Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Семикарбазид, реакция с карбонильными

    Для иллюстрации рассмотренных выше принципов удобно воспользоваться в качестве примера реакциями присоединения к карбонильной группе, поскольку они часто встречаются при протекании биологически важных процессов. Результаты приводимого ниже анализа, конечно, не могут быть распространены на все, без исключения, реакции карбонильного присоединения, однако сам ход рассуждений является типичным при изучении механизма. Рассмотрим реакцию семикарбазида с кар бонильным соединением  [c.115]


    Примером такой ситуации в простой реакции может служить образование семикарбазонов из семикарбазида и карбонильных соединений схема (Ю) [9]. [c.358]

    Дженкс [43] показал, что такая картина наблюдается для реакций карбонильных соединений с гидроксилами-ном, семикарбазидом и другими подобными веществами для реакции ацетона с гидроксиламином она иллюстрируется рис. 10.3. Константа кислотности сопряженной [c.436]

    Азотистые основания, обладающие достаточно высокой основностью и нуклеофильностью (аммиак, амины, гидразин), присоединяются к карбонильным соединениям в нейтральной и даже в слабощелочной среде. В реакциях со слабыми нуклеофилами, такими, как семикарбазид или 2,4-динитрофенилгидразин, необходим кислотный катализ. [c.125]

    Можно также использовать и предварительную реакцию с фенилгидразином — образующиеся гидразоны дают полярографические волны при менее отрицательных потенциалах, чем соответствующее карбонильное соединение. Для определения,, например, ацетона, метилизобутилкетона, уксусного, масляного,, кротонового альдегидов рекомендуется проводить предварительную реакцию с семикарбазидом — потенциал полуволн соответствующих семикарбазонов имеет значения от —1,0 до —1,3 В> (отн. нас. к. э.) [66, с. 7]. [c.66]

    Так, реакция фенола с формальдегидом (см. стр. 315, р/С фенола равно 9,9) действительно достигает максимальной скорости при pH 10 и быстро падает при более высоких или более низких значениях pH. Точно так же взаимодействие семикарбазида (р/С 3,6) с фурфуролом протекает быстрее всего при pH 3,5, а с ацетоном при pH 4,5. Некоторое различие связано с тем, что происходящее во второй стадии реакции отщепление воды также влияет на скорость реакции. Поэтому для превращения карбонильных соединений в семикарбазоны наилучшим реагентом является хлоргидрат семикарбазида с ацетатом натрия, в то время как кислотность чистого хлоргидрата оказывается слишком большой. В случае гораздо менее основного 2,4-динитрофенилгидразина уксусная кислота (р/С 4,76) оказывает лишь слабое каталитическое действие, а сильными катализаторами являются минеральные кислоты. [c.371]

    Так называемые реакции замещения карбонильных соединений (с гидроксиламином, гидразином, семикарбазидом и т. п.), несомненно, протекают через стадию присоединения  [c.217]

    Семикарбазид вступает с карбонильными соединениями в обратимую реакцию, давая гидразоны, обычно именуемые семикарбазонами  [c.370]

    Так, Михаэль в 1919 г. показал, что при взаимодействии карбонильных производных с солями семикарбазидов скорость (реакции.— В. К.) должна зависеть не только от свободной энергии карбонила, но также от отношения его сродства к частям присоединяемой молекулы (сореагента. —В. К.) и последние факторы изменяются с природой сореагента [234, стр. 405]. Это ценное замечание Михаэля, высказанное впервые столь определенно в истории химической кинетики, тем не менее не давало ему повода для резкого отрицания применимости констант скоростей реакций при установлении связи строения и реакционной способности органических молекул. [c.67]


