Межмолекулярные взаимодействия склонных к структурированию ВМС приводят к образованию иространственных надмолекулярных структур, состоящих из множества макромолекул, В зависимости от характера связей надмолекулярные структуры делят иа физические ассоциаты, в которых действуют силы Ван-дер-Ва-альса, и на физико-химические комплексы с более прочными химическими связями. Физические ассоциаты способны при определенных условиях переходить в комплексы (кристаллиты). Число мак- [c.11]

    Не рассматривая вывод кинетических уравнений формирования слоев надмолекулярных структур, аналогичных уравнениям, выведенным выше для изучения кинетики формирования сольватных слоев, мы остановимся на выводах, вытекающих из этих уравнений. На рис. 13 па основании кинетических уравнений формирования (разрушения) слоев показана зависимость изменения толщины слоев от растворяющей силы диснерсионной среды (иерас-творитель, плохой растворитель, хороший растворитель). РС среды, обусловливает структурно-механическую прочность и устойчивость НДС, оказывающих существенное влияние на многие процессы переработки нефти (в том числе и на процессы произво.дст- [c.62]

    На основании учета диффузионных и кинетических факторов, а также представлений о радикально-цепном механизме рассмотрим экспериментальный и теоретический материал, имеиэщийся по термической деструкции компонентов ароматических концентратов и тяжелых нефтяных остатков. При нагреве нефтяных остатков в зависимости от порога устойчивости надмолекулярных структур происходит их последовательное выделение из нефтяной системы, Прн термодеструкции расслоившаяся диснерсионная среда и дисперсная фаза нефтяных остатков ведут себя по-разному. [c.162]

    При дальнейшем повышении температуры начинают устанавливаться химические связи, и наступает момент, когда энергия тепло -вого движения становится соизмеримой с энергией взаимодействия высокомолекулярных соединений. В этом случае, несмотря иа наличие межмолекулярного взаимодействия, возможно изменение взаимного расположения отдельных частей (сегментов) сложных молекул. Такое состояние именуется высокоэластичным . При дальнейшем повышении температуры энергия взаимодействия молекул и их частей становится настолько большой, что она начинает значительно превышать энергию теплового движения, длительность установления равновесной конфигурации молекул возрастает, начиная с некоторой температуры структура фиксируется, осуи1еств-ляется переход от равновесной к неравновесной структуре амор( )-ного вещества, т. е. происходит стеклование. Наиболее отчетливо этот процесс прослеживается по изменению концентрации асфальтенов в системе, 1к которых формируются надмолекулярные структуры. В зависимости от растворяющей способности среды концентрация асфальтенов в системе сначала повышается, проходит через максимум и затем падает. [c.166]

Рис. 25. Зависимость объемов надмолекулярных структур V от температуры / прп 35%-ii копцентрацмн ДКО в Л КГ Рис. 25. Зависимость объемов <a href="/info/15779">надмолекулярных структур</a> V от температуры / прп 35%-ii копцентрацмн ДКО в Л КГ
    На примере исследования деформационно-прочностных свойств мангышлакской нефти было показано, что в зависимости от градиента скорости нефть ведет себя как псевдопластичное, идеаль-но-пластичное тело или как тело Шведова — Бингама [66]. Эффективная вязкость парафиннстых нефтей складывается из структурной вязкости, зависящей от наличия в системе надмолекулярных структур, температуры, градиента скорости сдвига и вязкости ньютоновской" жидкости, в которую переходит неньютоновская жидкость после разрушения структурированной системы [67]. Термообработка, введение специальных добавок оказывают большое влияние на реологические свойства парафиннстых нефтей [68—70]. [c.21]

    Экстремальные изменения радиуса надмолекулярной структуры II толщины сольватного слоя непосредственно влияют на характер зависимости структурно-механической прочности и агрегативной устойчивости нефтяной системы. Кривые изменения этих свойств типичны для многих нефтепродуктов. В точке Ж устойчивость нефтяных дисперсных систем к расслоению на фазы максимальна толщина сольватной оболочки в точке А имеет максимальное значение Я кс, благодаря чему уменьшается движущая сила процесса расслоения. Толстая прослойка дисперсионной среды между надмолекулярными структурами снижает структурно-механическую прочность нефтяных дисперсных систем, первый минимум которой достигается в точке К. Утоньшение сольватного слоя на поверхности надмолекулярных структур повышает движущую силу расслоения системы на фазы. После удаления основной части сольватного слоя (точка 3) дисперсионная среда начинает взаимодействовать непосредственно со слоем надмолекулярной структуры, обуславливая его полное разрушение в точке Б. В этой точке сложные структурные единицы переходят в состояние молекулярного растбора с бесконечной устойчивостью к расслоению на фазы. Предлагаемое объяснение экстремальных изменений структурномеханических свойств и агрегативной устойчивости нефтяных систем справедливо, если считать, что межфазная энергия на границе структурная единица — дисперсионная среда меняется незначительно. [c.41]

    В качестве пластификаторов применяют низкомолекулярныо растворители, которые прн иведении в полимер распределяются между макромолекулами илн между надмолекулярными структурами в зависимости от качества растворителя — пластификатора. В результате уменьшается когезия между макромолекулами, образуется подвижная структура, обладающая малой вязкостью и высокой эластичностью. [c.391]

