Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эфиры по диэлектрической проницаемости

    У стены с окнами размещают лабораторные столы 1, к которым подводится электроэнергия и вода. На этих столах в основном проводят работы по измерению различных физико-химических свойств получаемых фракций дистиллята показателя преломления с помощью рефрактометра Аббе или интерферометра, температур затвердевания и плавления диэлектрической проницаемости и оптического вращения с помощью поляриметра. Рабочий стол 4, установленный в средней части основного помещения лабораторий, предназначен преимущественно для химических работ. У большей стены, выходящей в вестибюль, также размещают стенд 6. Для перегонки ядовитых веществ, вызывающих головную боль и головокружение (таких, как днэтиловый эфир, бензол, хлорированные углеводороды или органические нитросоединения) в лаборато- [c.469]


    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитро-замещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково [c.9]

    Так как полярные соединения с малым размером молекул имеют очень большую диэлектрическую проницаемость, их присутствие в высокомолекулярных веществах может сильно ухудшить диэлектрические свойства последних. Поэтому желательно, чтобы не было следов растворителей (ацетона, спирта, сложных эфиров и др.) в лаковых пленках, нежелательны мономеры и низкомолекулярные фракции в полимерных веществах (в поли-метилметакрилате, полиамиде и др.). Получая синтетические электроизоляционные масла (стр. 111), необходимо удалять низкомолекулярные полимеры (димеры, тримеры) изобутилена и н-бутиленов. В этих соединениях отрицательно на диэлектрические свойства влияет полярность двойной связи, что видно на диизобутилене [c.64]

    Полярные гидроксильные группы, вращаясь вокруг ординарной связи, могут ориентироваться в электрическом поле. В связи с этим проявляется эффект поляризации, и целлюлоза имеет высокую диэлектрическую проницаемость (е = 6,5—7) и большой тангенс угла диэлектрических потерь (0,005—0,010). Связывание гидроксильных групп в сложные и простые эфиры понижает гигроскопичность материалов и улучшает электроизоляционные свойства. [c.281]

    Касторовое масло — сложный эфир глицерина и рицинолевой кислоты. Диэлектрическая проницаемость 4—4,5, что выгодно используется в конденсаторах. Значения довольно высоки при 20° С 0,01—0,03, при 100° С 0,2—0,3. [c.313]

    Величина диэлектрической проницаемости эфира мала (е = 4,3) следовательно, этот растворитель не может вызвать диссоциацию. Ионы, возникающие в процессе ионизации, остаются по соседству друг с другом, образуя ионную пару . Растворы, содержащие ионные пары, не проводят тока. Вода, наоборот, одновременно способна и ионизировать и диссоциировать соединение. Следовательно, она может сначала ионизировать ковалентные соединения (например, кислоты), а затем диссоциировать образовавшиеся ионные пары на свободные ионы, сольватированные молекулами воды в этом случае раствор будет проводить ток. Реакция воды с соляной кислотой запишется так  [c.227]


    Экстракция комплексных металлокислот или простых минеральных кислот ничтожно мала в случае растворителей, не содержащих основного кислорода или азота, т. е. доноров электронов. При оценке эффективности растворителя в первую очередь должна быть учтена способность растворителя к координации, а потом уже дипольное взаимодействие растворителя. Так, о-дихлорбензол (диэлектрическая проницаемость 9,93 при 25°) экстрагирует кислоты гораздо слабее, чем диэтиловый эфир (диэлектрическая проницаемость 4,34 при 25°). Вообще между степенью экстракции кислоты и диэлектрической проницаемостью растворителя нет хорошего соответствия (кроме группы аналогичных растворителей определенного класса, как алифатические эфиры, метилкетоны и т. д.) лучшее соответствие наблюдается между степенью экстракции и основностью и стерической доступностью донорной группы. При экстрагировании кислот средней силы очень основными растворителями последние могут вытеснять воду из первого гидратного слоя (ср. с работой [10Ц, [c.303]

    На рис. 33 изображена диаграмма состав — диэлектрическая проницаемость растворов бензол — этиловый эфир нри 24° С и длине волны Х = 102 см [3]. По оси ординат отложена диэлектрическая проницаемость О. Концентрации х выражены в молярных дробях и изображаются с помощью отрезков на прямой АВ. Точка Л соответствует чистому ( 245)3 О, точка В - чистому С9Н5. Если состав раствора отвечает, например, точке Р, то отрезок АР представляет собой молярную дробь С Нв в растворе. Нетрудно видеть, что АР = 0,4, т. е. а сбНв в точке Р равно 0,4. Соответственно ВР, т. е. молярная дробь этилового эфира, будет равна 0,6 в молярных дробях. Из рис. 33 следует, что зависимость О от состава растворов gHg — ( 245)20 в пределах точности эксперимента при всех концентрациях является линейной. Следовательно, при любой концентрации растворов бензол — этиловый эфир диэлектрическая проницаемость О раствора может быть вы- [c.196]

