Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм реакций олефинов

    Соединения подобной кольцевой структуры, очевидно, получаются при сульфировании пропилена [729] и г-замещенных олефинов [730—732]. Имеются некоторые признаки того, что при окислении олефинов [733] сера первоначально атакует углерод, находящийся в альфа-положении к двойной связи [734], но в целом механизм реакции неизвестен. Сообщают, что в реакциях олефинов с серой (конкретно имеется в виду вулканизация [c.149]


    Механизм реакций олефинов с надкислотами сложен и еще недостаточно изучен. Предполагается, что атакующим агентом яв- [c.53]

    Дегидрирование до олефинов происходит в небольшой степени, но оно играет существенную роль в механизме реакции. Олефины, вероятно, являются промежуточными продуктами многих каталитических реакций, но их максимальные концентрации термодинамически ограничены, что определяет верхний предел скоростей реакций. [c.145]

    За годы, прошедшие со времени открытия реакции алкилироваиия изопарафинов олефинами, было опубликовано большое число работ, посвященных изучению механизма этой (реакции. Однако, несмотря на использование совершенных методов научного эксперимента и современных методов анализа исходного сырья и продуктов реакции (с применением радиоактивных изотопов, хроматографии и др.), полностью механизм реакции алкилироваиия изопарафиновых углеводородов олефинами до настоящего времени еще не выяснен и по-прежнему привлекает внимание ученых. [c.9]

    Механизм реакции. В качестве алкилирующих агентов в промышленности применяют главным образом хлорироизводные и олефины. Использование спиртов менее эффективно, потому что при алкилировании спиртами хлористый алюминий разлагается, а протонные кислоты разбавляются образующейся водой. В обоих случатх происходит дезактивирование катализатора, что обусловливает его большой расход. [c.243]

    Что касается самого факта торможения реакции изомеризации и-пен-тана водородом, то в соответствии с установившимся в настоящее время взглядом на механизм реакции изомеризации н-парафиновых углеводородов на бифункциональных катализаторах, реакция протекает через стадию дегидрирования парафинового углеводорода с образованием оле-финового углеводорода. Следуя этой схеме, торможение реакции водородом можно объяснить снижением концентрации олефина вследствие гидрирования его в парафиновый углеводород, а также явлениями адсорбционного вытеснения пентана водородом с поверхности катализатора. [c.23]

    Для точного установления механизма реакций олефинов с щелочными металлами, лежащих на грани между гомолитическим и и гете-ролитическими процессами, необходимо проведение детальных дополнительных исследований с привлечением физико-химических методой. [c.297]

    Однако в промышленных масштабах наиболее возможно низкотемпературное алкилирование, проводимое в присутствии либо серной, либо фтористоводородной кислот. Продукты реакций с применением любого катализатора далеко не полностью состоят из углеводородов, которые можно было бы предположить при прямом прибавлении олефинов к изопарафинам. Как результат до некоторой степени сложного и до сих пор определенно не установленного механизма реакции получается смесь соединений с широким пределом температур кипения. Правильным подбором условий реакций можно получить продукты, выкипающие главным образом в пределах углеводородов бензинового ряда. Поскольку они состоят из соединений с разветвленными структурами, октановые числа достигают 88—92 и даже выше. [c.127]


    Сопоставимость реакционной снособпости хлора и брома проявляется и в реакциях олефинов с бромтрихлорметаном последний по своей реакционноспособности значительно больше напоминает четырехбромистый углерод, чем четыреххлористый углерод [9]. Его реакции присоединения индуцируются как перекисями и видимым светом, так и другими свободнорадикальными инициаторами, например тонкодиспергированным никелем или магниевыми стружками, в присутствии следов иода. Бромтри-хлорметан присоединяется к таким олефинам, как октен-2, бутадиен и изопрен, к которым четыреххлористый углерод присоединяется в очень незначительной мере, если присоединяется вообще. Основным направлением присоединения является реакция образования продукта реакции один к одному . Механизм реакции вполне аналогичен механизму реакций двух тетрагалоидметанов. Носителем цепной реакции является три-хлорметил-радикал. [c.234]

