Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределения коэффициент кальция

    Метилизобутилкетон не должен содержать более 1% органических примесей, так как увеличивается растворимость Сг и 2г. Коэффициент распределения урана и плутония между фазами улучшается в присутствии нитратов аммония, кальция, магния, натрия и аммония, а также азотной кислоты, повышение же температуры влияет неблагоприятно. Метилизобутилкетон растворяет в небольших количествах также 2г, N5, 11-238, Ки и Сг. Трибутилфосфат раство- [c.433]


    Коэффициент активности кальция в сыворотке крови значительно ниже, чем в стандартном растворе равной ионной силы и концентрации, вследствие связывания большой части ионов этого элемента белком и образования недиссоциированных комплексов в растворе. В основном Са + связывают три аниона — бикарбонат, фосфат, цитрат. В физиологических растворах уменьшение активности Са + обусловлено в основном бикарбонатом. Распределение кальция во внеклеточной и внутриклеточной средах очень неоднородно. Во внеклеточной жидкости помимо ионизированного кальция имеется кальций, связанный белком и находящийся в виде хелатов. На внешней поверхности клетки кальций связан с функциональными группами мембраны и мукопротеинами — в общей сложности в этих компонентах сосредоточено около 90% общего кальция клетки. [c.496]

    Высокие значения коэффициентов распределения скандия были получены для подкисленных растворов тиоцианата. Как видно из данных, приведенных в табл. 5.25, в этих средах скандий можно отделить от кальция, лантана, самария и других элементов. [c.202]

    Для пограничного слоя (О—2 км) предложены 10 вариантов типичных вертикальных про( )илей коэффициента ослабления, характеризующих условия чистой и загрязненной (городской) атмосферы и атмосферы над морем при диапазоне значений горизонтальной дальности видимости 2—50 км (цифры в нижней части рис. 4.1 характеризуют эти значения). Чистый аэрозоль представляет собой комбинацию пылевых и растворимых в воде частиц (аммиак, сульфат кальция и органические соединения), микроструктура которых аппроксимируется суммой двух логарифмически-нормальных распределений таким образом, чтобы счетная концентрация определялась законом а объемная была бимодальной при широких максимумах в диапазоне радиусов 0,1 — 1 и 5—100 мкм. Городской аэрозоль состоит из сельского (65 7о) и углеродного антропогенного (35%) аэрозоля. Морской аэрозоль составляют частицы морских солей, возникшие в результате испарения брызг, и частицы континентального аэрозоля (мелкодисперсная компонента фонового аэрозоля). [c.151]

    Выделение стронция. Водная фаза, остающаяся после экстракции церия нитрометаном, содержит радиоактивные стронций и редкоземельные элементы. При повышении концентрации азотной кислоты до 70—80% содержащийся в этом растворе кальций кристаллизуется в виде безводного нитрата С осадком нитрата кальция соосаждается стронций с высоким коэффициентом распределения, причем процесс соосаждения подчиняется закону Хлопина. Последнее обстоятельство, обусловленное значительно более низкой растворимостью нитрата стронция по сравнению с нитратом кальция, позволяет практически полностью осаждать стронций при далеко неполном осаждении кальция ( 10%). [c.25]


    Аналогичная картина наблюдается в случае, описанном В. М. Вдовенко, А. А. Липовским и М. Г. Кузиной [3] (см. также [4]). Эти авторы, как известно, установили, что при экстракции уранилнитрата кетонами в определенных условиях (высокая концентрация нитрат-ионов) в органическую фазу извлекаются цезий, кальций, стронций и лантан. Коэффициенты распределения этих элементов увеличиваются с ростом концентрации урана. Это согласуется с предположением авторов об экстракции указан- [c.24]

    Отсюда следует, что увеличение коэффициента ионного распределения и уменьшение величины адсорбции органического иона из неводных сред будет при обмене на двухвалентный ион еще больше, чем при обмене минеральных ионов. Экспериментальные исследования показывают, что при одинаковой степени заполнения емкости коэфф)ициент распределения при обмене морфина на кальций возрастает при переходе от воды к метиловому спирту почти в 1000 раз, в то время как константа ионного обмена ионов цезия на ионы кальция только в 10 раз (рис. 96). Зависимость [c.420]

