Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иридий методы определения

    На рис. 1 для примера дано сравнение чувствительности различных методов определения индия, рения и иридия. [c.17]

    Иридий. Гравиметрический метод определения потери массы при прокаливании [c.584]

    Сплавы платино-иридиевые. Метод определения иридия [c.585]

    В семидесятые годы кинетические методы стали использовать в производственных лабораториях для массовых анализов. Так, в лабораториях геологической службы применяются кинетические методы определения иода и серебра. Способы определения платиновых металлов заинтересовали лаборатории цветной металлургии имеются, например, хорошие способы определения малых количеств иридия и осмия. [c.66]


    Электролитический метод [2], Электролитическое растворение при помощи переменного тока может быть использовано для приготовления особо чистых растворов хлоридов иридия и родия, не содержащих щелочных металлов и пригодных в качестве эталонов для спектральных, колориметрических и других чувствительных методов определения. Этот метод применяют также для растворения значительных количеств иридия и родия. [c.98]

    Из весовых методов определения иридия наиболее изученными и имеющими существенное значение в практике анализа являются методы определения иридия осаждением в виде сульфида и гидроокиси. [c.120]

    Гидролитические методы определения иридия. Для гидролитического осаждения иридия применяют окись цинка [54, 55], суспензию окиси ртути [38, 56] и др., но наиболее распространенным и изученным является метод гидролиза в присутствии окислителя — бромата натрия (39, 40, 42, 43, 57]. [c.120]

    Существуют методы прямого и обратного титрования комн- лексного хлорида четырехвалентной платины, который обычно является исходным соединением в этих реакциях. В качестве восстановителей используют хлорид меди (I) [91—93], соль Мора [94], аскорбиновую кислоту [95]. Для обратного титрования избытка восстановителя применяют соли Се(IV), Ре(III), У(У), Мп(УИ). Объемному определению платины при окислительно-восстановительных реакциях мешают золото, иридий и рутений. Родий не мешает титрованию. Известны методы определения платины (II) титрованием различными окислителями, такими как перманганат калия [91], сульфат церия [92]. [c.135]

    Объемные методы определения иридия основаны на реакции [c.145]

    В потенциометрических, визуальных, а также амперометрических методах определения иридия используются реакции восстановления иридия (IV) до иридия (III). Восстановителями могут служить иодистый калий [124,125], гидрохинон [126—128], ферроцианид калия [129], соль Мора 130], хлористый титан (58, 131], аскорбиновая кислота [132] и некоторые другие реагенты [93, 94, 103, 133, 134]. [c.145]

    А м п ер о м е т р и ч е с к о е титрование иридия (IV) гидрохиноном и аскорбиновой кислотой [141]. Титрование проводят по катодной волне восстановления иридия (IV) при потенциале, отвечающем предельному току 4-0,4—0,5 в. Индикаторным электродом служит вращающийся платиновый электрод, электродом сравнения—насыщенный каломельный. Метод пригоден для определения 10 —10" М иридия. Точность определения 1—2%. [c.146]


    Метод позволяет определить десятые доли грамма иридия (П1). Определению не мешают родий (П1), иридий (IV), платина (IV) и некоторые неблагородные металлы — железо (III), кобальт (III) и др. [c.148]

    Щелочной раствор, полученный после отгонки осмия и рутения, нейтрализуют НС1, выпаривают, соли растворяют в воде. Отделяют нерастворившийся осмистый иридий (см. выше). В фильтрате отделяют золото и неблагородные металлы нИ трованием , затем разрушают нитриты НС1 и переводят в хлориды. В растворе хлоридов восстанавливают платину до металла (см. гл. IV, стр. 108). В фильтрате отделяют родий от преобладающего количества иридия методами, приведенными в гл. V. Для конечного определения этих металлов используют весовые методы (см. гл. IV). [c.272]

    Если пользоваться для определения иридия полярографическим, амперометрическим или потенциометрическим методами (см. гл. IV), то можно не отделять родий и определять иридий в его присутствии. Применение весовых и большей части колориметрических методов определения иридия требует предварительного отделения его от родия. Родий можно определять в присутствии иридия колориметрическим методом при помощи хлористого олова в тех случаях, когда содержание родия значительно больше или примерно равно содержанию иридия. При преобладающем содержании иридия родий необходимо отделить от иридия одним из известных способов (см. гл. V, стр. 228). [c.288]

    Определение иридия методом атомной абсорбции. [c.217]

    Количественные методы определения иридия 353 [c.353]

    I. КОЛИЧЕСТВЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ИРИДИЯ 1. Определение в виде металла [c.353]

    Реакция Се — Нд катализируется также соединениями иридия [53], при этом активным промежуточным продуктом является 1г , образующийся в результате взаимодействия Се с 1г ". Каталитическое действие иридия в этой системе предложено использовать в качестве основы кинетического метода определения иридия. [c.377]

    Описан метод определения родия в присутствии иридия [1599]. [c.190]

Таблица 23. Методы определения иридия Таблица 23. <a href="/info/3384">Методы определения</a> иридия
    Пиридилазо)-2-нафтол (ПАН) образует с ионами многих металлов интенсивно окрашенные соединения, нерастворимые в воде, но растворимые в органических растворителях спиртах, хлороформе, сложных эфирах, диоксане, ацетоне, диметилформамиде [1]. Большинство соединений окрашено в красный или красно-фиолетовый цвет и имеет максимум светопоглощения при 550—560 НМ] ионы индия (III) [2], редкоземельных элементов [3], ванадия (V) [4] и никеля [5] имеют по два максимума светопоглощения. Аномалию в окраске проявляют соединения ПАН с ионами кобальта (III) [6] и палладия [7, 8], окрашенные в зеленый цвет. На взаимодействие ПАН с металлами платиновой группы указано в работе [9]. Авторы предложили фотометрический метод определения с помощью ПАН иридия (IV) и родия (III) при совместном присутствии, основанный на различии кривых светопоглощения образующихся соединений. [c.360]

    Поллард после восстановления родия хлоридом титана (III) осаждал его 2-меркаптобензотиазолом, а затем определял в фильтрате иридий. Метод ограничивается определением микро-количеств, поскольку осадок комплекса родия имеет довольно большой объем, но в то же время последующее определение в фильтрате иридия — процесс довольно сложный и не подходит для микроколичеств. [c.26]

    Опубликовано около двенадцати титриметрических методов определения иридия. Из них большая часть представляет собой потенциометрическое титрование, основанное на окислении иридия (III) или восстановлении иридия(IV). В некоторых случаях возмол<но визуальное определение конечной точки титрования. Ни одну из этих методик нельзя рекомендовать. [c.96]

    Из всех титриметрических методов определения иридия автор рекомендует восстановление сульфатом железа (II). Во всех методах требуется в какой-то степени отделить иридий от примесей, Хотя о влиянии золота на результаты титрования в методиках не говорится, по-видимому, все восстановители осаждают этот металл. При титровании сульфатом железа (II) с предварительным выпариванием растворов с серной кислотой золото и платина выделяются в виде металлов, причем часть платины может раствориться, В этом методе особенно интересно то, что родий не мешает определению иридия. Это важное преимущество, поскольку родий и иридий часто содержатся в анализируемых материалах в сравнимых количествах. [c.100]

    Перед определением родия обычно его следует отделить от других платиновых и неблагородных металлов. Иридий мешает меньше других металлов, и родий можно удовлетворительно определить даже в присутствии эквивалентных количеств иридия. Определение с бромидом олова (II), по-видимому, дает наиболее удовлетворительные результаты из всех опубликованных методов определения родия. [c.193]


    Мачупьский Б.М. Физико-химические методы определения родия и иридия. Автореф. канд. дис. Днепропетровск, 1977. [c.34]

    Необходима разработка методов определения ряда элементов, обычно сопутствующих золоту (таллия, серы, селена, теллура, рутения, родря, осмия, иридия), поскольку в арсенале аналитиков число таких методов невелико. Актуальна задача повышения чувствительности определения всех примесей. [c.214]

    Руды, промежуточные, конечные и отвальные продукты медно-никель-кобальтового производства. Определение массовых долей палладия, платины, золота, рутения, родия и иридия методом атомноэмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) [c.823]

    H. K. Пшеницын и H. A. Езерская > разработали амперометрический метод определения рутения, основанный на титровании рутения в виде черной соли — КгНиСЦ — растворами гидрохинона или аскорбиновой кислоты, восстанавливающими рутений (IV) до рутения (И). Титруют при -1-0,5 б (Нас. КЭ) потоку восстановления рутения (IV) на платиновом вращающемся электроде на фоне соляной кислоты (1 1). В присутствии золета (III), которое также восстанавливается на электроде при указанном потенциале, ток повышается, но это не мешает определению конечной точки, если количество золота не слишком велико — не больше 15—20-кратного по отношению к рутению. Если золота больше, то оно одновременно с рутением восстанавливается гидрохиноном. При относительно малых количествах золота эта реакция незаметна, так как она протекает значительно медленнее, чем восстановление рутения (IV). Определению рутения этим методом мешают двухвалентное железо (анодный ток окисления, компенсирующий катодный ток рутения) и иридий. Метод применим для определения 0,02—2,0 мг рутения. [c.288]

