Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны химические

    КЕТОНЫ — химические органические соединения, содержащие карбонильную [c.125]

    Альдегиды и кетоны. Гомологический ряд альдегидов. Номенклатура. Строение альдегидов и кетонов. Химические свойства. Получение альдегидов и кетонов..  [c.217]

    Биоразложение пролитого масла. В зависимости от химической структуры (ароматические углеводороды, нафтены, парафины), содержания гетероорганических соединений и присадок, молекулярной массы и т д., на минеральные масла по-разному воздействуют кислород и микроорганизмы (бактерии, грибки). В аэробных условиях скорость разложения зависит от содержания минеральных солей и микроэлементов, температуры и величины pH. В случае углеводородов, растворенных в воде, скорость их разложения определяется химической структурой и содержанием кислорода в воде. Олефины и ароматические соединения окисляются до кислородосодержащих соединений (спиртов, кетонов, фенолов, карбоновых кислот) в сравнительно короткий срок. На биологическое разложение углеводородов расходуется кислород с образованием аммиака, сероводорода и соли двухвалентного железа и марганца в сложившихся восстановительных условиях. [c.229]


    В атмосфере происходит большое число разнообразных химических превращений метана и его гомологов, алкенов, изопрена и монотерпеновых углеводородов, бензола и его гомологов, а также производных углеводородов альдегидов и кетонов, карбоновых кислот и спиртов, аминов и серосодержащих соединений. [c.32]

    Восстановлением карбонильных соединений но методу Вольфа-Кижнера, видоизмененному Шисслером, получают углеводороды с высокими выходами и высокой степенью чистоты. Никаких трудно отделимых побочных продуктов не образуется. Азотсодержащие вещества легко удаляются путем промывания кислотой, а непрореагировавший кетон (если таковой имеется) также может быть удален соответствующими методами, о которых говорилось выше (см. Химическая очистка ). [c.509]

    Существуют веские доказательства того, что предпламенный период характеризуется большой химической активностью. Установлено, что происходят реакции крекинга и дегидрирования, полимеризации продуктов окисления и образования всевозможных кислот, спиртов, альдегидов, кетонов и перекисей [75, 134—142]. Формальдегид не вызывает детонации, если его вводить в нормально работающий двигатель, хотя он и обнаружен в продуктах реакций при детонации. Разрушение перекисей некоторые исследователи связывают с последующим ударом [115]. Перекиси и альдегиды, в том числе и формальдегид, были найдены в газах, собранных в цилиндре мотора там же обнаружены кетоны и ди-кетоны [143—144]. Последние соединения, вероятно, образовались из перекисей и гидроперекисей. Продукты предпламенного окисления гексанов описаны в [145]. [c.407]

    По цепному механизму протекают такие важные химические реакции как горение, взрывы, процессы окисления углеводоро. ов (получение спиртов, альдегидов, кетонов, органических кислот) и реакции полимеризации. Поэтому теория цепных реакции служит научной основой ряда важных отраслей техники и химической технологии. [c.183]

    Характерной тенденцией в развитии промышленности нефтехимического синтеза является все большее и большее вовлечение в химическую переработку углеводородов природных и попутных нефтяных газов. Природный и попутный газы являются, нанример, сырьем для производства метанола, формальдегида, ацетальдегида, уксусной кислоты, ацетона и многих других химических соединений. На базе природных и попутных газов получают также синтез-газ, широко используемый для последующего синтеза ценных кислородсодержащих соединений — спиртов, альдегидов, кетонов, кислот. Значительных размеров достигло производство на основе природного и попутного газов синтетического аммиака и хлорпроизводных углеводородов. Природный и попутный газы служат сырьем для получения олефиновых углеводородов, и в первую очередь этилена и пропилена. [c.3]


    Неполное окисление углеводородов при низких температурах (300—700°) нашло широкое промышленное распространение для получения многих химических полупродуктов — альдегидов, кетонов, спиртов, кислот и других соединений. [c.14]

    В США был разработан новый вариант этого метода, позволяющий получить из СО и Н2 сложную смесь химических соеди пений, в которую входят спирты, альдегиды, кетоны, кислоты и другие соединения. Указанный метод пока не нашел еще промышленного применения, но в этом направлении продолжаются усиленные научные исследования. [c.113]

    Альдегиды и кетоны используются в качестве растворителей и сырья для химического синтеза. Например, формальдегид [c.296]