    Хотя механизмы, представленные уравнениями (25) и (26), нельзя исключить во всех случаях, для реакций с участием НХ, где X — кислород, азот или сера, они маловероятны. Это связано с тем, что в соответствии с такими механизмами переносы протона к этим атомам или отщепление протона от них должны протекать медленнее, чем стадия образования или разрыва связи с атомом углерода. К настоящему времени накоплено большое количество данных, на основании которых можно предположить, что если константа равновесия велика, то скорость прямой реакции опре -деляется диффузией сольватированного протона к субстрату [72, 73, 108, 184]. Тогда скорость переноса протона в обратном направлении прямо пропорциональна константе равновесия суммарной реакции. Если V — более сильное основание, чем сопряженное основание катализирующей кислоты, или если VI является более сильной кислотой, чем сопряженная кислота катализирующего основания, что весьма вероятно с химической точки зрения, то скорость лимитирующих стадий в механизмах (25) и (26) определялась бы диффузией протона. Фактически скорость таких переносов протона может быть выше, чем скорость диффузионных процессов, поскольку в начальной стадии субстрат может быть связан с катализатором водородными связями и тогда диффузии протона к субстрату не требуется в этом случае скорость суммарной реакции зависела бы от скорости взаимного удаления реагентов, которая также определяется диффузией. Маловероятно, чтобы скорость начальной равновесной стадии присоединения НХ к карбонильной группе зависела от диффузии сольватированного протона и в том и в другом направлении. Поэтому если обратная реакция (отщепление НХ) протекает медленнее, чем стадия переноса протона, то начальная стадия не должна быть равновесной и скорость реакции не будет определяться переносом протона. Как мы увидим ниже, для объяснения кинетических закономерностей, наблюдаемых в реакции семикарбазида с п-нитробензальдегидом, необходимо допустить, что скорость присоединения семикарбазида к сопряженной кислоте п-нитробензальдегида превышает скорость диффузии. Поэтому механизм (26), если он включает начальное равновесное присоединение семикарбазида, неприемлем для этой реакции. Другой маловероятный с химической точки зрения вариант механизма (26), а именно присоединение сначала семикарбазида и далее протона, может быть исключен при рассмотрении относительных скоростей присоединения [c.361]

    В случае образования бензилиденанилина соответствующая величина р+ равна 0,39 [51]. Присоединение семикарбазида катализируется кислотами, и величина р в этом случае указывает на то, что эффекты заместителей не полностью взаимно компенсируются на стадиях переноса протона и присоединения семикарбазида, из которых первая облегчается смещением электронов к реакционному центру, а вторая — смещением электронов от него. В переходном состоянии этой реакции перенос протона от молекулы растворителя к карбонильной группе, по-видимому, не заходит очень далеко, как на это указывают следующие факты величина р положительна и равна 0,71 а-величина Бренстеда мала и равна 0,25 изотопный эффект дейтерия невелик. Реакция присоединения, катализируемая водой, несколько более восприимчива к эффектам заместителей (р+ == 0,94), тогда как если катализатором служит хлоруксусная или уксусная кислота, то вели- [c.382]

    Уменьщение угла наклона прямой на корреляционном графике может быть обусловлено и совершенно иными причинами. Как уже указывалось, карбонильная группа сильно стабилизируется за счет сопряжения с электронодонорными п-заместителями. Этим объясняется характерная способность многих реакций присоединения по карбонильной группе коррелироваться со значениями о или с величиной, лежащей между а и а+. Для первоначально опубликованных данных по константам равновесия реакций присоединения семикарбазида к замещенным производным бензальдегида подобная закономерность носит не очень заметный характер [3]. Однако она становится очевидной, если учесть данные для и-оксибензальдегида [191]. С другой стороны, для катализируемой кислотами стадии дегидратации не наблюдается таких отклонений от корреляции а — р. Суммарная скорость этой реакции в разбавленных растворах (т. е. в условиях, когда лимитирующей стадией является стадия дегидратации) слагается из скоростей стадии присоединения и дегидратации. Следовательно, взаимное погашение эффектов заместителей будет наблюдаться в том случае, если обе стадии одинаково коррелируются со значениями о, но характеризуются противоположными по знаку величинами р. Если же для стадии присоединения будут характерны отрицательные отклонения в сторону ст+, то взаимная компенсация влияния заместителей окажется неполной. Другими словами, специфический резонансный эффект электронодонорных пара-заместителей, стабилизирующий карбонильную группу, будет замедлять стадию присоединения в большей степени, чем ускорять стадию дегидратации. Поэтому при введении в молекулу таких заместителей наблюдаемая скорость реакции будет понижаться. Это схематически изображено на рис. 11. Если реакции образования семикарбазона и бензилиденанилина из п-метокси- и п-оксибензальдегидов проводить в условиях, в которых, как известно из независимых данных [52, 191], лимитирующей стадией является стадия дегидратации, а все другие заместители оказывают незначительное влияние на скорость процесса, то специфический резонансный эффект объясняет почти двукратное уменьшение скорости этих реакций по сравнению с незамещенным бензальдегидом. Часто наблю- [c.383]


