Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Величина органические реакции, корреляция

    Итак, за исключением реакций типа З С/, в реакциях бимолекулярного электрофильного замещения (механизмы 5 2 и 8е1) определяющей является электрофильная атака Е по атому углерода. Поэтому в ряду соединений одного и того же металла, но с разными углеводородными остатками скорость реакции должна зависеть от нуклеофильности органической группы, и связь К—М будет расщепляться тем быстрее, чем более нуклеофильной является группа К. Этот факт подтвердился на многочисленных изученных реакционных сериях, включающих различные металлоорганические соединения и электрофильные агенты введение электронодонорных заместителей в радикал Р способствует, а введение электроноакцепторных заместителей препятствует осуществлению процессов электрофильного замещения. В случае применимости корреляций по типу уравнения Гамметта наблюдается отрицательная величина константы реакции р. Однако, как уже указывалось (см. стр. 81), скорость таких реакций не может служить мерой нуклеофильности радикала Н, так как изменение природы радикала влияет не только на электрофильную атаку, но и на способность атома металла подвергаться нуклеофиль- [c.316]


    Наиболее простой и сугубо эмпирический метод предсказания величин скоростей реакций заключается в нахождении корреляций между свободными энергиями активации для каких-либо реакционных серий. Тогда, пользуясь приближенным уравнением (5.9), можно предсказывать относительные скорости родственных реакций. Более глубокий подход заключается в построении моделей реагентов и переходных состояний с тем, чтобы оценить их относительные энергии. Вряд ли имеет смысл доказывать, что оба подхода правомерны и необходимы первый лишь слегка проникает в природу вещей , но позволяет описать и систематизировать очень большой экспериментальный материал второй подход, являясь в принципе более фундаментальным, страдает определенной ограниченностью, поскольку далеко не для всех органических реакций удается построить модели переходных состояний. [c.269]

    Асимметрические органические реакции последние два десятилетия привлекают все большее внимание исследователей в различных областях химии - как теоретической, так и промышленной. Это связано с тем, что современный асимметрический синтез - еще недавно "экзотическая" область химии - дает реальные возможности получения оптически активных соединений, к которым относятся биологически активные вещества и многие лекарственные препараты. Это объясняется также теми возможностями, которые асимметрический синтез открывает при изучении механизмов реакций. Решающее значение в таких исследованиях, как и при расщеплении рацематов, имеет знание оптической (энантиомерной) чистоты изучаемых соединений, для чего необходимы надежные методы ее определения. Без этого не возможны ни корреляция величины оптической активности со структурой, ни оценка эффективности асимметрического синтеза или расщепления рацематов. [c.5]

    Таблицы данного раздела предназначены для вычисления констант равновесия и скоростей реакций органических соединений, а также потенциалов полуволн их полярографического восстановления. Таблицы составлены на основании корреляционных уравнений Гаммета и Тафта и модификаций этих уравнений — см. В. А. Паль м, Успехи химии. 80, вып. 9, 1069 (1961), Величины, приведенные в табл. 3-8, позволяют вычислить около миллиарда значений коистаит скоростей и равновесия реакций. Кроме того, по корреляционным уравнениям табл. 9, благодаря исключительной практической эффективности перекрестных корреляций, можно вычислить еще большее чнсло констант, [c.935]

    К середине шестидесятых годов для корреляции данных по реакционной способности были доступны только индексы реакционной способности, определяемые на основе метода Хюккеля [61. Все приложения теоретической органической химии ограничивались свойствами ароматических соединений. Однако уже тогда существовали нужные концепции и имелось большинство необходимых данных для создания общей теории химической реакционной способности. Были известны величины орбитальных энергий и свойства орбитальной симметрии, но они не использовались во всей своей полноте с целью получения знания о направлении реакции. В пятидесятых годах была развита теория возмущений [71, но использовалась она только для таких тривиальных вещей, как определение резонансной энергии по Хюккелю для больших молекул из меньших составляющих, или для установления индексов реакционной способности ароматических производных. [c.63]