    Фосфорная кислота образует довольно прочные комплексы с железом и алюминием и, следовательно, может применяться в качестве комплексообразующего элюента при отделении этих металлов от двузарядных ионов, в частности, от марганца и меди [29]. Высокой устойчивостью отличаются анионные комплексы с пирофосфатом и полиметафосфатом (ср. рис. 5,4) с их помощью некоторые элементы, например, медь, цинк и марганец, могут быть отделены от железа методом селективного поглощения. Железо, образующее прочные анионные комплексы, не поглощается катионитом, который лучше всего использовать в КН4-форме [34 80, 108, 109 ]. В качестве комплексообразователя для меди иногда используется несколько необычный элюент — раствор тиосульфата. А. М. Васильев, В. Ф. Торо-пова и А, А. Бусыгина [134 ] применяли раствор тиосульфата для отделения меди от цинка или кадмия, а Д. И. Рябчиков и В. П. Осипова [109 ] — для отделения меди от алюминия и магния. Коэффициенты распределения [59 ] определяют следующий порядок элюирования медь, кадмий, свинец, цинк. Такие элементы, как никель, кобальт, марганец, алюминий, железо, кальций и барий, весьма прочно удерживаются катионитом. [c.364]

    В данной работе необходимо 1) используя радиоактивный изотоп ThB, определить величину коэффициента распределения для системы Pb(ThB) l2 — — ВаСЬ — Н2О 2) установить влияние знака заряда поверхности осадка сульфата кальция и присутствия многовалентных ионов на соосаждение ThB. [c.148]

    Этиловый эфир [374] вымывает из раствора, кроме нитратов. ще и галогены. Присутствие нитратов некоторых металлов увели-Ч1 вает коэффициент распределения урана, причем самое выгодное действие оказывают нитраты магния, кальция и алюминия. Обяза-телен taкжe некоторый избыток азотной кислоты. Наименьшая кон-це трацня азотной кислоты равна 0,05 моль1л, обычно же применяются растворы М. Рекомендуется высаливание, например, 2,ЪМ. Мй(НОз).2 и (0,5ч-1,0)М Н1 Ьд. Хорошие результаты дает также нитрат аммония. Влияние высаливания и концентрации кислоты на степень экстракции нитрата уранила показано в табл. 6-4. [c.426]

    Экстракция тория в виде свободных ионов может быть проведена метилизобутилкетоном из водной фазы, содержащей нитрат кальдия (3 моль/л) и HNO3 (3 моль л) [407, 4191, пентаэфиром [418], окисью мезитила [414, 416], трикрезилфосфатом [415, 418], а также моно-и диал кил фосфатами [415]. Наивысшие коэффициенты распределения (порядка нескольких тысяч) у последних (например, у монооктил фосфата или дибутил фосфата), но для технических целей пользуются предпочтительно трибутилфосфатом. При концентрации HNO в водной фазе 6—15 моль л коэффициент распределения у чистого трибутилфосфата составляет /n=100-f400. При высаливании, например, нитратом кальция уже из 0,1 М раствора выход экстрак- [c.438]

    Отсюда следует, что увеличение коэффициента ионного распределения и уменьшение величины адсорбции органического иона из неводных сред будут при обмене на двухвалентный ион еще больше, чем при обмене минеральных ионов. Экспериментальные исследования показывают, что при одинаковой степени заполнения емкости коэффициент распределения при обмене морфина на кальций возрастает при переходе от воды к метиловому спирту почти в 1000 раз, в то время как константа ионного обмена ионов цезия на ионы кальция только в 10 раз (рис. 93). Зависимость Ig от 1/е в этом случае уже не линейна, так как ЛС/п не зависит от диэлектрической проницаемости. Величина (АС7пм пн о) в уравнении не остается постоянной с изменением степени заполнения адсорбционного объема органическими ионами адсорбционные потенциалы различно изменяются с изменением емкости, поэтому влияние растворителя на коэффициент распределения зависит от степени заполнения емкости адсорбента органическими ионами. Если с изменением степени заполнения С/пм становится сравнимой с или больше нее, то будет происходить изменение знака (i7i,r — /пл)- В этом случае константа с увеличением степени заполнения емкости органическим ионом будет не возрастать, а падать. [c.375]


    Для отделения скандия от железа, также хорошо экстрагирующегося ТБФ, применяется реэкстракция его нитратом магния. С этой целью промывают несколько раз раствором Mg(N0a)2 органическую фазу железо переходит в водную фазу, скандий остается в органической фазе [38], откуда его вымывают водой или разбавленными (не выше 4 н.) кислотами. При экстракции скандия ТБФ из солянокислой среды, помимо перечисленных элементов, он отделяется и от А1, коэффициент распределения которого 0,03—0,05 и не зависит от концентрации кислоты [2, стр. 107]. При значительном содержании кальция в растворе он может переходить в органическую фазу в связи с тем, что его а (0,1) выше, чем а алюминия. Для отделения кальция в таких случаях промывают органическую фазу концентрированной кислотой [2, стр. 107]. [c.29]