    Исходя из кинетических данных [1612, 1624, 1625], предлагается следующий механизм реакции олефинов с окисью углерода и водородом в присутствии карбонила и карбонилгидрида кобальта [788]  [c.121]

    Отсюда следует, что при объяснении каталитического крекинга встречаются те же трудности, как и для механизмов реакций алкилирования олефинами и замещения ароматических углеводородов. Предлагаются [c.129]

    На основании полученных данных авторы приходят к выводу о бифункциональном механизме реакции изомеризации на Рс1-СаУ, согласно которому стадией, определяющей скорость реакции, является изомеризация олефина. В соответствии с экспериментальными результатами кинетика реакции описывается уравнением [c.28]

    Механизм реакции между олефином и карбонилами кобальта изучен недостаточно. Были предложены радикальные и ионные схемы. Так как гидрокарбонил кобальта обладает свойствами сильной протонной кислоты, можно предположить следующий механизм реакции (для этилена)  [c.219]

    I. МЕХАНИЗМ РЕАКЦИИ АЛКИЛИРОВАИИЯ ИЗОПАРАФИНОВ ОЛЕФИНАМИ  [c.7]

    Впервые механизм реакции алкилироваиия изопарафинов олефинами был объяснен В. П. Ипатьевым [1]. По В. П. Ипатьеву, реакция протекает в две стадии. Б первой олефин реагирует с кислотой и образуется про- [c.9]

    Предложенный механизм реакции позволяет объяснить образование при алкилировании изопарафина олефинами некоторых изомеров, однако он не объясняет образования всех фактически получающихся продуктов. [c.10]

    Общим является также, что реакция характеризуется большим выходом транс-изомеров и гептенов-2. Следовательно, механизм реакции и характер связи металл — олефин в промежуточном [c.117]

    Предполагается следующий механизм реакции олефин, присоединяя протон, образует карбониепый ион [c.628]

    Отмечается [18], что механизм реакции олефинов с формальдегидом и аминами сходен с механизмом реакции Принса. Действительно, образующийся на первой стадии оксиметильный карб-катиоп атакует молекулу амина. [c.122]

    Механизм реакций олефинов с несимметричными аддеидами [c.30]

    Механизм реакции олефинов с окисью углерода долгое время оставался невыясненным. Согласно первой рабочей гипотезе, предполагалось, что процесс идет через промежуточный продукт — кетеи, однако она не могла объяснить образования двух изомерных кислот из замещенных этилена. Этот факт нашел объяснение в дальнейшей гипотезе. Согласно этой гипотезе, вначале образуется производное циклопропана, цикл которого может размыкаться с двух сторон в результате возможно нолучение двух изомер-пых карбоновых кислот. [c.114]

    Основы расщепления парафинов на олефины описаны в многих работах [61—64]. Герхольд [65] подробно изложил механизм реакции расщепления газорбразных и жидких углеводородов. На рис. 3 представлена зависимость состава продуктов пиролиза пропана от [c.17]

    НЫМ образом а-олефинамп. Термодинамически вероятно, одиако, получение разветвленных углеводородов и олефинов с двойной связью в глубине молекулы в гораздо больших концентрациях. Очевидно, механизм реакции таков, что допускает лишь относительно слабое приближение к равновесному распределению среди этих изомеров. [c.521]

    В соответствии со стехиометрическими уравнениями и механизмом реакции могут также иметь место реакции крекинга алкилнафтеновых углеводородов до циклоолефинов, алкилароматических углеводородов до алкенилароматических и олефинов до диолефинов (все реакции идут с одновременным образованием парафинов). Диолефины и алкениларо-матичсские углеводороды обладают необычайно большой реакционной способностью, что затрудняет их выделение присутствие этих соединений обычно сказывается в повышенном образовании кокса на катализаторах. [c.117]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]