    Характер изменения полярности и диэлектр>ичеекой проницаемости в зависимости от мольной доли маслорастворимого ПАВ, образующего в углеводородной среде межмолекулярные ассоциаты, представлен на рис. 4.6. Если образуются квадру-поли-димеры маслорастворимых ПАВ, что наблюдается в маслах, содержащих кетоны, некоторые эфиры и алкилгалогениды, то эти ассоциаты менее полярны, чем мономеры (кривая 2). В случае образования ленточных ассоциатов после введения в масло высокополимерных присадок полярность и диэлектрическая проницаемость с изменением мольной доли ПАВ проходят через максимумы и минимумы (кривая 3). Если же образуются ассоциаты или мицеллы за счет водородных или ионных свя-зей, а также КПЗ-комплексов, то полярность возрастает с изменением этой характеристики (кривая /). [c.205]

    Реакции МФК легко протекают в малополярных апротонных растворителях. Их диэлектрические проницаемости изменяются от 8,9 (дихлорметан), 4,7 (хлороформ) и 4,2 (диэтиловый эфир) до 2,3 (бензол) и 1,9 (гексан). Хотя растворимость обычных неорганических солей в этих растворителях пренебрежимо мала, органические четвертичные аммониевые, фосфоние-вые и другие ониевые соли, так же как и замаскированные органической оболочкой соли щелочных металлов, часто достаточно растворимы, особенно в дихлорметане и хлороформе. В этих растворителях концентрация свободных ионов незначительна и доминируют ионные пары. Вследствие слабого взаимодействия между ионными парами и молекулами растворителя реакция с электрофилами в органической фазе идет ыстро, и некоторые обычно слабые нуклеофилы (например, ацетат) оказываются сильными. Так, например, в гомогенных растворах в ацетонитриле относительная нуклеофильность солей тетраэтиламмония в реакции замещения с различными анионами от азида до фторида различается всего в 80 раз, причем фторид является наиболее сильным нуклеофилом среди галогенидов [127]. Различия в реакционной способности ионов в таких растворителях по сравнению с нормальным поведени- м в некоторых случаях бывают просто поразительными, и та- [c.18]

    Реакция, проводимая при низких температурах (50° С) в различных растворителях (пентан, циклогексан, бензол, диэтиловый или диизопропиловый эфир), протекает очень медленно (в течение нескольких дней) и является гетерогенной, поскольку катализатор нерастворим в средах с низкой диэлектрической проницаемостью. Скорость реакции, молекулярный вес и структура полимера сильно зависят от катализатора и растворителя и от присутствующих иногда в системе неорганических солей (Na l, NaBr). Например, очень эффективный комплекс, известный как алфиновый катализатор [222], получаемый из амилнатрия, пропена и изопропанола в присутствии Na l, можно представить как твердую решетку катионов Na" с анионами [c.107]

    Подставив вместо ф -потенциал, найдем, что при увеличении толидины диффузного слоя X (уменьшении и — величины обратной толщине слоя) -потенциал возрастает при постоянном расстоянии плоскости скольжения от границы раздела фаз. Так как понижение температуры, введение в систему индифферентного электролита (специфически не взаимодействующего с поверхностью) и увеличение заряда его ионов ведут к уменьшению толщины диффузного слоя, то соответственно снижается и электрокинетический потенциал. Отсюда же следует, что этот иотенциал будет снижаться и с уменьп1ением диэлектрической проницаемости среды, напрпмер, при добавлении в водный раствор спиртов, эфиров и других органических веществ. [c.218]


    Инверсия (рацемизация) без обмена называется изоинверсией. Механизм этого процесса подразумевает образование ионных пар. Действительно, в присутствии краун-эфира, способствующего образованию ионов, выход рацемата увеличивается [307]. На практике стереохимический путь многих реакций, катализируемых алкокси-дами металлов в неполярных растворителях, может быть в корне изменен при добавлении в среду каталитических количеств краун-эфиров. По этой причине в средах с низкой диэлектрической проницаемостью ионные пары с карбанионом как отрицательным ионом играют необычную роль промежуточных соединений. Например, изучена скорость обмена / обм и рацемизации йрац как функция [c.445]