    В настоящее время, к сожалению, не имеется достаточно данных для того, чтобы количественно проверить выведенные в этой статье соотношения на простых реакциях присоединения по карбонильной группе. Однако на некоторых сериях реакций удалось выяснить, что соотношение между строением, реакционной способностью и катализом именно такое, какого можно было бы ожидать на основании приведенных уравнений, причем в некоторых случаях можно рассчитать величины С. Так, например, в реакции присоединения семикарбазида к замещенным производным бензальдегида, катализируемой кислотами, величины р+ увеличиваются от 0,71 до 0,94 по мере того, как р/Со катализирующей кислоты повышается в ряду сольватированный протон, хлоруксусная кислота, уксусная кислота и вода. Кроме того, величина а для кислот, играющих роль катализатора, не меняется в пределах ошибки опыта при изменении характера заместителя в молекуле бензальдегида [53]. Эти результаты согласуются с уравнением (56), причем С является положительной величиной, а ее значения велики и лежат в интервале от 10 до 100. С увеличением нуклеофильной способности атакующего реагента реакция все менее катализируется сольватированным про- [c.388]

    Механизм реакции карбонильных соединений с гидроксиламином, по-видимому, очень напоминает соответствующий механизм взаимодействия этих соединений с фенилгидразином, динитрофе-нилгидразином и семикарбазидом. Наиболее подробно изучена реакция образования семикарбазонов. Ниже приведен механизм этой реакции в водном растворе в присутствии катализатора — кислоты НА. [c.188]

    Некоторые примеры известных в настоящее время типов катализа,. наблюдающихся в реакциях присоединения к карбонильной группе, приведены в табл. 1. Из них видно, что присоединение сильных нуклеофильных агентов либо протекает при полном отсутствии катализа, либо катализируется очень слабо, тогда как слабые нуклеофильные реагенты, такие, как производные анилина, семикарбазид, вода, спирты и амиды, реагируют в условиях общего кислотного катализа. Реакции карбонильной группы с соединениями типа КОН, КООН, а также с производными мочевины катализируются как кислотами, так и основаниями. Из экспериментальных данных, приведенных в табл. 1, можно было бы заключить, что в реакциях присоединения сульфит-иона и гидроксиламина, т. е. молекул с промежуточной основностью, общий кислотный катализ играет незначительную роль. Однако показано [12, 98, 169], что в присутствии сильных кислот присоединение обоих этих соединений может протекать по пути, катализируемому кислотами, который в большинстве случаев проявляется лишь в незначительной степени. Реакция сильноосновных аминов с карбонильной группой не изучена в условиях, когда лимитирующей стадией процесса является стадия присоединения. Однако, исходя из отсутствия общего катализа при разлож ении формохолинхлорида, можно заключить, что [c.359]

    Реакции с гидра )ином и семикарбазидом катализируются кислотами, причем для каждой из них существует определенное оптимальное значение pH. Ускорение реакции кислотами обусловлено увеличением частичного положительного заряда на атоме углерода карбонильной группы при ее прелоиировяиии  [c.165]

    Так, скорость реакции фшола с формальдегидом (р/Са фенола 9,9) действительно максимальна при pH 10 и быстро падает при более низких значениях pH. Точно так же взаимодействие семикарбазида (р/Са 3,6) с фурфуролом и ацетоном протекает быстрее всего при рН 4. Поэтому для превращения карбонильных соединений в семикарбазоны наилучшим реагентом является хлоргидрат семикарбазида в присутствии ацетата натрия, в то время как кислотность чистого хлоргидрата оказывается слишком большой. В случае гораздо менее основного 2,4-динитрофенилгидразина уксусная кислота (рАа, 4,76) оказывает лишь слабое каталитическое действие эффективными катализаторами -являются минеральные кислоты. [c.56]

