Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь. Сплавы металлов воздуха

    Параболический закон роста окисной пленки, установленный впервые Тамманом на примере взаимодействия серебра с парами йода, наблюдали в опытах по окислению на воздухе и в кислороде меди и никеля (при I > 500° С), железа (при I > 700° С) и большого числа других металлов и сплавов при определенных температурах, В табл. 6 приведены параметры диффузии элементов в окислах. [c.59]


    В гальваностегии медные покрытия применяются для защиты стальных изделий от цементации, для повышения электропроводности стали (биметаллические проводники), а также в качестве промежуточного слоя на изделиях из стали, цинка и цинковых и алюминиевых сплавов перед нанесением никелевого, хромового, серебряного и других видов покрытий для лучшего сцепления или повышения защитной способности этих покрытий. Для защиты от коррозии стали и цинковых сплавов в атмосферных условиях медные покрытия небольшой толщины (10—20 мкм) непригодны, так как в порах покрытия разрушение основного металла будет ускоряться за счет образования и действия гальванических элементов. Кроме того, медь легко окисляется на воздухе, особенно при нагревании. [c.396]

    Сероводород крайне коррозионно активен по отношению к черным и цветным металлам, особенно меди и ее сплавам. С железом он дает пирофорное соединение — сернистое железо, самовоспламеняющееся в контакте с кислородом воздуха. Раствор сероводорода в воде имеет кислую реакцию и при стоянии на [c.26]

    Никель обычно извлекают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руд выделяют медный и никелевый концентраты. Никелевый концентрат вместе с флюсами плавят в электрических или отражательных печах с целью выжигания серы в виде бОз, удаления железа в виде силиката в шлам и концентрирования никеля в металлизированный штейн, содержащий до 10— 15% никеля и 15-25% серы. Наряду с никелем в штейн переходит часть железа, кобальт, медь, благородные металлы. Затем штейн окисляют в конверторах с помощью вдуваемого воздуха и в присутствии флюса. Более реакционноспособное железо практически полностью переходит в шлак, а получающийся файнштейн — сплав Си с N1 — после охлаждения разделяют на Си и N1 с помощью флотационного или карбонильного процессов. Никелевый концентрат после флотации обжигают в кипящем слое до N10 и восстанавливают коксом в электродуговых печах до чернового металла. Черновой металл рафинируют электролизом до содержания никеля 99,99%. При разделении карбонильным методом файнштейн обрабатывают СО при 100—200 атм и 200-250 °С, а полученный карбонил N1 (С0)4 разлагают при атмосферном давлении и температуре около 200 "С. При этом получают никелевый порошок или никелевую дробь диаметром до 10 мм. [c.186]


    Вследствие высокой стоимости платины часто приходится вместо платиновых электродов применять электроды из менее ценных металлов или сплавов. Однако анод всегда делают из платины, так как в процессе электролиза анод из других металлов может растворяться. Следует все же заметить, что найти равноценный платине по свойствам материал для электродов до сих пор не удалось. Электроды из меди сравнительно легко окисляются кислородом воздуха, что сопряжено с изменением их массы и понижением точности определения. [c.422]

    Применение /-металлов. Использование f-металлов в технике ограничено вследствие их дефицитности, вызванной трудностью получения в свободном виде. Больщое сродство /-металлов к кислороду и другим элементарным окислителям (S, N, Р) делает их очень перспективными раскислителями в металлургии, однако из-за высокой стоимости их применяют в исключительных случаях. Например, легирование электродной проволоки мишметаллом позволяет вести сварку меди и ее сплавов на воздухе без всякой защиты. [c.323]

    Из меди и ее сплавов с цинком (латуни) изготовляют холодильники газодувок и газовых компрессоров, уплотнения крышек и фланцевых соединений аппаратов высокого давления, блоки разделения газовых смесей и воздуха методом глубокого охлаждения и другое оборудование, не имеющее соприкосновения с аммиаком. Аммиак, взаимодействуя с медью и ее сплавами, образует сложные комплексные соединения. При этом полностью изменяются физические свойства металлов и может нарушиться герметичность оборудования. Кроме того, прн высоких температурах в газовой среде восстановительные газы (водород, окись углерода и углеводороды) вызывают хрупкость окисленной меди. [c.94]

    Растворы могут существовать в трех агрегатных состояниях — твердом, жидком и газообразном (парообразном). Примерами твердых растворов могут служить некоторые сплавы металлов, например сплав золота и меди, а газообразных — воздух. [c.9]

    Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделии, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение миогих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. стр. 571). Значительное количество цинка расходуется для изготовления гальванических элементов. [c.621]