    С успехом применять спланление анализируемого материала с десятикратным количеством свинца при 900—1000° С. Избыток свинца и сплавы свинца с платиной, родием и палладием растворяют последовательной обработкой азотной кислотой, а затем разбавленной царской водкой. Иридий не образует сплава со свинцом и не растворяется в царской водке, но он загрязняется рутением, железом и, возможно, осмием, если эти элементы присутствуют в сплаве. Подробный ход выполнения этого исключительно точного разделения приведен в разделе Методы определения (стр. 416). Способ этот применим также к анализу губок, состоящих из платины и иридия. Наличие цинка, который мо г быть введен, например, для выделения платиновых металлов из раствора, приводит к растворению некоторого количества иридия. [c.412]

    Предложен также потенциометрический метод определени платины и иридия титрованием хлоридом меди (I) . Для той же [c.422]

    Среди методов определения микроколичестз платиновых металлов и золота основное место занимают колориметрические и спектрофотометрические или экстракционно-спектрофотометрические методы. Число колориметрических методов для некоторых благородных металлов, например палладия, чрезвычайно велико между тем для определения иридия существует сравнительно небольшое число методов. Чувствительность спектрофотометрических методов достигает 0,01 мкг/мл, за редким исключением 0,001 мкг/мл. Большая часть методов основана на возникновении окраски комплексных соединений платиновых металлов с органическими реагентами (реже применяются неорганические реагенты) и на использовании собственной окраски таких комплексных соединений, как хлориды, бромиды, иодиды. Для спектрофотометрического определения платиновых металлов и золота применяют все классы органиче ских реагентов,, перечисленные в главе П. Во многих случаях химизм реакции и состав образующихся окрашенных продуктов неизвестны. Многие реагенты не избирательны, поэтому методы определения одного металла в присутствии другого основаны либо на нахождении различия в условиях образования окрашенных соединений (температура, pH раствора), либо на использовании некоторого различия в спектрах поглощения соединений двух металлов с одним и тем же реагентом, т. е. определении оптической плотности в разных областях спектра, либо на различной экстрагируемости окрашенных соединений органическими растворителями. [c.158]

    Одним из распространенных методов определения малых количеств иридия, а также обнаружения примеси иридия в платине является метод, основанный на использовании характерной окраски комплексного хлорида четырехвалентного иридия [1гСГбР [245, 246]. Для колориметрического определения иридия применяют также бромистое олово [242, 247] и ряд органических реагентов [248—253]. [c.174]

    Иридий [18-электронная конфигурация, М(К)]. О комплексе 1гН5[Р(СНз)з]г говорилось в разд. И, В, 2 при обсуждении методов определения числа гидридных водородов в молекуле. Вероятно, все соединения, первоначально известные как комплексы кНзЬг [9, 254, 255], имеют формулу гНбЬз [8, 256]. [c.155]

    Реакция с висмутатом натрия. В. А. Александров [37] разработал фотоколориметрический метод определения родия (в присутствии платины, палладия и иридия) в растворах родия (V), полученных окислением родия (П1) при помощи NaBiOs (см. стр. 219). Раствор сульфата родия после окисления висмутатом натрия при комнатной температуре имеетмаксимум поглощения в области ЪЪЬ—ЫОммк, а растворы сульфатов платины и палладия, окисленные висмута- [c.220]

    Среди металлоорганических соединений металлов этой группы наибольшее значение имеют карбонилы, кроме того, газовую хроматографию применяют для анализа металлоценов и трнкарбониловых комплексов железа. Как уже говорилось, первые работы по газовой хроматографии карбонила железа были основаны на его разложении. Кроме упомянутой выше работы [64], в которой исследовали содержание окиси углерода в карбонилах железа и иридия, метод газовой хроматографии был применен [72] для определения содержания пентакарбонила железа в технических газах. Метод основан на разложении пентакарбонила при прохождении газа через трубку, заполненную железными опилками. Образующуюся окись углерода пропускают затем через реактор с хромннкелевым катализатором  [c.192]