    Однако некоторые кетоны с большими замещающими группами практически не взаимодействуют с этими реагентами, вызывающими реакцию присоединения, даже при применении кислотных катализаторов. К этой группе относятся такие соединения, как ацетоме-зитилен, диизопропилкетон и многие бензофеноны. Имеется также ряд соединений, являющихся продуктами присоединения к карбонильным соединениям, которые теряют элементы воды, образуя ненасыщенные соединения и уменьшая тем самым образование спиртов. Такие соединения содержат электроноакцепторную группу у атома, присоединяющегося к карбонильной группе. К ним относятся гидроксиламин или гидразин со всеми их замещенными производными, такими, как фенилгидразин и семикарбазид. Причи- [c.266]

    В третьей главе изложены результаты исследования реакций взаимодействия диэтилового эфира щавелевой кислоты с семикарбазидом, тиосемикарбазидом и аминогуанидином, протекающих в результате нуклеофильной атаки атомами азота гидразинпроизводных карбонильного углерода диэтилоксалата. Схема синтеза приведена на рис. 1. [c.6]

    СО слабыми нуклеофилами (такими, как арилгидразины, семикарбазид), так как при реакциях с сильными нуклеофилами (такими, как RSH, GN" или NaHSOg, атакующий карбонил в виде иона S0 ) нет необходимости в протонном катализе, поскольку реагент непосредственно атакует углеродный атом карбонильной группы. [c.141]

    Для успешного осуществления взаимодействия карбонильных соединений с разными нуклеофилами требуется различная кислотность среды. Если для взаимодействия с таким слабым основанием, каким является 2,4-динитрофенилгидразин, нужно активировать карбонильную группу минеральными кислотами (серной, соляной), то для реакции с семикарбазидом оказывается достаточной уксуснокислая среда. Еще более сильные основания, аммиак, амины, гидразин, легко реагируют с альдегидами и кетонами в нейтральной или даже в слабощелочной среде. В этом случае повышение кислотности среды отрицательно сказывается на скорости вэаимодействия с карбонильным соединением, поскольку основание само может присоединять протон, теряя при этом свои нуклеофильные свойства. [c.291]

    Ароматические альдазниы и кетазины [2]. ПФК является превосходным катализатором и одиовремеино растворителем при получении азинов из ароматических альдегидов и кетоиов и гидразина, а также различных его производных, напрнмер его солей хлоргидрата семикарбазида, п-толуолсульфонилгидра-зина и гидразидов карбоновых кислот. При 100° реакция обычно заканчивается в течение 15 мин. В случае алифатических карбонильных соединений реакция не нашла применения. [c.418]

    Благодаря присутствию карбонильной группы кетонокислоты вступают в реакцию с фенилгидразином, гидроксиламином и семикарбазидом. Различная стойкость этих кислот обусловливается. положением карбонила по отношению к карбоксильной группе а-кетонокислоты довольно стойки, тогда как -кетонокислоты очень легко отщепляют двуокись углерода с образованием кетонов. у- етонокислоты обычно более стойки, чем а-ке-тонокислоты. [c.285]

    Реакции кетонной формы кумаранона-3. Кумаранон-3 и его 2-алкиль-ные производные легко образуют оксимы. Однако с такими реагентами, как фенилгидразин или семикарбазид, нормальные производные карбонильного соединения получаются с трудом вследствие чувствительности исходного соединения к -реагентам основного характера. Поведение кумаранона-3 [c.22]

    Проведение анализа при использовании семикарбазида. В мерную колбу емкостью 50 мл переносят 25 мл раствора семикарбазида и 0,2 мл 1%-ного раствора желатины. Затем в колбу добавляют анализируемую пробу, содержащую около 0,05 мМ карбонилсодержащего соединения (растворенного в метаноле), и метанолом эазбавляют полученный раствор до метки. Раствор тщательно перемешивают, оставляют на некоторое время для протекания реакции и затем переносят определенную его часть в полярографическую ячейку. Укрепляют электроды в ячейке и в течение 10 мин пропускают через раствор ток азота. После этого регистрируют полярограмму и вычисляют силу диффузионного тока для волны восстановления семикарбазона. По вычисленному значению тока с помощью калибровочного графика определяют содержание карбонильной группы. [c.105]