    Многочисленными исследованиями установлено,что свойства углеродной продукции находятся в прямой зависимости от структуры и физико-химических свойств нефтяных коксов. ОсоОый интерес представляет тонкая структура, так как многооОразив переходных форм углерода объясняется сочетанием углерода в различных гибридных состояниях, разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев, степенью их совершенства. [c.96]

    Чтобы определить долговечность битумов в асфальтобетонных покрытиях, необходимо учесть также усталостное воздействие транспортных нагрузок на Т . Учет этого фактора был произведен на основе допущения, что количество циклов усталостного нагружения при 0°С, с частотой 5 Гц, амплитудой деформации 0,3x10 ддя дороги П технической категории составляет 10 -10 . При таком воздействии в асфальтобетоне на битуме со структурой гель температура растрескивания возрастает примерно на 3°С [4 ]. Тогда срок службы асфальтобетонного покрытия на битуме со структурой гель согласно рис. 5 будет определен по кривой путем понижения критической температуры, растрескивания (-18°С) на 3°С, что и позволяет учесть таким образом усталостное воздействие транспортных нагрузок на изменение Т в процессе термоокислительного старения и формирования равновесных надмолекулярных структур. Влияние усталостного воздействия на Т других битумов было определено путем использования зависимостей усталостного воздействия и Т , представленных на рис. 3. С этой целью для соответствующего битума определялась величина смещения температуры относительно зависимости для битума > I при одинаковой какой-либо величине усталостного воздействия. [c.217]

    Между количественными и качественными изменениями в нефтяной дисперсной системе существует зависимость, которая определяется соотношением поверхностной и объемной энергий взаимодействия компонентов, составляющих надмолекулярную структуру. Обладая нескомпенсированной избыточной поверхностной энергией, зародыши формируют вокруг себя сольватные оболочки определенной толщины из молекул дисперсионной среды. Вместе с сольватной оболочкой зародыш образует сложную структурную единицу (ССЕ), которая при изменении вне-пших условий может разрушаться или расти. Во втором случае формируются вторичные ССЕ, размеры которых — радиус надмолекулярной структуры и толщина сольватной оболочки, а также упаковка молекул в надмолекулярной структуре могут изменяться по мере изменения межмолекулярного взаимодействия среды [ 16]. [c.47]

    Приведенные выше рассуждения соответствуют релаксационной теории структурного стеклования, впервые предложенной Кобеко [39, с. 176]. Эта теория учитывает, однако, йзл 1енение структуры жидкости только в пределах ближнего порядка и поэтому не объясняет всех особенностей процессов стеклования а полимерах. Например, в полимерах выше Тс с изменением темпе ратуры, кроме изменения структуры на уровне ближнего порядка, идут процессы структурообразования, например процессы формирования флуктуационных надмолекулярных структур, процессы обратимого и необратимого структурирования и т. д. Это приводит к более сильной температурной зависимости физических свойств в области стеклования. [c.85]

    При еустановившемся течении зависимость продольной вязкости от относительной деформации определяется скоростью деформации (рис. V. 7). На начальном этапе развития (область А) вязкость пропорциональна деформации, что было показано Каргиным и Соголовой на примере высокомолекулярного полиизобутилена . Область А будет тем шире, чем выше скорость деформации. Физический смысл нарушения пропорциональности связан с протеканием при деформировании конкурирующих процессов ориентации, обусловливающей рост X, и разрушения надмолекулярной структуры, приводящей к падению X (см. гл. VI). Для легкости сопоставления данные зависимости сдвиговой вязкости, например от скоро- сти деформации, представляются в приведенных координатах (рис. V. 8). Таким образом удается уложить на одну обоб-щенную кривую данные для вязкосги при g, различных температурах и даже для различных полимеров. Независимость хода  [c.179]

    На начальном этапе растяжения (область А) вязкость возрастает пропорц1ионально деформации (рис. 6.7), что было показано экспериментально для высокомолекулярного полиизобутилена (Л = 5,3-10 ) Каргиным и Соголовой. Чем больше скорость деформирования, тем дольше будет сохраняться эта зависимость. Размытый максимум на кривых Я=/(е) соответствует конкурируюшему проявлению двух процессов ориентации, вызываюш,ей увеличение Я, и частичному разрушению надмолекулярных структур (их раз- [c.159]

    Константы в соотношениях, приведенных выше, как показывает анализ, проведенный для большого числа полимеров, всегда представляют собой числа, большие нуля, но меньшие единицы. Более точное значение константы можно установить лишь зная особенности молекулярного строения и надмолекулярной структуры полимеров. Для этого все полимеры можно классифицировать по степени гибкости их цепей гибкоцепные, полужесткоцепные и жесткоцепные. При этом важно знать, содержат ли макромолекулы полимеров боковые группы или более крупные ответвления и имеются ли в них звенья разных видов (статистические сополимеры, блок-сополимеры). Проведенные подсчеты зависимостей числа полимеров N от отношения TdT - показали, что в общем случае они имеют вид, представленный на рис. 10.23. [c.273]


Смотреть страницы где упоминается термин Надмолекулярная структура зависимость от ПАВ: [c.57]    [c.17]    [c.37]    [c.158]    [c.176]    [c.51]    [c.190]    [c.74]    [c.79]    [c.79]    [c.82]    [c.281]   
Долговечность полимерных покрытий (1984) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Структуры надмолекулярные



© 2025 chem21.info Реклама на сайте