    Для группы однотипных реакций эта восприимчивость обусловлена в значительной степени устойчивостью образуемого субстратом и реагентом переходного состояния, т. е. величиной энергии активации реакции. Современная квантовохимическая теория реакционной способности органических соединений [218, 219] предусматривает в принципе два подхода к корреляции энергий активации. Один из них — так называемое приближение изолированной молекулы, имеющее в своей основе постулат о том, что энергия активации тесно связана с величиной электронной плотности на реакционном центре. Отсюда естественно предположить, что а-константы пропорциональны зарядам, индуцируемым заместителем на реакционном центре. Поскольку для весьма широкого круга реакций а-константы не зависят от типа реакционного центра, в качестве последнего можно рассмотреть, в частности, водород метиновой группы кольца. Тогда указанное предположение сводится к утверждению о том. что о-константы заместителей пропорциональны зарядам, вызываемым ими в м-или я-положениях бензольного ядра. [c.90]

    В связи с тем что в значительной части кинетических исследований в физической органической химии используют воду как растворитель, радиационная химия воды и водных растворов была изучена подробнее, чем радиационная химия любых других растворов, и поэтому сущность процессов в водных растворах понята в большей степени. Вездесущность воды и прикладные задачи, вытекающие из того факта, что вода является основным компонентом любых биологических систем, служат весьма важным стимулом в этих исследованиях. В последние годы данные по радиационной химии водных растворов, в которых идут реакции с участием свободных радикалов, накапливались очень быстро. Основная задача этой части обзора состоит в том, чтобы рассмотреть некоторые типы линейных корреляций спектральных данных и величин свободной энергии, вытекающих из радиационно-химических данных, а также сходство и различие свободнорадикальных реакций, индуцируемых излучением и химически. Будут рассмотрены также свободнорадикальные частицы (их образование и реакционная способность) в реакциях окисления и восстановления. Образование этих частиц в обычных химических реакциях, как правило, только предполагается. [c.129]

    Принцип линейности в изменении свободной энергии при сопоставлении структуры и реакционной способности различных соединений уже в течение нескольких десятилетий успешно применяют в органической химии для предсказания скоростей реакций и констант равновесий, а также для систематизации многих на первый взгляд независимых параметров [108—113]. В тех случаях, когда радикальные частицы обладают некоторой полярностью, эффекты заместителей в реакциях свободных радикалов описываются корреляционными уравнениями, основанными на применении величин ар [112], Однако ббльшая часть таких работ выполнена для неводных сред. Используя метод импульсного радиолиза, удается определить константы скорости реакций гидратированного электрона, ОН, -Н и других частиц с веществами в водных растворах, а также в других растворителях в условиях, не осложненных конкурентными реакциями. Из этих абсолютных значений констант скоростей можно вывести полезные и важные линейные корреляции величин свободных энергий. Хотя в работах последнего времени такие корреляции действительно были обнаружены (такие данные обсуждаются ниже), это направление исследований еще далеко не исчерпало себя. [c.134]

    Химические реакции твердых тел. Отдельные факты, указывающие на роль дефектов в кинетике химических реакций твердых тел, известны давно. К ним принадлежит, например, снятие периода индукции для обезвоживания монокристаллов некоторых кристаллогидратов после механического повреждения поверхности. При этом от места повреждения (царапины) реакция распространяется по поверхности и в глубь кристалла. Локализация реакций у включений и дефектов хорошо известна в коррозии. Механические деформации сильно влияют на реакционную способность неорганических и органических материалов, и их химическое разрушение часто концентрируется в местах деформации. Описана корреляция между величиной калориметрически измеренной избыточной энергией твердого тела и его реакционной способностью [46]. У твердых тел во время их химических превращений наблюдалось появление аномальных физических свойств, которые, с современной точки зрения, указывают на появление в соответствующих кристаллах большого числа дефектов [47]. Для многих реакций твердых тел друг с другом и с газами контролирующей стадией является диффузия определенных ионов или атомов в чужой решетке, а всякая диффузия внутри кристаллов происходит по месту существующих дефектов или с образованием таких дефектов при каждом элементарном перемещении. Эту роль выполняют в первую очередь вакансии, образуемые тепловым движением. Часто эта диффузия ускоряется возникающими местными электрическими полями [48]. [c.29]