    При получении семикарбазонов в реакцию с альдегидом или кетоном вступает, естественно, та NH2-гpyппa семикарбазида, которая наиболее удалена от электроноакцепторной карбонильной группы и поэтому обладает большей нуклеофильной силой. [c.228]

    Описан метод получения соединений LXXXIII взаимодействием семикарбазида в щелочной среде с продуктами присоединения бисульфита к а-дикарбонильным соединениям, с последующим отщеплением воды от промежуточного 1,4,5,6-тетрагидро - 5,6-дигидрокси-5-Н -6-К -1,2,4-триазин-3(2Н)-она. Аналогичный продукт получают и при конденсации мочевины с моногидразоном бензила, через промежуточный продукт присоединения мочевины по карбонильной группе гидразона. Реакцию ведут в АсОН в присутствии уксусного ангидрида [230]  [c.137]

    Первая стадия реакций конденсации карбонильных соединений с различными азотсодержащими реагентами (см. стр. 254) может про ходить посредством синхронного электронного перехода. Кон-ден сация фурфурола с семикарбазидом может служить примером нук леофильной реакции, которая становится возможной в результате электрофильного воздействия (б). [c.325]

    К реакциям конденсации следует отнести реакции, которые происходят между аммиаком, первичными органическими основаниями, гидроксиламином, первичными гидразинами, семикарбазидом, семиоксамазй-дом, аминогуанидином и соединениями, содержащими карбонильную группу. Перечисленные вещества в большей степени, чем для синтетических целей (хотя и здесь они очень полезны), служат для характеристики индивидуальных карбонильных соединений и поэтому применяются в самых употребительных методах химического исследования природы органических соединений, а также и в аналитической работе. Беглый обзор позволит нам коснуться только некоторых наиболее интересных вопросов. [c.341]

    Как уже упоминалось, 2,2,6,6-тетраметил-4-оксопиперидин-1-окспл дает с рядом сильных оснований (2,4-динитрофенилгидра-зин, семикарбазид, гидроксиламин) производные по карбонильной группе [38]. Иминоксильная группа обычно сохраняется, но низкие выходы основного продукта показывают, что реакция часто осложняется побочными процессами. Особенность взаимодействия этого кетон-радикала с нуклеофильными реагентами заключается в том, что последние, обладая неподеленными электронными парами,. могут использовать их не только для образования новой связи с углеродным атомом карбонильной группы, но и для восстановления иминоксильной группы. В определенных условиях реакция восстановления может оказаться преобладающей (гидразин, алкилмагнийгалогенид), поэтому при подборе нуклеофильных реагентов приходится учитывать их восстановительные свойства. [c.60]

    Семикарбазид не всегда реагирует толыго с карбонильной группой. Подобно гидроксиламину, он присоединяется к реакционноспособным двойным связям. Это надо учитывать цри проведении реакции с ненасыщенными кетонами и альдегидами. Как это ни странно, но не всегда безразлично, применяют ли солянокислый или сернокислый семикарбазид. Дальнейшее видоизменение метода позволяет применять тиосемикарбазид, так как тиосемикар-базоны образуют, по Нейбергу [744], очень трудно растворимые соединения с тяжелыми металлами. По деталям отсылаем к оригинальной работе. [c.278]

    Реакции этого типа должны протекать обязательно через две стадии стадию присоединения и стадию дегидратации [см. уравнение (10)]. Поэтому логично предположить, что в зависимости от экспериментальных условий либо та, либо другая стадия могла бы определять скорость реакции. Вблизи нейтральных значений pH взаимодействие относительно концентрированных растворов гидроксиламина, метоксиамина, гидразина и семикарбазида с рядом карбонильных соединений сопровождается сначала быстрым понижением интенсивности частот поглощения карбонильной группы в ультрафиолетовой и инфракрасной областях. Скорость этой реакции настолько велика, что ее невозможно измерить обычными методами. По мере дальнейшего протекания реакции постепенно появляется пик поглощения, соответствующий конечному продукту [98]. Таким образом, присоединение с образованием промежз чного аминоспирта в этих условиях протекает быстро, а его дегидратация — медленно. Эта последняя стадия и определяет скорость реакции. Некоторые альдегиды, особенно склонные к реакциям присоединения, образуют настолько прочные промежуточные амино- [c.347]