    В некоторых случаях, без учета резонанса структур, в рамках метода ВС может получаться качественно неправильное описание электронной структуры молекулы. Так, для бензола ни одна из двух классических формул Кекуле не отражает реальной симметрии молекулы, а также ее физических и химических свойств. Другой пример — диоксид углерода СО2. Длина связи углерод — кислород в нем равна 0,115 нм, тогда как длина нормальной двойной связи С=0 (в кетонах) равна 0,122 нм, а расчетная длина тройной связи С = 0 — 0,110 нм. Т. е. связь углерод — кислород в СО2 оказалась промежуточной между двойной и тройной, что можно объяснить в терминах концепции резонанса  [c.169]

    В химической и нефтеперерабатывающей отраслях промышленности при изготовлении аппаратов, как правило, применяют нержавеющие стали марки 300 ввиду их высокой коррозионной стойкости. Нержавеющие стали практически не подвергаются коррозии в растворах нейтральных или щелочных солей, в водных растворах аммиака, нитрата и хлората натрия. Большинство органических соединений не вызывает коррозию нержавеющих сталей, за исключением ряда хлор-производных, агрессивность которых проявляется в присутствии влаги. Установки для получения углеводородов, спиртов, кетонов, жирных кислот, фенолов, мочевины оснащаются оборудованием из нержавеющей стали. [c.212]

    В зависимости от природы, стадии химической зрелости и состава твердых топлив в их первичных смолах содержится различное количество парафиновых, ароматических и гидроароматических углеводородов, фенолов, многоядерных ароматических соединений, органических оснований, карбоновых кислот, кетонов, спиртов и сложных эфиров. [c.246]

    Наряду с далеко не полным перечнем приведенных выше химических процессов в нефтехимической промышленности широко используются процессы окисления, позволяющие получать фенол, окись этилена, альдегиды, кетоны, спирты и другие продукты, а также хлорирование, сульфирование, нитрование и т. д. [c.583]

    На основании химических свойств асфальтенов можно сделать вывод,что асфальтены представляют собой высокомолекулярные соединения, содержащие кроме С и И, также серу и кислород. Совокупность вышеприведенных свойств показывают,что они не спирты, не фенолы,не кислоты и их производные,не содержат альдегидных и кетонных групп. Повидимому,они представляют собой гетероциклические соединения. [c.141]

    Например, дипольные моменты таких распространенных в промышленной практике растворителей, как фурфурол и фенол, составляют соответственно 3,57 и 1,70 Д, в то время как по растворяющей способности фурфурол значительно уступает фенолу. Это объясняется тем, что растворяющая способность растворителей зависит также от структуры углеводородного радикала их молекул, которым определяются дисперсионные силы растворителя. Так, с увеличением длины углеводородного радикала в молекулах кетонов растворяющая способность возрастает, хотя дипольный момент даже снижается. Растворители, в молекулах которых при одной и той же функциональной группе содержатся углеводородные радикалы различной химической природы, отличаются друг от друга по растворяющей способности. Углеводородные радикалы по способности повышать растворяющую способность таких растворителей можно расположить в следующий ряд алифатический радикал >бензольное кольцо >тиофеновое кольцо >фурановое кольцо. Растворяющая способность растворителей второй группы снижается с увеличением числа функциональных групп в их молекуле, особенно если эта функциональная группа способна к образованию водородной связи. [c.75]

    К нефтехимической продукции относятся пластические массы, синтетические каучуки и смолы, синтетические волокна, синтетические моющие средства и поверхностно-активные вещества, некоторые химические удобрения, присадки к топливам и маслам, синтетические смазочные масла, белково-витаминные концентраты, многочисленные индивидуальные органические вещества спирты, кислоты, альдегиды, кетоны, хлорпроизводные, эфиры, гликоля, полигликоли, глицерин и другие, применяющиеся в промышленности, сельском хозяйстве, медицине и в быту. [c.13]


    Для разделения олефинов была использована в основном четкая ректификация ожиженных газов под давлением с помощью технических приемов, уже известных в промышленности нефтепереработки единственным новшеством было проведение ректификации при низкой температуре, требующейся для концентрирования этилена. Основными из разработанных процессов химической переработки олефинов были сернокислотная гидратация, приводившая к получению спиртов, которые затем дегидрировались в альдегиды и кетоны, и получение из олефинов их окисей с помощью реакции гипохлорирования. Доступность в промышленных масштабах окиси этилена и окиси пропилена привела к тому, что на рынке стали появляться все новые и новые продукты, получаемые на их основе, например гликоли, сложные и простые эфиры гликолей и алканоламины. [c.19]