    После закалки и искусственного старения (сы. Старение металлов) Б. б. приобретают высокие прочность, упругость и текучесть. Отличаются высокой электропроводностью, теплопроводностью, твердостью, морозостойкостью, высоким сопротивлением ползучести. При высокой т-ре Б. б. окисляются в меньшей степени, чем медь и меди сплавы мало склонны к межкристаллитной коррозии, однако в напряженном состоянии под действием влажного аммиака и воздуха подвержены коррозионному растрескиванию. Они немагнитны, ве искрят при ударе. Медь с бериллием образует ряд твердых растворов. При т-ре 864° С растворимость бериллия в меди составляет 2,7%, с понижением т-ры (до 300° С) она падает до 0,2%, что дает возможность упрочнять сплав термической обработкой. Нагрев под упрочняющую термическую обработку Б. б. осуществляют при т-ре 750—790° С [c.130]

    В действительности же это не так. Исследования механизма катализа Си Ю показали [33], что никакого обратного обмена между кислородом окиси меди и кислородом воздуха не происходит. Следовательно, поглощаемый металлической медью или ее сплавами кислород расходуется лишь на образование окислов металлов. По-видимому, аналогичную картину молено предположить и для элементарной серы, которая с медью и ее сплавами образует сульфиды. [c.286]

    Очистку прессформ от остатков прессматериалов производят с помощью шпилек (рис. П-24), изготовленных из мягких цветных металлов или сплавов (латунь, бронза, алюминий, медь), и сжатым воздухом с помощью пистолетов специальной конструкции (рис. И-25). [c.85]

    Для исследования области кристаллизации -твердого раствора и изучения некоторых свойств сплавов были приготовлены тройные сплавы циркония с добавками молибдена и меди. В качестве исходных металлов использованы йодидный цирконий, молибден в форме проволоки и электролитическая медь. Сплавы выплавляли в дуговой печи с нерасходуемым вольфрамовым электродом в атмосфере чистого аргона. С целью получения однородных слитков сплавы переплавляли 6—8 раз с переворачиванием. Взвешиванием на аналитических весах определялось отклонение от веса шихты, которое не превышало — 0,01 г. Сплавы исследовали как в литом состоянии, так и после закалки из -области при различных температурах. Сплавы, предназначенные для изучения механических свойств, а также стойкости против коррозии в воде высоких параметров и на воздухе, подвергали соответствующей пластической деформации для придания образцам определенной формы. При этом было установлено, что сплавы, легированные с преобладанием меди при содержании последней более 2%, пластической деформации [c.138]


    Потускнение изделий, покрытых серебром, медью или медным сплавом, на воздухе, содержащем соединения серы, сильно снижает декоративный вид этих металлов. Однородная интерференционная окраска, появляющаяся на чистой поверхности в воздухе, содержащем сероводород, сама по себе красива, но поверхность изделия может быть загрязнена и покрывается пятнами разного цвета. [c.74]

    Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Ее-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи [c.88]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]

    При наличии в воздухе частиц хлористых солей (в частности, в морской атмосфере) большинство технических металлов и сплавов подвергается усиленной коррозии. Некоторые примеси в воздухе могут усиливать коррозию одних металлов и не оказывать влияния на другие. Так, медь и медные сплавы подвергаются усиленной коррозии при наличии в атмосфере даже небольших количеств паров аммиака, никель же в этих условиях не разрушается. Во влажном воздухе, даже загрязненном 502, НаЗ и некоторыми другими газами, свинец не подвержен коррозии, так как на его поверхности образуется защитная пленка. [c.180]

    При температуре масла выше 150° С коррозионные свойства его определяются в специальных стальных герметичных контейнерах или в стеклянном приборе с обратным холодильником, где пластинки из испытуемых металлов контактируются с маслом, находящемся в паровой и жидкой фазах. Последний метод лучше отражает условия работы масел в двигателе, где происходит непрерывный обмен контактирующегося с маслом воздуха. При комнатной температуре масла МК-8 и МС-6 за 130 суток не дают ощутимой коррозии стали, алюминия, меди и ее сплавов. Показатели, характеризующие коррозионные свойства нефтяных масел для ТРД при повышенных температурах, приведены в табл. 8. 25. [c.463]