    Извлечение экстракцией. Перспективный метод — экстракция германия из солянокислых растворов тетрахлоридом углерода, хлороформом, бензолом, трибутилфосфатом, керосином и т. п. Их различие в экстракционной способности невелико. По-видимому, во всех случаях экстрагируется Ge l4 [89]. Коэффициент распределения увеличивается с концентрацией кислоты и при экстракции тетрахлоридом углерода из 9 н. НС1 равен примерно 300 (для мышьяка в этих условиях не превышает 6) [90]. Соляная кислота при экстракции растворяется незначительно. Можно использовать смеси серной и соляной кислот или добавлять в кислые растворы хлорид натрия, калия, магния или кальция. Экстрагировать можно из растворов или из пульп непосредственно после кислотного разложения. Реэкстрагируют водой — выпадает осадок СеО. [90]. [c.184]

    Для некоторых примесей в теллуре разными авторамн были найдены резко различающиеся значения УСо, например, для серебра 0,02—8-10" , для свинца 0,58 — 1 10" . Это связано, по-видимому, с присутствием примесей в различных формах и с взаимным влиянием примесей. Так, коэффициенты распределения кальция и магния в присутствии Си, Ag, Bi сильно возрастают до значений больше единицы. Коэффициент распределения меди в присутствии Аи, Bi, In увеличивается в 1,5—5 раз [ПО]. Кроме того, по-видимому, играет роль также резкая зависимость /Сэфф от скорости кристаллизации, связанная с своеобразной полимерной структурой теллура. Например, для серебра, по [111], /Сэффпри скорости кристаллизации 0,3 см/ч равен 0,027, а при 9 см/ч — 0,98. [c.152]

    Пример 5.2. Рассчитать степень очистки пыли, выделяющейся при сушке продукта в сушильном агрегате цеха гипохлорита содового завода. Графическое представление дисперсного состава пыли дано на рис. 1.3, линия 4. Ги-похл оритная пыль (двухосновной соли гипохлорита кальция) состоит из частиц неправильной и игольчатой формы, которые могут агрегироваться в более крупные образования. Плотность пыли р =1980 кг/м коэффициент абразивности (по стали СтЗ) К < 0,510 м7кг, смачиваемость 100%. По паспорту 98 мкм. Поскольку распределение размеров частиц плохо описывается нормальным или логарифмически нормальным законом, это значение можно применять в качестве ори- [c.181]

    Эффективность экстракции плутония в значительной мере зависит от концентрации азотной кислоты и высаливателей в водной фазе [217, 632]. В качестве высаливателей применяют нитраты аммония, натрия, кальция, магния алюминия. Их высаливающая способность приблизительно одинакова. Исключение составляет нитрат аммония, в присутствии которого достигается более высокая степень отделения от осколков деления [31]. Влияние концентрации HN3 и Са(МОз)2 показано на рис. 93 и 94. Согласно этим данным Pu(IV) и Pu(VI) имеют более высокие коэффициенты распределения в присутствии нитрата кальция. Лучшая очистка от продуктов деления достигается при низких нислотностях. В связи с тем, что Pu(IV) в таких условиях может образовывать полимеры, препятствующие его извлечению, более надежным является экстрагирование Pu(VI). В качестве окислителей используют бихроматы калия-и натрия, бромат калия, висмутат натрия [632] и перманганат калия [527]. [c.314]

    Влияние концентрации азотной кислоты и нитрата кальция на коэффициент распределения показано на рис. 112. По мере увеличения концентрации нитрата растет коэффициент распределения в соответствии с реакцией (1). Максимальная величина в растворах НМОз достигается при кислотности 7,7 М, хотя, по данным Райана [623], в этих условиях доля гексанитратных форм составляет 40%. При кислотности более 7,7 М коэффициент распределения падает вследствие уменьшения активности сорбируемого иона. В растворах иитрата кальция, содержащих небольшое количество азотной кислоты, влияние реакции (2) проявляется в гораздо меньшей степени, и Kd значительно выше по сравнению с чистыми растворами азотной кислоты. Однако перевод Ри(1У) в комплексную форму при помощи солей, найри-мер Са(МОз)а, не используется в анионном обмене из-за низких скоростей сорбции плутония в этих условиях. [c.357]