    Окислительное иминирование соединений трехва лентного фосфора диазоалканами. ... Фосфазореакция. Действие трифенилдибромфосфо ра на гидразоны альдегидов и кетонов Химические свойства фосфазинов. ... [c.7]

    Виман [283] на основании ошибочной интерпретации ИК-спектров предложил для индантрона енольную структуру. Впоследствии [284, 285] тщательное изучение УФ-, видимых и ИК-спектров индантрона и родственных соединений показало, что индантрон в твердом виде и в инертных растворителях существует преимущественно в форме кетона. Химическому поведению индантрона и данным рентгеноструктурного анализа в наибольшей степени соответствует структура, в которой две СО-группы двух антрахиноновых ядер образуют сильные водородные связи с двумя NH-группами 1,4-дигидропиридазина [286]. [c.155]

    При восстановлении алифатических нитросоединений в амины химическим путем, например цинковой пылью с уксусной кислотой или железом и соляной кислотой, в качестве побочных продуктов образуются кетоны и соль гидроксиламина. Это происходит вследствие того, что часть промежуточно образующегося нитрозонарафина успевает перегруппироваться в кетоксим до дальнейшего восстановления в амин кетоксим же в кислом растворе очень быстро подвергается гидролизу с образованием кетона и гидроксиламина  [c.347]

    Два изомерных эфира были разделены тщательной фракционной перегонкой. Этиловый эфир 5,6,7,8-тетрагидро-1-нафтойной кислоты превращают в соответствующую кислоту, которую очищают перекристаллизацией и обрабатывают химически чистым хлористым тионилом хлорангидрид кислоты перегоняют. Хлорангидрид 5,6,7,8-тетрагидро-1-наф-тойной кислоты, взаимодействуя с ди-и-тетрадецилкадмием [3, 21], образует соответствующий кетон. После очистки фракционной перегонкой карбонильное соединение восстанавливают при атмосферном давлении [39] по методу Вольфа-Кижнера полученный углеводород очищают обычным способом. [c.513]

    К нейтральным кислородным соединениям относят спирты, эфиры, альдегиды, кетоны, а также вещества с несколькими функциональными группами. Многообразие химического строения нейтральных кислородных соединений сильно затрудняет их изучение. Именно этим следует объяснить весьма ограниченные сведения, втречаю щиеся по данному вопросу в литературе [68]. [c.27]

    До сих пор нет хорошего способа определения содержания в асфальте парафина. Во всяком сл.-у-чае многие высшие индивиды нафтенового ряда должны иметь малую растворимость в спирте, кетонах и т. п. веществах, как и у самого парафина. Поэтому обычные способы разделения неприменимы. Но зато химическая активность Г)нт,р[ов позволяет удалить их крепкой серной кислотой, после чего оставихееся масло, если надо н уг.леводородный остаток растворяются, подвергаются перегонке для подготовки пробы и анализу по Гольде-Энглеру. [c.358]

    Хром переводится в бихромат натрия Na2 r ,07, ванадий—в ванадиевую кислоту HVOj. В безводном состоянии бихромат слабо растворим в немногих органических жидкостях (спиртах). Хорошая растворимость связана с химической реакцией, что делает эти жидкости непригодными. Но для кислого раствора бихромата и ванадиевой кислоты найдены растворители (кетоны), которые не реагируют с соединениями этих металлов и хорошо растворяют только один из них. В табл. 6-9 ириведены-результаты испытания некоторых органических жидкостей на растворимость и химическое взаимодействие с безводным бихроматом натрия, его кислым (1 М НС1) водным раствором и ванадиевой кислотой. Так как метилизобутилкетон относительно дешев и слабо растворим в воде (2% при 20 С), то он рекомендуется в качестве растворителя н подробно изучен. [c.454]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]

    В английскую химическую номенклатуру термины функция и функциональная группа вошли при переводе французского текста правил ШРАС 1930 г. (fon tion, fon tionnel) без какого-либо пояснения. Функциональной группой является группа атомов, определяющая функцию , или характер активности соединения. Так, свойства спиртов определяются функциональной группой ОН. В данном случае функциональная группа, гидроксил, является химической группой того же названия. Кетоны обязаны своими свойствами атому кислорода, связанному с атомом углерода двойной связью. В данном случае кетонной функцией является 0= (С) (без углерода), и это не то же самое, что карбонильная группа 0 = С<. Аналогично, карбоксильная функция изображается формулой (1), а карбоксильная группа-формулой (2). В химической литературе понятия функ- [c.63]