    Определенное влияние на скорость реакции оказывают диэлектрическая проницаемость и дипольный момент растворителя. Так, диметилформамид и диметнлсульфоксид, имеющие высокие диэлектрическую проницаемость и дипольный момент, в большей степени ускоряют реакцию натриймалонового эфира с алкилгалогенидами, чем диоксан, ацетон, ацетонитрил и нитрометан. Иногда, впрочем, растворители с приблизительно рав- [c.123]

    С современной точки зрения заряд на коллоидных частицах лиозолей, проявляющийся при электрофорезе, обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, находящегося в растворе, либо за счет ионизации поверхностных молекул веществ. Правильность такой точки зрения подтверждают опыты, показавшие, что эле строкине-тические явления не наблюдаются или почти не наблюдаются в жидких средах с очень малой диэлектрической проницаемостью, в которых не происходит заметной диссоциации электролитов. К таким жидкостям относятся хлороформ, петролейный эфир, сероуглерод. В то же время электрокинетические явления наблюдаются в нитробензоле в таких слабо полярных жидкостях, как ацетон, этиловый и метиловый спирты, и в особенности — в воде. [c.171]

    Гексадекан ЧвНэ . Мол. вес 226,45, плотн. 0,772 при 20° С, т. кип. 286,8° С, т. плавл. 18,1° С, диэлектрическая проницаемость 2,06, показатель преломления 1,434, полярность по Роршнейдеру 2. Рекомендуемые растворители гексан, диэтиловый эфир, петролейный эфир. Максимальная рабочая температура колонки 7 С, минимальная 20 С. Применяется для разделения легких углеводородов. [c.279]

    Полярные жидкие фазы. Глицерин СзН,, (ОН)з. Мол. вес 92,03, плотн. при 20° С 1,26, т. кип. 290° С, т. плавл. 17° С, диэлектрическая проницаемость 42,1, показатель преломления 1,473, полярность nrf Роршнейдеру 80. Минимальная рабочая температура колонки 20° С, максимальная — 75° С. Рекомендуемые растворители диэтиловый эфир, этиловый спирт. Применяется для разделения кислородсодержащих соединений, а также для разделения смеси аммиака с метиламинами. f [c.280]

    Диоктилфталат jHi ( OO gHiijj. Мол. вес 390,56, плотн. 0,982 при 20° С, т. плавл. 25° С, т. кип. 386° С, диэлектрическая проницаемость 5,1, показатель преломления 1,484. Максимальная рабочая температура колонки 150° С Рекомендуемый растворитель — дихлорметан. Универсальная жидкая фаза. Применяется для разделения углеводородов, спиртов, фенолов, сложных эфиров, альдегидов, жирных кислот.< [c.282]

    Т рикрезилфосфат (тритолилфосфат) (СНзСаН40)зР0. Мол. вес 368,39, плотн. 1,179 при 20° С, т. плавл. 35° С, т. кип. 275 при 20 мм рт. ст., диэлектрическая проницаемость 6,7—7, показатель преломления 1,555, полярность по Роршнейдеру 48. Максимальная температура колонки 130° С. Рекомендуемые растворители ацетон, этанол. Селективная жидкая фаза. Применяется для разделения ароматических и алифатических углеводородов, кетонов, сложных эфиров и других кислород- и галогенсодержащих углеводородов. Не годится для спиртов и аминов. По возможности не должен содержать орто-изомера ввиду его особой ядовитости. [c.282]

    Величина Но отражает способность системы растворителя отдавать протоны, но она применима только для кислых растворов с высокой диэлектрической проницаемостью, главным образом к смесям воды с такими кислотами, как азотная, серная, хлорная и т. п. Очевидно, что использование величины Но представляет ценность только в тех случаях, когда отношение НИя1+ не зависит от природы основания (индикатора). Но это условие выполняется лишь тогда, когда основания структурно сходны, поэтому использование функции кислотности Но имеет известные ограничения. Даже при сравнении структурно сходных оснований наблюдается много отклонений [69]. Разработаны и другие шкалы кислотности [69а], среди них шкала Н-для оснований с зарядом, равным —1 шкала Як для арилкар-бинолов [70], шкала Як- для арилолефинов и других молекул, сопряженные кислоты которых представляют собой устойчивые карбокатионы, не образующие водородных связей с растворителем [71], шкала Яс для оснований, протонирующих атом углерода [72], шкала Не для алифатических сложных эфиров [73] [c.333]