    Дема и Вуасю [299] предложили метод определения миллиграммовых количеств родия в виде весовой формы. Если к горячему слабокислому раствору родия(III) добавить гексаммин-кобальт(III)хлорид или нитрат в присутствии избытка нитрата натрия, то образуется желтый кристаллический осадок o(NH3)6f [Rh(N02)6] , который промывают этанолом и эфиром, сушат в вакууме и взвешивают. В присутствии иридия результаты завышены на 5—10%. Золото восстанавливается реагентом до металла кобальт мешает определению. [c.28]

    Для точного количественного определения иридия осаждение сероводородом не рекомендуют, так как обычно считают, что полного осаждения достичь очень трудно. Однако такое мнение не единодушно и некоторые аналитики пользуются этим методом. Для количественного осаждения сульфида предложен ряд методов, в которых чаше всего используют повышенное давление и повторную обработку сероводородом. Автору удавалось количественно осадить сульфид, используя любой из известных до 1959 г. методов. Эти опытные данные противоречат сделанному не так давно выводу о том, что наиболее надежный метод определения иридия основан на его осаждении в виде сульфида из горячего раствора, содержашего 20 об.% соляной кислоты [281]. Сульфидный метод обычно предполагает осаждение иридия в виде кгЗз-ЮНгО при действии значительного избытка сульфида натрия или аммония и последующем добавлении избытка уксусной кислоты или ацетата аммония. Осадок многократно промывают водным раствором этанола и эфиром, после чего высушивают в вакууме. [c.37]

    Пшеницын и Федоренко [298] использовали соли Ы-замещен-ной дитиокарбаминовой кислоты для гравиметрического определения иридия и родия (для последнего см. методику 85). Предложенный для иридия метод требует предварительного разделения двух металлов. Оранжево-коричневый осадок, содержащий иридий, может перейти в коллоидное состояние, и поэтому для его коагуляции применяют метиловый фиолетовый. При оптимальных условиях количество коагулятора должно быть примерно равно количеству иридия. [c.39]

    По данным Шампа, Фоконье и Дюваля [326], комплекс можно нагревать в температурном интервале 45—171°, а по данным Тасиро [327] — в пределах 100—200°. Эффективность этого гравиметрического метода определения палладия и отделения его от остальных платиновых металлов обсуждалась Эрсом и Бергом [328]. Эти авторы нашли, что потери при растворении комплекса незначительны они становятся заметными нри определении малых количеств палладия. Отделение от платины, родия и иридия наиболее успешно, когда содержание палладия намного превышает содержание примесей. [c.44]

    Первый титриметрический метод определения палладия описал, видимо, Керстинг [492], который титровал раствор палладия непосредственно иодидом калия до исчезновения коричневой окраски иодида в отстоявшейся жидкости. Этот метод, несомненно, может привести к значительным ошибкам. Пшеницын и Гинзбург [493, 494] титровали палладий иодидом калия потен циометрически. Предварительное прибавление гидрохинона в качестве восстановителя устраняет мешающее действие платины (IV), родия(III) и иридия(IV). Влияние платины(IV) можно устранить также добавлением ионов калия, осаждающих платину в виде гексахлороплатината(IV) калия. [c.101]

    Милаццо [553] титровал золото гидрохиноном после соосаждения его с медью или свинцом прн помощи сульфида натрия или сероводорода. Осажденную смесь сульфидов прокаливали, обрабатывали серной кислотой для отделения меди. Золото растворяли в царской водке и выпаривали раствор с соляной кислотой для удаления окислов азота. Прибавляли кислый фторид калия и титровали золото гидрохиноном в присутствии о-диани-зидина. Иридий мешает определению золота. В некоторых случаях окраска солей платины и родия затрудняет определение точки эквивалентности. Утверл<дение Милаццо о превосходстве этого метода над другими несправедливо. По мнению автора книги, соосаждение с медью и последующее селективное растворение меди приводят к большим ошибкам, чем соосаждение с теллуром, предложенное Поллардом [427]. Рассматривая вопрос [c.125]


Библиография для Иридий методы определения: [c.149]   
Смотреть страницы где упоминается термин Иридий методы определения: [c.738]    [c.221]    [c.31]    [c.22]    [c.1]    [c.123]   
Фотометрическое определение элементов (1971) -- [ c.191 , c.192 ]

Колориметрические методы определения следов металлов (1964) -- [ c.467 , c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий определение

Иридий-191 и иридий



© 2025 chem21.info Реклама на сайте