    Для некоторых классов соединений допускаются старые названия, указывающие на их функцию, например этиловый спирт, диэтиловый эфир, метилэтилкетон, уксусная кислота. Приверженец систематической номенклатуры предпочел бы, чтобы эти названия исчезли (за исключением кислот), поскольку имеются названия, более соответствующие современной номенклатуре. Однако старые названия очень живучи, что, по-видимому, кроме всего прочего, объясняется тем, что химики интересуются главным образом функциональными особенностями соединений, т. е. проявлением их химической активности. Со-тласно ШРАС, подобная номенклатура называется радикалофункциональной, так как функциональному названию класса (спирт, кетон и др.) предшествует наименование радикала этил, уксусная и др.). [c.76]

    Эти названия иллюстрируют, почему номенклатура циклических кетонов названа областью несчастной семантики [2]. Аномалии очевидны все соединения серии (44)—(46) названы как производные пиридина, хотя соединения (44) и (45) произведены от дигидропиридинов, а соединение (46) —от тетрагидропиридина соединение (48) получило в названии префикс дигидро , хотя оно производимо от того же самого тетрагидропиридина, что и (46). С химической точки зрения, в этой номенклатуре степень гидрирования родоначальной циклической системы не принимается в расчет. То же относится и к названию для (43), принятому в СА. Единственное, что имеет значение, это необходим ли обозначенный водород после введения оксогруппы и размещения в цикле максимального числа некумулированных двойных связей. [c.144]

    Происхождение этих соединений связывается со стероидами. Стероиды различаются характером заместителей (они могут содержать гидроксильную, кетонную и другие группы) и тетрацнкли-ческого ядра. Гидрированные стерины могли образоваться из стероидов в результате ряда химических превращений, среди которых существенную роль должно было играть восстановление. Именно биологическое происхождение этих стерннов позволило ра> сматривать нх как биологические метки , а результаты исследования стеринов нефтп связать с общими вопросами происхождения нефти. [c.133]

    Нэпредельные альдегиды и кетоны. Номенклатура. Способы получения и особенности химических свойств  [c.191]

    Химический путь образования нефтяных смол нз раститель-1П)го вещества Стадников видит в реакциях конденсации спиртов, альдегидов и кетонов в результате взаимодействия как самих зтих соединенпй между собой, так п вследствие реакций последних с сер-ппстьнш и азотистыми соединениями, а также с непредельными п ароматическими углеводородами. [c.443]

    В будущем возможно более широкое использование метанола в органическом синтезе и химической промышленности в целом, а также применение его в качестве топлива, источника водорода, в микробиологическом синтезе, для очистки сточных вод и других целей. В химической промышленности большое значение имеет синтез высших спиртов, алвдегидов, кетонов, кислот и углеводородов на основе водорода и окиси углерода. Производство этих продуктов потребляет более 5% водорода и в дальнейшем доля водорода для них будет возрастать.Таким образом, наряду с синтезом аммиака синтез органических продуктов является крупнейшим потребителем водорода. [c.5]

    Окислением циклоалканов получают большое число ценных химических продуктов. Степень превращения обычно составляет 10— 15 % для циклогексана, 35 % для циклододекана, суммарный выход спиртов и кетонов составляет 80—95 %. [c.328]

    Катализаторы ускоряют автоокисление, сокращают индукционный период, но многие из них вызывают распад образовавшихся гидроперекисей и способствуют дальнейшему бопее глубокому окислению до кетонов и третичных спиртов [56]. Так, стеарат и ацетат кобальта обладают способностью инициировать автоокиспе-ние и обрывать реакционные цепи, а поэтому в присутствии определенных концентраций атих солей протекает инициирование процесса автоокисления, а с увеличением концентрации скорость окисления снижается или замедляется [60]. Также пафтенаты ко-бальта, хрома, марганца, никеля и других металлов вызывают часто образование нерадикальных соединений и способствуют более глубокому окислению [61]. Однако исследователи в наше время хорошо овладели техникой эксперимента жидкофазного окисления и научились направлять процесс таким образом, что основными продуктами окисления являются гидроперекиси. Некоторые физико-химические константы выделенных гидроперекисей алкилароматических и гидроароматических углеводородов даны в табл. 140. [c.248]