    Двуокись серы имеет точку плавления— 75 °С (теплота плавления 1,8 ккал/моль) и точку кипения —10°С (теплота испарения 6,0 кгеал/лоЛь). Критическая температура SO2 равна 157 °С при критическом давлении 78 атм. Термическая устойчивость SQ2 весьма велика (по крайней мере до 2500 °С). Жидкая SOj имеет диэлектрическую проницаемость е = 13 (при обычных температурах) и смешивается в любых соотношениях с рядом органических жидкостей (эфиром, бензолом, сероуглеродом и др.). Она является очень плохим проводником электрического тока. Наблюдающаяся ничтожная электропроводность обусловлена, вероятно, незначительной диссоциацией rio схеме 330 5 0 + + 50 ". [c.328]

    Сольватные оболочки экранируют электрические заряды ионов и препятствуют их взаимодействию тем сильнее, чем больше диэлектрическая проницаемость е растворителя (см. гл. IV, 6). Поэтому электролитическая диссоциация веществ возможна лишь в растворителях, характеризующихся высокими значениями е в диметиловом эфире (21), в этаноле (27), в муравьиной кислоте (58), в воде (81), в циановодороде (95) и др. В растворителях с низкой диэлектрической п 5оницаемостью — типа хлороформа [c.154]

    В качестве примера приведем эпюотротый ряд по Траппе. В этом ряду растворители расположены в гюрядке увеличения их элюирующей способности, в целом — в порядке возрастания их полярности (диэлектрической проницаемости) циклогексан, четыреххлористый углерод, трихлорэтилен, толуол, бензол, дихлорэтан, хлороформ, диэтиловый эфир, этилацетат, ацетон, пропанол, этанол, метанол, вода. [c.274]

    Полярность растворителя может быть охарактеризована значением его диэлектрической проницаемости (е). Последняя показывает, во сколько раз по сравнению с вакуумом (е = 1) меньше притя5кения или отталкивание между двумя расположенными в данной среде электрическими зарядами. Подобное ослабление взаимодействия при прочих равных условиях тем больше, чем более полярны молекулы вещества среды. При обычной температуре диэлектрические проницаемости воды, спирта, эфира и бензола равны соответственно 81, 24, 4 и 2. [c.126]

    Подвижные фазы в ЖКХ различают по их элюирующей способности. В адсорбционной хроматографии на полярных. сорбентах элюирующая сила тем больше, чем полярнее растворитель. Экспериментально уста ювленную последовательность растворителей с возрастающей элюирующей силой называют элюот-ропным рядом. Элюирующая сила е, как правило, возрастает с увеличением диэлектрической проницаемости растворителя. Чаще всего используют насыщенные углеводороды (гексан, гептан), тетрахлорид углерода, хлороформ, этанол, метанол, воду (растворители расположены в порядке возрастания элюирующей силы). Элюирующую силу можно изменять в необходимых пределах добавлением к растворителю с низкой элюирующей силой более активного растворителя. Элюирующая способность смеси резко возрастает при небольших добавлениях полярного растворителя к неполярному (рис. 28.8). Если различие в элюирующей силе растворителей незначительно, то зависимость близка к линейной. В том случае, если к неполярному элюенту добавляют полярный, способный к образованию водородных связей (спирты, эфиры и др.), удерживание и селективность определяются специфическими взаимодействиями вещество— адсорбент, вещество — элюент и элюент — адсорбент. Эту систему применяют для разделения полярных, сильноудерживаемых соединений. Водородные связи образуются как между сорбентом и веществом, так и между веществом и элюентом, что резко сказывается на хроматографическом поведении соединений. Так, фенол и анилин в элюен-те, не способном к образованию Н-связи, выходят в указанной последовательности, а в подвижной фазе, содержащей спирты, порядок противоположный. Это объясняется тем, что анилин, в состав молекулы которого входит аминогруппа —NH2, обладает большей способностью к образованию водородных связей с молекулами спирта, чем фенол. [c.600]

    Поливинилхлорид (—СНг—СНС1—) — жесткий, негибкий продукт полимеризации винилхлорида. Жесткость его обусловлена сильным межмолекулярным взаимодействием (водородным и ориентационным), возникающим из-за наличия в цепных макромолекулах атомов электроотрицательного хлора. Полярный диэлектрик, эксплуатируемый в области низких частот, характеризуется высокими диэлектрическими потерями (1 6 = 0,15— 0,05) и меньшим по сравнению с полиэтиленом удельньгм объемным сопротивлением (10 Ом-м). Диэлектрическая проницаемость 3,2—3,6. Используют его в производстве монтажных и телефонных проводов. Для придания полимеру эластичности его пластифицируют, т. е. вводят специальные добавки, чаще всего сложные эфиры и полиэфиры с низкой степенью полимеризации. Однако при этом ухудшаются электроизоляционные свойства материала. [c.478]