    Однако Дерик не сделал следующего принципиально важного шага — он не пытался использовать введенные им величины О и ф для количественной корреляции констант скоростей или равновесия других реакций. Эти параметры повисли в воздухе, не находя себе практического применения. Поэтому историю количественной теории органических реакций следует отсчитывать, начиная с 1924 г., когда Бренстедом и Педерсеном [3] было впервые осуществлено сопоставление констант скоростей и равновесия для различных реакций. Это было сделано в форме предложенного ими уравнения, отражающего зависимость между каталитическими константами кислот или оснований в случае различных реакций, подверженных общему кислотному или основному катализу, и константами кислотности или основности тех же кислот или оснований. Сама зависимость. [c.17]

    С помощью значений постоянных и соответствующих корреляционных уравнений, содержащихся в приведеных ниже таблицах, можно вычислить константы равновесия и скоростей реакций органических соединений. Постоянные подразделяются на два типа одни характеризуют определенные классы реакций при данных условиях (реакционные с е р и и), другие — структурные единицы (заместители). Степень соответствия определяемых по таблице величин имеющимся экспериментальным данным характеризуется среднеквадратичным отклонением 5 точек для отдельных заместителей от линии регрессии. Степень приложимости корреляционнного уравнения к соответствующей реакционной серии характеризуется коэффициентом корреляции т. Если г 0,99, то имеется отличная корреляция, при 0,99 > / 0,95 — хорошая, при 0,95 > г > 0,90 — удовлетворительная, а при г -< 0,90 — неудовлетворительная. [c.392]

    Многие авторы проводили также сравнение потенциалов полуволн с кинетическими характеристиками, полученными при изучении обычными методами различных превращений органических соединений, и часто находили полное соответствие между сопоставляемыми величинами. Так, в уже упоминавшейся работе Китаева [11, с. 92] представлен ряд примеров соответствия потенциалов восстановления (окисления) кинетическим характеристикам химических реакций. В частности, при взаимодействии хинонов с триметилфосфитом константа скорости этой реакции линейно коррелирует с потенциалами электрохимического восстановления хинонов [И, с. 101]. Линейная связанность констант скорости и констант равновесия реакции полуацетализа-ции с 1/2 наблюдалась для ряда альдегидов [60]. Были также сопоставлены значения 1/2 ряда замещенных стильбенов с реакционной способностью (Igl/r ) в реакциях сополимеризации их со стиролом и аценафтиленом. Из этого сопоставления следует линейная зависимость между 1/2 и lg(l/A ) г — константа сополимеризации производных стильбена) [61]. Между 1/2 окисления производных тетраалкилсвинца и скоростями окисления этих соединений гексахлориридатом наблюдается удовлетворительная линейная корреляция [62]. [c.57]

    Прогнозирование скорости и направления химических реакций методом линейных корреляций в настоящее время широко применяется в синтетической органической химии [1, 2]. Являясь по сути полуэмпирическим методом, он, однако, базируется на ряде теоретически обоснованных положений. Основой применяемых в настоящее время вариантов метода линейных корреляций является принцип линейных соотношений свободных энергий (ЛССЭ), о котором уже упоминалось в предыдущей главе. В общем виде принцип ЛССЭ подразумевает сзтцествование линейных корреляций между термодинамическими величинами, характеризующими равновесие системы такими, как свободная энергия, энтальпия, энтропия, и параметрами, определяющими скорость реакции (энергия активации, предэкспоненциальный множитель). Поскольку, однако, в химических взаимодействиях термодинамические величины в конечном счете определяются энергетикой и вероятностями перехода электронов, то в современном представлении принцип ЛССЭ подразумевает существование линейных корреляций кинетических констант как с чисто термодинамическими параметрами рекции, так и с квантовохимическими характеристиками участников реакции. В основе реакций, протекающих на поверхности гетерогенных катализаторов, лежат общехимические закономерности отсюда следует, что принципы, вполне обоснованные для гомогенных жидкофазных реакций, должны быть также справедливы для гетерогенных каталитических систем даже при высоких температурах. [c.85]