    Реакция (1) соответствует бимолекулярной реакции ионного замещения, и реакция (2) формально соответствует механизму крекинга олефина. Ввиду особых свойств бензольного кольца, заключающихся в сильном взаимодействии между шестью углеродными атомами и шестью 7г-электронами, в результате чего образует. я исключительная среди углеводородов молекулярная структура, было бы неразумно для объяснения крекинга ароматических углеводородов искусственно приводить схему (2), основанную на поведении алифатических структур. В итоге можно констатировать, что реакция (1) представляет собой простую конкуренцию между п отоном и ионом карбония за место в ароматическом кольце, тог 1 а как реакция (2) отвечает образованию сильного комплекса протон арен (или катализатор арен) с дальнейшим отщеплением иона карбония. [c.130]

    Имеется достаточно данных для предноложсния, что реакция оксосинтеза является гомогенно-каталитической реакцией. Условия успешного проведения процесса приблизительно соответствуют условиям, при которых карбонилы кобальта являются устойчивыми, хотя имеется очень мало количественных данных о равновесных состояниях, которые позволили бы точно определить эти последиие условия. Стехиометрия реакций требует суммарного присоединения 1 моля окиси углерода и 1 моля водорода на 1 моль олефина. Однако один атом водорода присоединяется к одному атому углерода, а окись углерода и второй атом водорода присоединяются к другому углеродному атому двойной связи. Весьма желательно поэтому изучение последовательности этих ирисоединений, если только они не происходят одновременно. Так как атомы водорода присоединяются к различным углеродным атомам, то обоснованный механизм реакции должен дать объяснение энергетических трудностей, сопряженных с расщеплением водорода в гомогенной среде. [c.298]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    Поскольку окислы металлов, рассмотренные в данном разделе, образуют надкислоты с перекисью водорода, то можно предполоншть что механизм реакции в данном случае может быть таким же, как и при энокси-дации олефинов органическими перкислотами. Однако ни п одном случае при таких реакциях не была выделена эпокись. Мы полагаем потому, что реакция проходит через стадию образования промежуточного оксониевого продукта(1Х), который может взаимодействовать с анионом окиси металла, образуя промежуточный продукт (X), легко подвергающийся гидролизу с образованием транс-гликоля. Для случая надванадиевой кислоты [c.371]

    Каждый карбоний-ион выше Се способен реагировать с молекулой изобутана образуется Св-изопарафин и третичный бутил-ион, который, в свою очередь, стремится прореагировать с ед] е одной молекулой 2-бутена, образуя реакционную цепочку. Несмотря на то, что приложение этого механизма реакции к 1-бу-тену показывает, что должны образовываться другие изопарафины, на практике найдено, что и 1- и 2-бутены в присутствии серной и фтористоводородной кислот дают одни и те же продукты. Объяснить это можно только предположив, что 1-бутен изомеризуется в 2-бутен и что оба олефина образуют одинаковый кар-боний-ион. С другой стороны, хлорид алюминия, вероятно, не приводит к образованию общего для этих олефинов карбоний-иона, что и объясняет различные продукты в реакции изобутана с 1- и 2-бутенами [558]. [c.131]

    Допускают, что реакция дегидрирования является первоначальной реакцией парафинов с серой затем сероводород освобождается, увеличивая количество образованных олефинов. Механизм реакции точно не установлен. Сульфирование ускоряется с увеличением молекулярного веса парафинов разветвленные парафины и циклопарафины сульфуризуются быстрее, чем соответствующие углеводороды с прямой цепью [723]. [c.148]

    Реакции олефинов с серной кислотой обычно протекают по карбопий-ионному механизму. Промежуточные продукты реакции являются возможным источником желтого цвета, характерного для таких реакций [33, 34]. Карбоний-ионный механизм позволяет объяснить природу реакций изомеризации и полимеризации олефинов. Однако полимеризация олефинов зачастую сопровождается миграцией водорода, ведущей к образованию конъюгированных или гидрополимеров (см. гл. И). Конъюгированные (сопряженные) полимеры являются основными продуктами реакции при обработке пропилена и более тяжелых олефинов 98%-пой серной кислотой [34]. [c.226]

    В работе [622] сообщалось, что катализатор Ас наводит небольшую асимметрическую индукцию в продуктах присоединения дихлоркарбена к олефинам в системе НССУконц. NaOH. Тщательное исследование аналогичной реакции с оптически активным катализатором Ad показало [384], что оптически активное вещество содержится только в неочищенном продукте это оптически активное вещество оказалось эпоксидом В, образовавшемся из катализатора. По-видимому, механизм реакции также не благоприятствует образованию оптически активных аддуктов дихлоркарбена. Неоднократно было показано, чта интермедиатом в таких реакциях является свободный карбен. [c.105]