    Гидролиз ацеталей протекает без заметного общего кислотного катализа. Из этого следует, что обратная реакция должна протекать без общего основного катализа. Более точно, необходимо, чтобы общий основной катализ этой стадии либо вообще отсутствовал, либо величина была близка к нулю. Однако хорошо известно, что такой тип катализа проявляется в реакциях присоединения воды и спиртов к карбонильной группе. Кроме того, для угла наклона прямых на графиках Бренстеда для этого типа катализа характерны значения 0,25—0,5, что позволяет легко обнаружить его при обычных экспериментальных условиях. Следовательно, гидролиз ацеталей не является моделью гидратации карбонильной группы. При этом механизм (29) можно исключить из рассмотрения, и реакция присоединения ROH так же, как и присоединение семикарбазида, должна протекать по механизму (28). Совсем недавно Белл [21] для гидратации ацетальдегида предложил механизм, по существу тот же самый, что и механизм (28). [c.365]

    Ряд, соединений, в которых электроотрицательный атом и атом со свободной электронной парой расположены рядом, проявляет аномально высокую склонность к присоединению по карбонильной группе. Так, например, в случае реакций присоединения семикарбазида, метоксиамина, гидроксиламина и гидразина к аниону пировиноградной кислоты, который в водном растворе находится в основном в негидратированной форме, константы равновесия [уравнение (44)] лежат в области от 10 до 57 л-моль . В то же время обычные первичные амины, а также пиперидин и имидазол не образуют в водном растворе таких продуктов присоединения в заметных количествах [98]. Разность свободных энергий, соответствующая константам равновесия этих реакций, равна по крайней мере 3—5 ккал/моль и характеризует относительную склонность соединений такого класса к реакциям присоединения по сравнению с обычными аминами или водой. Способность перекиси водорода присоединяться по карбонильной группе следует из того, что значение константы равновесия образования аддукта из ацетальдегида и перекиси водорода составляет 48 л-моль [106]. Этой величине соответствует разность в 4,5 ккал/моль между свободными энергиями образования продуктов присоединения воды и перекиси водорода. Кроме того, известно, что при взаимодействии 50%-ной водной перекиси водорода с ацетоном [132], присоединяющим воду лишь с большим трудом [47], образуется с хорошим выходом продукт типа (СНз)2С(ООН)2, состав которого соответствует присоединению 2 молей перекиси водорода. Алкилгидро-перекиси также легко присоединяются к альдегидам [193]. Из этого следует, что водородные связи с атомами водорода перекисной группы не могут служить причиной необычайной устойчивости этих продуктов присоединения. Весьма интересной особенностью этого класса соединений является также высокая скорость, с которой они взаимодействуют с карбонильными группами в реакциях как присоединения, так и замещения. Другими словами, особые свойства этих соединений приводят к увеличению устойчивости не только конечных продуктов реакции, но также и переходных состояний [71, 78, 99]. Причины такой необычной склонности этих соединений к присоединению по карбонильной группе неизвестны. Основность при- [c.377]

    Оксимы, фенилгидразоны, семикарбазоны. Особенно разнообразны реакции замещения кислорода карбонильной С=0-группы, протекающие при взаимодействии альдегидов и кетонов с азотистыми основаниями. Гидроксиламин, фенилгидразин (с. 463), семикарбазид образуют продукты присоединения по нуклесфильному механизму, которые затем стабилизируются с выделением воды. [c.149]


Смотреть страницы где упоминается термин Семикарбазид, реакция с карбонильными: [c.1255]    [c.132]    [c.633]    [c.164]    [c.67]    [c.276]    [c.295]    [c.295]    [c.228]    [c.35]    [c.359]    [c.378]    [c.386]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Семикарбазид



© 2025 chem21.info Реклама на сайте