    Поэтому положительности (ф) и отрицательности (0) Дерика, величины которых обратно пропорциональны логарифмам констант диссоциации кислот и оснований в воде, а также факторы, отражающие влияние расположения заместителя на константу диссоциации соединения, лишь уточнили характер уже рассмотренной ранее в общих чертах связи между строением органических электролитов и их ионизацией [328, стр. 1182]. Однако в отличие от ряда своих предшественников Дерик не пытался использовать введенные им величины 0 и ф для количественной корреляции констант скоростей или констант равновесия других реакций [24, стр. 17] и не пробовал на основе полученного экспериментального материала сделать более широкие обобщения о природе взаимосвязи свойств органической молекулы (целого) и составляющих ее атомов (составных частей) (сравнить с [164]). [c.100]

    Хорошо известно, что большинство электрохимических процессов органических соединений в протонодонорных средах в целом необратимо, тогда как в апротонных средах необратимые процессы встречаются значительно реже. Можно предполагать, что по крайней мере в некоторых случаях необратимость суммарного процесса в протонодонорной среде обусловлена быстрыми и необратимыми химическими превращениями первичных продуктов обратимого переноса заряда (см., например, [9, 12]). Анализ такого> типа необратимых процессов с точки зрения теории необратимых полярографических волн и корреляция — а (о ) или Еу, — (где о и о — константы заместителей Гаммета и Тафта соответственно и — коэффициент при энергии низшей незаполненной молекулярной орбитали) дают величины, не имеющие ясного физического смысла. Выявление и учет промежуточных (или последующих) химических реакций имеет непосредственное отношение к проблеме локализации реакционного центра и интерпретации механизма многоэлектронных и формально неодноцентровых электрохимических реакций. [c.153]

    Уравнение ЛСЭ часто соблюдается и в случае невыполнения последних трех условий. Показано, что с а-константами коррелируют не только факторы равновесия или скорости переноса электронов, но и скорости химической реакции прртонизации, а также величина наклона волн, из которой находится кажущееся (т. е. не исправленное на влияние адсорбции — см. стр. 54) значение коэффициента переноса. Вывод о наличии такой суммарной корреляции был сделан на примере сопоставления значений Еу в серии нитробензола и 5-замещенных производных 2-нитрофурана при различных значениях pH, в которых АЁ/ /ДрН оказались линейными функциями а-констант в водных и водно-органических средах при различных pH [32—34]. Подобная закономерность для азосо- единений отмечена и Зуманом [10, с. 49], показавшим также, что в некоторых сериях (например, в серии кетосемикарбазонов) кажущийся коэффициент переноса а линейно коррелирует с о-кон-стантами [10, с. 194]. [c.107]

    Прогнозирование скорости химических реакций методом линейных корреляций в настоящее время широко применяется в органической химии [16,56]. Являясь по сути полуэлширическим методом, он, однако, обосновывается рядом теоретических предположений, объединяемых как принцип линейных соотношений свободных энергий (ЛССЭ). В общем виде принцип ЛССЭ подразумевает существование линейных корреляций меладу термодинамическими величинами, характеризующими систему и параметрами, определяющими скорость реакции. Поскольку, однако, термодинамика химических взаимодействий определяется энергетикой и вероятностями перехода электронов, то принцип ЛССЭ также подразумевает линейные корреляции кинетических констант с квантовохимическими характеристиками участников реакции (см. раздел VI. 1). Ниже излагается применение к проблеме прогнозирования и подбора гетерогенных катализаторов более простых корреляционных зависимостей, аналогичных известным уравнениям Бренстеда, Гамметта — Тафта и Поляни—Воеводского — Семенова. [c.144]

    Наличие такой корреляции представляет двоякий интерес. С одной стороны, если конечно эта корреляция носи достаточно общий харамер, возникает возможность лредсказа-ния положения полос электронных спектров поглощения в различных 1 створителях. С другой стороны линейная связь величины сольватохромного эффекта некоторых представителей данного класса ароматический соединений с (5 - Гашета является у занием ва применимость к соединениям этого класса описанного в 2 метода оцевки реакционной способности органических веществ в реакциях каталитического и электрохимического з] восстановления по информации, получаемой от электронных спектров поглощения. [c.63]


Смотреть страницы где упоминается термин Величина органические реакции, корреляция: [c.117]    [c.283]    [c.195]    [c.227]    [c.462]    [c.36]    [c.335]    [c.1220]    [c.225]   
Карбониевые ионы (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Органические реакции



© 2025 chem21.info Реклама на сайте