    В последнее время для экстракции тория начинают широко применяться эфиры фосфорной кислоты, особенно трибутилфосфат [1332]. В азотнокислых растворах наблюдаются высокие значения коэффициентов распределения, даже при низких концентрациях кислоты 5—10 в 1 М HNO3 и 100— 400 в 6—15 М HNO3 [1603]. При насыщении водной фазы, 0,1 М по HNO3, нитратом кальция индикаторные количества тория экстрагируются более чем на 99,9% [1605]. [c.121]

    Использование метилизобутил- и диизопропилкетонов дает удовлетворительные результаты в присутствии сильных высаливателей — нитратов кальция или алюминия — и обеспечивает полную очистку тория от р. 3. э. В случае применения ЫН4ЫОз в качестве высаливателя коэффициенты распределения нитрата тория не превышают 0,15, даже в растворах 10 М по нитрат-ионам, а при низких концентрациях нитрата коэффициенты распределения становятся практически ничтожными (0,01 и ниже). Последнее обстоятельство дает возможность осуществлять экстракционное отделение протактиния и урана от тория. [c.231]

    В среде азотной кислоты поглощение анионитами U (VI) незначительно. При увеличении концентрации HNO3 коэффициент распределения возрастает от D = 1 в 2 уИ растворе HNO3 до D=20 в 8 уИ растворе HNO3 [109]. При дальнейшем увеличении концентрации кислоты происходит разрушение анионита. Для выделения урана из азотнокислых растворов чаще всего употребляют смесь азотной кислоты небольшой концентрации и нитрата алюминия, лития, кальция и др. [c.319]

    Наибольшее распространение в экстракции получил метил-изобутплкетон, применяемый для отделения U (VI), Th и Ри (VI, IV) от рзэ 1 ряда дрз гих, главным образом при очистке ядерного горючего от продуктов распада. Экстракцию почти всегда проводят в присутствии высаливателей — нитратов аммония, лития, кальция и др. Коэффициенты распределения некоторых элементов в зависимости от концентрации HNOg приведены на рис. 15 и 16, причем в последнем случае результаты имеют прямое практическое значение, так как они получены при экстракции смеси всех изучавшихся элементов. Не касаясь характера изменения Ка, можно отметить, что экстракция кетоном дает возможность количественно отделять U(VI), Fu (VI, IV), а также Th, от рзэ или и (VI) от осколочных Се -, Zr , Sr °, Цирконий [c.134]

    Как сказано выше, извлечение церия в чистом виде производится экстракцией органическими растворителями. Наиболее подходящими из последних оказались трибутилфосфат и нитро метан. Высокая устойчивость нитрометана к окислительному действию озона позволяет использовать последний в качестве защитного окислителя при экстракции церия. Экстракция церия нитромет 1ном зависит от концентрации азотной кислоты, присутствия высаливателей и других факторов. В присутствии нитратов металлов (например, нитрата кальция) коэффициенты распределения церия значительно возрастают по сравнению с экстракцией из чистой азотной кислоты. Нитромотан обладает вы сокой избирательностью по отношению к четырех валентному церию как в чистой азотной кислоте, так и в присутствии нитрата каль-ция. Наилучшими условиями для извлечения церия нитрометаном являются концентрация кальция 3—4 г-экв/л и азотной кислоты в водной фазе 3—5 М. [c.25]

    Коэффициенты распределения редких земель и иттрия между трибутилфосфатом и водным раствором азотной кислоты изменяются с изменением концентрации последней. Эта зависимость имеет довольно сложный характер, причем наиболее сильные различия между коэффициентами распределения двух соседних редкоземель-яых элементов наблюдаются при наиболее высоких концентрациях азотной кислоты. Присутствие нитрата кальция и нитратов других слабоэкстрагируемых металлов повышает степень экстракции редких земель. [c.26]

    Предварительные эксперименты показали также, что при извлечении кетонами перренатов магния, кальция, марганца и бария значения коэффициентов, распределения в отсутствие высаливающих агентов и самовысаливания также довольно близки. В связи с этим можно предположить, что и в случае извлечения перренатов двухвалентных катионов в присутствии одноименных катионов высаливающих агентов изменение коэффициента распределения связано не только с изменением степени ассоциации соответствующего перрената, но и с изменением состояния воды в равновесной водной фазе. Поэтому рост значений коэффициентов распределения для ассоциатов перренатов с катионами в ряду > > 2х -" > N1 > Мп-" > [c.124]