    Частичное окисление СНГ. При окислении отдельных углеводородов, особенно олефинов, наблюдается тенденция к образованию смеси сложных соединений. Однако преимущества гомогенной фракции по сравнению с неразогнанной смесью СНГ не всегда можно использовать. Окисление смеси СНГ, осуществляемое обычно в присутствии катализаторов, в итоге приводит к образованию избытка определенных химических соединений, откуда возникает проблема разделения продукта реакции и сырья. Хотя процесс разгонки сырья не является простым (в первую очередь из-за того, что точки кипения различных компонентов исключительно близки друг к другу), идентичный процесс окисления смесей СНГ с последующей разгонкой продуктов применяется довольно редко. В эксплуатации находятся четыре завода, работающих по этим технологиям, из которых три функционируют в США,, а один в Канаде. Все они принадлежат компаниям Селанеа Корпорейшн и Ситиз Сервис . На одном из заводов осуществляется частичное окисление пропана—бутана без катализатора при недостатке воздуха, температуре 350—450 °С и давлении 303— 2026 кПа. Реакция идет в паровой фазе. Основными продуктами являются формальдегид, метанол, ацетальдегид, нормальный про-панол, уксусная кислота, метилэтиловые кетоны и окислы этилена и пропилена. На другом заводе окисление происходит в жидкой фазе в присутствии растворителя. Основной продукт — уксусная кислота с некоторым количеством побочных продуктов метанола, ацетальдегида и метилэтиловых кетонов. Могут быть подобраны такие режимы, при которых в основном будут образовываться метилэтиловые кетоны. Сепарация продуктов в первом случае основана на различной растворимости веществ одни растворимы только в воде, другие — в углеводородах. Спирты и альдегиды сепарируются из кислот при щелочной экстракции, а отдельные соединения разделяются фракционной разгонкой. [c.245]

    Ригамонти и Панетти [50] утверждают, что не следует объяснять активирующее действие воды, спиртов, кетонов и др растворением в них карбамида, поскольку добавки этих веществ как правило, незначительны (порядка 1—2%) и, следовательно, не должны вызывать заметного повышения концентрации карбамида в углеводородной среде. Между тем П. П. Дмитриевым, В. В. Усачевым и М. Ф. Черновым [62] приведены данные, подтверждающие роль активаторов как растворителей реагирующих веществ. Тщательным перемешиванием спирта (метанол, этанол) с парафинистым продуктом им удалось довести его до молекулярно-дисперсного состояния, в котором он ведет себя как химический агент, однако комплекс при этом не образуется. В то же время тот же активатор, вводимый в капельно-жидком состоянии в смеси парафинистого продукта и карбамида, способствует образованию комплекса. [c.39]

    Судя по физико-химической и спектральной характеристике, удалось выделить довольно чистую фракцию карбоновых кислот, представляющих большой интерес. В отличие от первичных продуктов распада гидроперекисей — спиртов и соединений с карбонильной группой эти кислоты являются полностью насыщенными соединениями без примеси оксикислот (гидроксильное число равно нулю). Средний молекулярный вес их почти в два раза больше молекулярного веса выделенных из этой же фракции спиртов и кетонов, и в два с лишним раза больше молекулярного веса углеводородов топлива, из которого х)ни извлечены. В основном выделены двухосновные кислоты алкилбициклановой структуры (возможно небольшое количество алкилароматических структур). Внешне кислоты представляют собой маслянистые жидкости, почти не имеющие запаха. [c.251]

    Итак, из среднедистиллятных нефтяных фракций и топлив могут быть выделены и индивидуализированы не только карбоновые кислоты и фенолы, но и продукты автоокисления углеводородов спирты и кетоны. Эти соединения отличаются своеобразной химической структурой — имеют циклическое строение с боковыми ненасыщенными цепями. При автоокислении углеродный скелет углеводородов не изменяется. Выделенные карбоновн1е кислоты представляют собой насыщенные соединения циклической структуры. Их молекулярный вес значительно больше, чем углеводородов, из которых они извлечены. Общие характеристики кислородных соединений нефтепродуктов, полученных различными технологическими методами из нефтей различных месторождений, очень схожи. [c.255]

    За крупнотоннажным производством продуктов химической переработки этилена вскоре последовало промышленное использование в качестве химического сырья пропилена и бутиленов. Эти олефинь[ подвергали гидратации по тому же методу, что и этилен, а полученные спирты переводили в кетоны, которые вместе с их производными также нашли себе применение в автомобильной и лакокрасочной отраслях промышленности. [c.20]


Смотреть страницы где упоминается термин Кетоны химические: [c.347]    [c.324]    [c.104]    [c.54]    [c.561]    [c.171]    [c.145]    [c.191]    [c.438]   
Органическая химия Том 1 (1963) -- [ c.637 ]

Органическая химия Том 1 (1962) -- [ c.637 ]




ПОИСК





Смотрите так же термины и статьи:

Альдегиды и кетоны Химические свойства

Кетоны химические свойства



© 2025 chem21.info Реклама на сайте