    Химическая стабильность. В большинстве случаев под химической стабильностью понимают устойчивость смазок к окислению кислородом воздуха, хотя в широком смысле — это отсутствие изменения свойств смазок при воздействии на них химических реагентов (кислот, щелочей, кислорода и т. п.). Окисление смазок приводит, как правило, к разупрочнению, ухудшению коллоидной стабильности, смазочной и защитной способности и других свойств (рис. 99), Стабильность к окислению важна для смазок, заправляемых в узлы трения 1—2 раза в течение 10—15 лет, работающих при высоких температурах, в тонких слоях и в контакте с цветными металлами. Медь, бронза, олово, свинец и некоторые другие металлы и сплавы ускоряют окисление смазок. [c.363]

    Олово и свинец применяют с глубокой древности. Особую роль в истории материальной культуры сыграла бронза — сплав олова с медью. В современной технике олово в основном используют для лужения, т. е. для покрытия им других металлов. Листовое железо, покрытое оловом, называется белой жестью. Олово по сравнению с железом более коррозионно стойко, и оловянное покрытие на жести является катодным (см. Курс химии, ч. I. Общетеоретическая, гл. IX, 13). В силу этого белая жесть сохраняет устойчивость к химическому воздействию воздуха и воды только при условии целостности покрытия обнажившееся железо становится анодом гальванической пары железо — олово и подвергается коррозии более интенсивно,чем совсем не защищенное. [c.207]

    Химические свойства. В сплавленном виде марганец вполне устойчив при обычных условиях, так как покрывается оксидной пленкой, предохраняющей его от дальнейшего окисления. В мелкораздробленном виде он легко окисляется на воздухе. С алюминием, сурьмой, медью и некоторыми другими металлами образует ферромагнитные сплавы. [c.337]

    Особую опасность представляет высокая агрессивность аммиака, воздействующего на медь, серебро, цинк и другие металлы и сплавы. Чугун и сталь наиболее пригодны в качестве материалов для изготовления оборудования и трубопроводов, предназначенных для аммиака. Однако безводный аммиак оказывает сильное коррозионное воздействие на стальные трубопроводы в присутствии двуокиси углерода и воздуха. Для предотвращения коррозионного растрескивания углеродистой стали сжиженный аммиак, транспортируемый по трубопроводам, должен содержать не менее 0,2% (масс.) воды. При меньщем содержании воды в аммиаке в присутствии воздуха возможно коррозионное растрескивание. Для транспортирования сжиженного аммиака применяют трубы, химический состав которых соответствует определенным требованиям. Трубы для аммиакопровода должны изготовляться по специальным техническим условиям, в которых помимо химического состава должны быть оговорены требования к механическим свойствам металла и сварке, допускам толщин стенок, диаметров труб и т. д. [c.35]

    Несущая способность деталей ирн коррозионной усталости может снижаться в десятки раз по сравнению с усталостной прочностью па воздухе и по абсолютным значениям составлять 20 — 100 МПа (см. рис. 27). При этом необходимо учитывать, что коррозионной усталости подвергаются практически все конструкционные металлы и сплавы на основе железа, хрома, никеля, алюминия, меди и в меньшей степени титана. Коррозионная усталость металлов может проявляться в растворах солей, щелочей, кислот, воде и во влажном воздухе. [c.80]

    Для экономичной регенерации растворителя и удовлетворительной работы установки обогрев экстрактной и рафинатной отпарных колонн должен проводиться при помощи замкнутой системы масляного обогрева, чтобы предотвратить нагрев тонкой граничной пленки фурфурола до температуры, превышающей 355°. При температуре всего фурфурола или потока его более 232 образуется кокс. Должны быть приняты меры, предотвращающие окисление масла и растворителя, особенно при очистке высокоароматического сырья. Применение окисленного фурфурола при очистке ароматических масел сопровождается образованием отложений полимерных веществ и кокса в трубопроводах и аппаратуре. Этот недостаток можно уменьшить созданием во всех емкостях для фурфурола подушки инертного газа, деаэрацией сырья, предотвращением подсоса воздуха на приеме насосов, проведением отпарки обескислороженным водяным паром и, возможно, добавкой антиокислителей к фурфуролу. Кроме того, при изменении уровня жидкости в отдельных аппаратах системы в них должен подаваться инертный газ применение меди илп медных сплавов недопустимо, так как этот металл катализирует разложение фурфурола. Предполагают, что хлористый натрий усиливает образование кокса в экстракционной аппаратуре поэтому целесообразно нефти, из которых вырабатывают масла, предварительно обессоливать. [c.250]

    Из цветных металлов химическому оксидированию чаще всего подвергают алюминий, магний, медь, цинк и их сплавы. В качестве окислителей применяют хромовую кислоту и ее соли, нитриты и персульфаты щелочных металлов. Оксидирование проводят в кислой или щелочной среде продолжительность оксидирования при 15—20 °С составляет 10—20 мин. После оксидирования детали промывают в холодной, затем в теплой воде, после чего сушат при температуре не выше 60 °С или обдувают теплым воздухом. [c.216]