    Для выяснения возможного механизма соэкстракции была изучена более детально экстракция кальция в присутствии скандия. Коэффициенты распределения кальция в присутствии скандия были определены прямым и обратным методами было показано, что результаты прямой и обратной экстракции практически совпадают. Исследовалось влияние концентрации скандия и оксихинолина на экстракцию кальция, были сняты спектры поглощения экстрактов и проведен электрофорез органических фаз. Полученные данные в какой-то мере объясняются предположением об экстракции смешанного соединения Са(ЗсОх4)2. [c.234]

    Была изучена также экстракция железа из растворов хлоридов лития, магния, кальция, алюминия и некоторых других металлов [5]. Интересно, что коэффициенты распределения в ряде случаев сравнимы с коэффициентами распределения, полученными при экстракции из НС1. Проведенный нами химический анализ органических фаз свидетельствует о том, что экстрагируются соли состава LiFe l4, Са(РеС14)г, Mg(Fe l4)2. [c.239]

    Константы устойчивости можно также рассчитать из измерений распределения лиганда между водным раствором и анионитом, который не насыщен относительно А. Наннинга [43] определил распределение три-, ди- и монофосфатов аденозина между анионитом и растворами, содержащими различные общие концентрации ионов кальция и магния. Было сделано предположение, что происходит распределение только свободного лиганда. Поскольку в растворе присутствует лишь первый комплекс, коэффициент распределения лиганда определяется выражением [c.306]

    Часто трудно определить, представляют ли собой перекиси, выделенные из реакционной смеси, перекись водорода или же они являются органическими перекисями до самого последнего времени было предпринято лишь немного попыток определить строение этих перекисей. Выводы относительно характера перекисей могут быть сделаны на основании следующих доказательств 1) состава газа и жидкости, образующихся при разложении перекиси (например, перекись водорода дает при этом кислород и воду гидроперекись оксиалкила при щелочном разложении дает водород и кислоту гидроперекись метила при разложении па платиновой черни [145] дает двуокись углерода) 2) разных цветных реакций, например реакции с применением титановой соли, которую считают весьма специфичной для перекиси водорода (см. гл. 10) 3) характеристики реакции с кислым раствором йодистого калия (гидроперекись метила, например, реагирует лишь в присутствии сернокислого закисного железа как катализатора, но не реагирует в присутствии молибдата аммония [146] кроме того, скорость окисления йодида до йода заметно зависит от характера перекиси [147, 148]) 4) образования нерастворимых неорганических перекисей, например перекиси кальция или пероксобората натрия, при введении соответствующих добавок к продукту, что доказывает наличие перекиси водорода или гидроперекисей оксиалкилов 5) сравнения спектров поглощения с этими спектрами для известных перекисей [149, 150] 6) определения коэффициентов распределения с эфиром [151] 7) методов хроматографического разделения [146, 152] 8) определения скорости термического разложения различных перекисей при температуре реакционной зоны и 9) методов полярографии [152—1541 (см. гл. 10). [c.76]

    При взаимодействии цементов с водой образуются гели, причем возникает равновесие между содержанием окиси кальция в осадке и в сосуществующем растворе. Отношение между содержанием извести в осадке и в растворе представляет собой постоянную величину — коэффициент распределения. С целью определения этого отношения Лоренц и Хагерман провели длительные опыты с экстрагированием, результаты которых схематически представлены на фиг. 823. Горизон- [c.805]

    В нашей работе [543] показано, что кальций и стронций в слабощелочной среде соэкстрагируются с 8-оксихинолинатами скандия, неодима, тория и в меньшей мере алюминия. Экстракция проводилась из боратных буферных растворов 0,14 М раствором 8-оксихинолина в бензоле. Концентрация кальция и стронция была порядка 10 М. Измерения коэффициентов распределения проводили радиометрическими методами. Во всех опытах достигалось равновесие. [c.178]


Смотреть страницы где упоминается термин Распределения коэффициент кальция : [c.288]    [c.18]    [c.120]    [c.178]    [c.27]    [c.27]    [c.235]    [c.322]    [c.236]    [c.420]    [c.46]    [c.97]    [c.233]    [c.80]    [c.245]    [c.293]   
Технология производства урана (1961) -- [ c.31 , c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент распределения



© 2025 chem21.info Реклама на сайте