    Получены также теоретические выражения для анализа термодинамических функций (коэффициенты активности компонентов, избьпочная энергия Гиббса, энтальпия смешения), статической диэлектрической проницаемости, дипольного фактора корреляции, коэффициентов Рэлеевского рассеяния света в рамках квазихимического подхода для структурно-стехиометрической модели растворов, предусматривающей образование ассоциатов диэтилового эфира и комплексообразование молекул и ассо-циатов эфира с молекулами хлороформа. Предложена схема описания термодинамических, диэлектрических и оптических свойств растворов диэтиловый эфир - хлороформ в широких интервалах температур и концентраций [c.24]

    Жидкая фаза мембраны должна быть нерастворимой в воде и иметь низкое давление паров, так как в случае высокой растворимости или летучести органического растворителя, растворенный в нем ионит будет выделяться в виде твердой фазы, что ведет к потере электродной функции. Растворитель, даже если он почти не смешивается с водой и имеет низкую летучесть, должен также обладать высокой вязкостью для предотвращения его диспергирования в анализируемом растворе, иначе мембрана не будет иметь достаточную долговечность. Указанным требованиям отвечают многие органические растворители, обладающие сравнительно большой молекулярной массой и низкой диэлектрической проницаемостью деканол, диоктилфенилфосфат, дифениловый эфир, дибензиловый эфир, о-нитрофенил-н-октиловый эфир и др. Следует заметить, что требования, которым должен удовлетворять растворитель, не всегда можно определить однозначно, поскольку природа растворителя оказывает заметное влияние на перенос ионов через границу раздела водный раствор/органическая фаза. [c.202]

    Для получения органической фазы используют несмешиваю-щиеся с водой растворители с достаточно высокой диэлектрической проницаемостью нитробензол, 1,2-дихлорэтан, о-нитрофе-нилоктиловый эфир и др. Наиболее распространенными индифферентными электролитами являются тетрафенилборат тетрабутиламмония (для неводной фазы) и хлорид лития (для водной фазы). Для расширения рабочего диапазона потенциалов иногда применяют катионы тетрафениларсония или кристаллического фиолетового. [c.411]

    Из сказанного следует, что для успешного осуществления синтез , макроциклического металлокомплекса экспериментатору следует обратить серьезное внимание на выбор исходной соли металла, а также растворителя, в котором должна протекать реакция комплексообразования В идеальном случае растворитель должен обладать достаточно высокой диэлектрической проницаемостью для диссоциации электролита на ионы и в то же время как можно слабее сольватировать катион и анион соли, чтобы не создавать конкуренцию краун-эфиру в процессе комплексообразования К сожалению, реально существующие растворители не полностью соответствуют этим требованиям Большинство описанных в литературе кристаллических комплексов макроциклических полиэфиров получены в спиртах — метаноле, этаноле, н-бутаноле Эффективно также использование ацетонитрила и ацетона В то же время обладающие высокой сольватчрующей способностью ДМФА, ДМСО и вода в препаративных целях практически не применяются [c.190]

    Полярные апротонные растворители не единственные эффективные добавки при алкилировании. Анионы енолов гладко алкили-руются в MOHO- и диэтиленгликоле [127] и гораздо быстрее в диметилформамиде и диметилсульфоксиде, чем в бензоле [126], вероятно, потому, что в этих растворителях с высокой диэлектрической проницаемостью ионные пары не образуются, а карбанионы, хотя, и устойчивы, слабо сольватированы (следовательно, мало активны). Приведенная ниже реакция протекает на 75% в течение 3 мин в диметиловом эфире диэтиленгликоля, тогда как в эфире для этого требуется 234 час 127]. [c.32]


Смотреть страницы где упоминается термин Эфиры по диэлектрической проницаемости: [c.196]    [c.96]    [c.442]    [c.90]    [c.255]    [c.287]    [c.559]    [c.205]    [c.387]    [c.252]    [c.11]    [c.55]    [c.300]    [c.220]   
Титриметрические методы анализа органических соединений (1968) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Диэтиловый эфир диэлектрическая проницаемость

Этиловый эфир, диэлектрическая проницаемость



© 2024 chem21.info Реклама на сайте