    Уменьшение скорости ползучести и результирующее увеличение времени до разрушения на воздухе, т. е. поведение типа 1А или В, наблюдалось также в случае металлов и сплавов, поверхности которых покрыты не оксидами, а пленками других металлов. Например, такое поведение отмечено для монокристаллов и поли-кристаллического цинка, покрытых медью, и монокристаллов никеля с таким же покрытием [49]. Поведение типа I наблюдалось для сплава N1—20 Сг, покрытого керамической пленкой [50], и для кадмия с гидроксидным и пластиковым покрытиями [51.  [c.16]

    Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносит убытки, исчисляемые миллионами рублей. [c.11]

    В атмосферном павильоне с жалюзими испытывали сплавы системы Л1-М2-Си А1-Мд Zп-Al-Mg, а также цинк (99,8%), электролитическую медь (99,9%), алюминий (99,5%) и электролитические и химические покрытия. Результаты испытаний металлов представлены в табл. V. 6. Для сравнения приведены данные о коррозии этих же металлов на воздухе в Батуми. В течение первых 3 месяцев с начала эксперимента метеорологические условия были следующими средняя месячная температура воздуха колебалась от -1-21,1 до +24,2 °С, относительная влажность — от 78 до 80%, количество осадков — от 81,1 до 335,5 мм, продолжительность смачивания — от 115 до 192 ч. Как видно из данных, скорость коррозии стали в открытой субтропической атмосфере намного выше, чем в павильоне ( в 20 раз). То же характерно и для цинка и меди. С алюминием происходит следующее вначале испытаний скорость коррозии алюминия в открытой атмосфере несколько меньше, чем в павильоне жалюзийном со временем она увеличивается и далее вновь падает. В конечном счете скорость коррозий алюминия в павильоне больше, чем в открытой атмосфере. Таким образом, в сильно агрессивных атмосферах коррозия металлов и сплавов на воздухе выше, чем в павильоне жалюзийном. Отсюда следует, что в тропических и субтропических районах изделия и оборудование следует хранить под навесом, брезентами или в складах. [c.77]

    Большое сродство /-металлов к кислороду и другим элементарным окислителям (S, N, Р) делает их очень перспективными раскислите-лями в металлургии, однако из-за высокой стоимости их применяют в исключительных случаях. Например, легирование электродной проволоки мишметаллом позволяет вести сварку меди и ее сплавов на воздухе без всякой защиты, [c.321]

    Металлы в мелкодисперсном состоянии являются пирофорными, т. е. способными к самовозгоранию при соприкосновении с воздухом. В настоящее время из вольфрама, молибдена, хрома, цинка, марганца, олова, железа, свинца, висмута и др. получены пирофоры. Пирофорными свойствами обладают и сплавы металлов, имеющие высокую степень дисперсности, нацример оксиды марганца МпО и кобальта СоО. Размер частиц у пирофорных металлов различен. Цирконий с размером частиц до 3 мкм очень пирофо-рен, а с размером частиц от 3 до 12 мкм — не пирофорен. Железо, никель, медь только с размером частиц 0,01.... ..0,3 мкм пирофорны. [c.24]

    Перед пайкой титана с алюминием или алюминиевыми сплавами применяют предварительное алитирование титана в жидком алюминии, перегретом до температуры 720—790 °С. Перед погружением титана в ванну поверхность жидкого алюминия раскисляют флюсами, содержащими хлористые и фтористые соли щелочных металлов (например, флюсом 34А) длительность алити-рования обычно не превыщает 10—12 мин. Пайка титана и его сплавов на воздухе легкоплавкими оловянными припоями может быть выполнена только по предварительно нанесенному покрытию из химического или гальванического никеля, меди, олова. Временное сопротивление разрыву таких соединений не превыщает 49 МПа. [c.346]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Литье меди и ее сплавов. При выплавке медных и особенно медно-цинковых сплавов вместо печей, отапливаемых нефтяным топливом, применяют электрические печи. Чистое газовое топливо используют весьма редко. Основные причины, ограничивающие применение газового топлива, — возможность потенциальных потерь металла в виде окиси цинка при выплавке в отапливаемых открытым пламенем печах и опасение загрязнения чистых металлов сульфидами или какими-либо окислами, особенно ряда сплавов, нуждающихся в тщательном рафинировании. Однако имеются примеры успешного использования газового топлива. В ФРГ применяют небольшие закрытого типа тигли, обогреваемые снаружи СНГ. Газовые печи оригинальной конструкции имеются в США. Печь, разработанная фирмой Асарко (рис. 66), загружается сверху медными катодами. Воздух и газ вдуваются внутрь печи по ее окружности вблизи донной части через горелки предварительного смешения. При этом для обеспечения необходимо качества металла следует выдерживать соотношение газ— воздух. Например, избыток воздуха не должен превышать 0,5%, содержание серы в СНГ — 0,001%. В атмосфере печи содержание водорода должно быть не более 1 %. Соблюдение этих условий гарантирует достижение требуемого качества переплавляемой меди. [c.314]