    Авторы, объясняющие реакцию алкилироваиия, исходя из предположения об ионизации молекул изопарафина с разрывом связи С—Н, используют основные положения карбоний-ионного механизма каталитической полимеризации олефилов, разработанного Витмором с сотр. [7] и получившего в настоящее время широкое признание. В основе механизма каталитической полимеризации, предложенного Витмором, лежит электронная теория химического взаимодействия (реакций). Механизм реакции цепной. Первым звеном в этой цепи при контакте олефина с кислотным катализатором является образование исходного карбоний-иона путем присоединения иона водорода кислоты по двойной связи  [c.11]

    Учитывая изЛожен йое, Некоторые исследователи пытались объяснить механизм реакции алкилироваиия изо-иарафинов олефинами, исходя из теории, в основе которой лежит предположение о разрыве связи С—Н в молекуле изопарафина. Одной из первых в этом направлении была работа Бирча и др. [11], затем Вотерса и наиболее полной — Чиапетта [12]. [c.13]

    С позиций карбонийионного механизма Уитмора, скорость изомеризации связана с константой диссоциации кислоты. Если сравнивать -ряд кислот одного типа Н+А, Н+А, . .. и т. д., для этого ряда зависимость потенциальной энергии от межатомного расстояния Н—А будет одинакова. Потенциальные кривые для реакций олефина (О) с кислотами [c.93]

    Раньше встречалось присоединение хлора к олефинам в газовой фазе, идущее но радикально-цепному механизму. Если при этом появляется жидкая фаза, то процесс резко ускоряется и протекает в растворе. Механизм реакции изменяется, что доказывается отсутствием влияния света и химических шшцилторов. Пропуская исходные реагенты через жидкую фазу, которой обычно является продукт реакции, легко осуществить присосдиие1ше хлора илн брзма по двойной связн  [c.123]

    Прнчииа несоответствия строения продуктов состоит в особенностях механизма реакции, осложненной процессами изомеризации. Втэричный ион карбония, образовавшийся из н-олефина, менее стабилен, чем третичный, вследствие чего происходит быстрый обмен гидрнд-иона с изопарафином [c.263]

    Механизм реакции состоит в образовании надвольфрамовой кислоты H2WOS, реагирующей с олефином в своей циклической форме, подобной органическим надкислотам  [c.440]


Смотреть страницы где упоминается термин Механизм реакций олефинов: [c.216]    [c.441]    [c.437]    [c.371]    [c.4]    [c.232]    [c.233]    [c.368]    [c.291]   
Технология нефтехимических производств (1968) -- [ c.162 , c.163 , c.165 , c.166 ]




ПОИСК





Смотрите так же термины и статьи:

КИНЕТИКА И МЕХАНИЗМ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ Гороховатский, Селективность медного катализатора в реакциях окисления олефинов

Карбониевый механизм реакций алкилирования алканов олефинам

Карбониевый механизм реакций циклизации олефинов

Кинетика и механизм реакций тэрможения крекинга газообразных алканов при добавлении олефинов (С3Н6 и изэ

Механизм реакции алкилирования изопарафкнов олефинами

Механизм реакции гидратации олефинов

Механизм реакции электрофильного присоединения к олефинам

Механизм реакций хлорирования олефинов

Механизмы реакций алкилирования бензола олефинами

Механизмы реакций карбонилирования олефино

Механизмы реакций нитрования олефинов

Механизмы реакций олефинов с несимметричными аддендами

ПОЛУЧЕНИЕ ОЛЕФИНОВ ПИРОЛИЗОМ КСАИТОГЕНАТОВ РЕАКЦИЯ ЧУГАЕВА Механизм реакции

ЧАСТЬ ПЕРВАЬ ИЗОМЕРНЫЕ ПРЕВРАЩЕНИЯ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ Изомерные превращения олефинов состава С6—g. Механизм реакции



© 2025 chem21.info Реклама на сайте