    Серебристо-белый, блестящий, сравнительно мягкий металл получается, например, при электролизе расплава ВеС . Не взаимодействует с воздухом и водой даже при температуре красного каления. Используется в сплавах с медью и никелем и придает им прекрасную электро- и теплопроводность. Сплавы с медью применяются для изготовления неискрящего электроинструмента. [c.32]

    Для обеспечения хорошего спая со стеклом кромку медной трубки предварительно покрывают тонким слоем стеклянной пасты, нанося ее кисточкой или опуская край трубки в пасту. Пасту готовят из стеклянной пудры, приготовленной из стекла, подлежащего спаиванию с медью, и связующей жидкости метилового спирта, ацетона, изоамилацетата (грушевой эссенции). Обработанную деталь сушат на воздухе или в термостате. Прежде чем приступить к остекловыванию лезвия кромки, нагревают соседний с кромкой участок медной трубки в пламени до красного каления, чтобы нанесенная на кромку паста сплавилась с металлом. Остекловывают лезвие кромки в зоне полного сгорания пламени. Все эти операции проводят так же, как при изготовлении согласованных рантовых спаев (с помощью стекляьшой палочки или специальной заготовки). Остекловывать нужно очень осторожно, чтобы не помять лезвие кромки. Ширина и толщина внутреннего стеклянного ранта спая всегда должны быть больше ширины наружного ранта на 1—2 мм (рис. 66). Общую толщину ранта устанавливают в зависимости от диаметра медной трубки. Внутренний диаметр медной трубки (О), наружный диаметр стеклянной трубки (с ) и толщина стенки стеклянной трубки (/) связаны между собой следующей зависимостью  [c.147]

    Еще в 30-х годах было обнаружено [152], что при уменьшении давления воздуха долговечность металлов возрастает. В вакууме долговечность алюминия по сравнению с воздухом при атмосферном давлении повышается в 5-10 раз [153]. При этом возрастает также предел выносливости. Аналогичные результаты получены на меди [154]. Долговечность железа повышается в вакууме примерно на порядок [155], в то время как предел выносливости такой же, как при испытании в воздухе. При высоких уровнях циклических нагрузок ( а = 950 МПа) долговечность молибдена в вакууме и в воздухе одинаковая [156], по мере уменьшения напряжений в вакууме долговечность заметно возрастает, но предел вьн носливости в обоих случаях одинаковый. Качественно подобная картина наблюдается для магниевых сплавов МА2 - 1, МА15, МА12. [c.99]

    Как область практич. деятельности X. уходит корнями в глубокую древность. Так, задолго до нашей эры в разл. регионах Древнего мира (Египет, Китай, Индия) возникли ремесла, основанные на использовании хим. процессов выплавка металлов (железо, медь) из руд, изготовление сплавов (бронза) получение кожи из шкур животных с помощью дубильных в-в крашение тканей прир. красителями произ-во стекла и керамики. Отсюда берут начало примитивные хим. знания. Никаких науч. представлений о составе в-ва и его превращениях в Древнем мире не существовало. Отсутствовало само понятие хим. элемента его заменяло неопределенное натурфилософское учение о стихиях, или элементах (огне, воде, воздухе, земле), получившее т1аиб. законченный вид у Аристотеля. Эти отвлеченные представления не были связаны с практикой. [c.651]


Смотреть страницы где упоминается термин Медь. Сплавы металлов воздуха: [c.27]    [c.339]    [c.166]    [c.174]    [c.245]    [c.112]    [c.215]    [c.669]    [c.80]    [c.89]   
Разделение воздуха методом глубокого охлаждения Том 2 Издание 2 (1973) -- [ c.509 ]




ПОИСК





Смотрите так же термины и статьи:

Медь ГЦК-металлы

Медь Сплавы металлов

Медь сплавы

Металлы воздуха

Металлы сплавы

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте