Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селен методы отделения

    Экстракционные методы. Наибольшее применение экстракционные методы концентрирования примесей имеют при анализе -ВОДЫ, кислот, щелочей, щелочных металлов и их солей. Характерно для этого способа концентрирование анионных форм таких элементов, как мышьяк, фосфор, вольфрам, селен, теллур, и неметаллов. Основные элементы, как правило, экстрагируют из сильно кислых сред активными кислородсодержащими растворителями в виде галогенсодержащих комплексных соединений. Такой метод отделения примесей в ряде случаев сопровождается побочными нежелательными эффектами (например, соэкстракцией). [c.202]


    Одной из трудных операций при определении микрограммовых количеств теллура в рудах и других продуктах является разделение селена и теллура. В норильских медно-никелевых рудах и продуктах их переработки селен и теллур, кроме того, встречаются в сочетании с платиновыми металлами. Это обстоятельство значительно осложняет анализ, так как при восстановлении селена и теллура вместе с этими элементами осаждаются палладий и частично платина. Надежных методов отделения селена и теллура вт платиновых металлов до сего времени нет. [c.308]

    Для разделения селена и теллура, а также для их отделения от сопутствующих элементов использован хроматографический метод. Отделение теллура от платиновых и цветных металлов осуществлено на катионите К -2 в Н-форме из 0,01—0,1-й. солянокислых растворов. Платиновые металлы в этом интервале кислотности проходят в фильтрат в виде хлоридных комплексов Наоборот, при пропускании аммиачных растворов через этот же катионит теллур проходит в фильтрат, a Pt, Pd, u, Ni поглощаются катионитом. Селен из кислых и аммиачных растворов не поглощается катионитом и проходит в фильтрат [184]. [c.46]

    Сорбционные методы отделения и разделения. Выше отмечалось, что теллур легче образует комплексные соединения по сравнению с селеном. Так, теллур образует хлоридный комплекс уже в 2 в. хлористоводородной кислоте, а селен образует комплексы только в [c.224]

    Другие методы отделения небольших количеств теллура от селена при анализе таких материалов, как селен черновой и [c.352]

    Основные методы отделения селена и теллура сводятся к выделению их из кислых растворов в элементарном состоянии различными восстановителями. Большей частью восстановление проводят сернистым газом в солянокислой среде, причем селен и теллур должны находиться в четырехвалентном состоянии. Азотная кислота должна отсутствовать. Селен (VI) и теллур (VI) можно легко восстановить до четырехвалентного состояния нагреванием соединений этих элементов с разбавленной (<6 н.) соляной кислотой при температуре ниже 100° до удаления хлора. Азотную кислоту можно разложить выпариванием с разбавленной 6 н.) соляной кислотой при температуре ниже 100° или кипячением с обратным холодильником. [c.352]

    Мы остановились на реакции выделения элементарного теллура действием хлорида олова (2- -) в присутствии висмута. В процессе исследования был разработан метод отделения селена, который позволил чрезвычайно быстро и просто производить определение теллура в пробах, содержащих селен и висмут. [c.212]


    К электрохимическим методам выделения и отделения ртути можно отнести методы, основанные на восстановлении ртути металлами и амальгамами — методы выделения ртути из раствора. Отделить ртуть от селена и теллура можно обработкой раствора амальгамой натрия [361]. При этом ртуть переходит в амальгамную фазу, а селен и теллур в виде селенида и теллурида остаются в растворе. Аналогично ртуть может быть выделена из сульфидно-щелочных растворов и отделена от серы. [c.74]

    Селен в природных водах встречается в четырехвалентной и шестивалентной форме в виде неорганических и органических соединений. Метод, описанный ниже, разработан Ламбертом, Артуром и Муром [27] и применим для определения 0,2—6,0 мкг/мл селена в природных водах. Метод включает процессы разложения органического вещества, дистилляцию селена для отделения от основной массы мешающих веществ, удаление йода, восстановление Se и маскировку большей части остающихся мешающих веществ. [c.390]

    При определении алюминия применяют экстракцию оксихинолином в хлороформе после отделения примесей в виде диэтилдитиокарбаминатов. Метод позволяет определять 10 % А1 в селене [1]. [c.446]

    Метод применим для отделения и определения теллура в селенистой кислоте и полупроводниковом металлическом селене (а таклсе в сере и фосфоре). Селен и следы сопутствующих элементов маскируют цианидом, комплексоном III и тартратом в щелочной среде (при pH 8,0—9,0). [c.449]

    Метод пригоден для определения тысячных долей процента (и выше) свинца и меди без отделения теллура и десятитысячных долей процента свинца и меди лосле отделения последних от теллура сульфидом натрия из щелочного раствора. Определение десятитысячных долей процента свинца и меди в селене проводят после удаления основной массы селена выпариванием с азотной кислотой. В качестве фона применяют щелочные растворы хлор ида или тартрата натрия. [c.455]

    Методы, основанные на титровании иода тиосульфатом. Иодид как слабый восстановитель реагирует с огромным числом самых разнообразных окислителей [1, 79 с высвобождением эквивалентного количества иода, который можно титровать тиосульфатом. Из таких окислителей можно назвать пероксиды, пероксидные соединения, пероксидисульфат, озон, железо(П1), хроматы, селен (в виде ЗеОз"), оксид серебра (II), триоксид ксенона, иодаты и бро-маты. Бромиды можно определять путем окисления их до свободного брома, который экстрагируют и анализируют иодометрически. Такие металлы, как барий, стронций и свинец, могут быть определены путем осаждения их в виде хроматов и последующего определения хроматов в осадке. Литий осаждается в виде комплексного перйодата после фильтрования и промывания осадка перйодат определяют иодометрически. Торий может быть отделен от редкоземельных элементов осаждением в виде иодата из растворов с относительно высокой концентрацией азотной кислоты. Образующийся иодат определяют иодометрическим методом. [c.400]

    В водных растворах селен присутствует в виде селената(У1) или селенита(IV). Описаны методы определения обеих форм селена. При нагревании в растворах НС1 селенат восстанавливается до селенита (IV). Многие восстановители, например, аскорбиновая кислота, SO2 и гидразин восстанавливают соединения селена до элементного селена, что используют для отделения и определения селена. [c.171]

    Селен (IV) не поглощается на сильнокислотных катионитах из 0,1—4 М растворов НС1, поэтому ионным обменом можно отделить мешающие ионы металлов перед определением селена [12]. Однако при анализе растительных материалов этот метод не дал удовлетворительных результатов [13]. При некоторых условиях селен (IV) остается на катионите, что использовано [14] для отделения микроколичеств селена от сульфата и железа (III). [c.173]

    Селен извлекают из шламов контактного производства серной кислоты и производства целлюлозы, а также из отходов при получении цветных металлов (из анодного шлама, образующегося при электролизе меди, из пыли производства свинца и др.). Степень извлечения селена из колчедана в производстве серной кислоты контактным методом колеблется в широких пределах (от 30 до 60%) и зависит от устройства и режима работы печей (стр. 75), режима работы очистного отделения и др. Баланс селена одного из контактных цехов, оборудованного механическими печами, приведен на рис. 6-21. [c.178]

    Технологическая схема производства серной кислоты контактным методом из серы, содержащей мышьяк и селен (например, газовой серы), не отличается от схемы переработки колчедана (см. рис. И1-1, стр. 133). По-другому оборудовано только печное отделение, в котором установлены соответствующие печи для сжигания серы, и отсутствуют сухие электрофильтры. Однако [c.272]

    Технологическая схема производства серной кислоты контактным методом из серы, содержащей мышьяк и селен (например, газовой серы), не отличается от схемы переработки колчедана (см. рис. 7-9). По другому оборудовано только печное отделение, в котором установлены соответствующие печи для сжигания серы, и отсутствуют сухие электрофильтры. Однако схема существенно изменяется при использовании природной серы, не содержащей мышьяка и селена. В этом случае не требуется специальной очистки обжигового газа и, следовательно, отпадает необходимость в его охлаждении и промывке. Поскольку основная масса серы, поступающей в качестве сырья для производства серной кислоты, не содержит Аз и Зе, ниже [c.214]


    Se и Те экстрагируются хлороформным раствором трибутнл-амина из 5—6 А НС1. Селен реэкстрагируется разбавленным раствором соляной кислоты, а теллур — водой, что может быть использовано для их разделения. Сп экстрагируется из 7 А" НС1 на 30%, серебро хорошо извлекается из разбавленного раствора соляной кислоты. Кадмий и Hg из 1 —8 N НС1 экстрагируется на 97%, Ga i полностью извлекается из 4А НС1, индий из б—7 N H I экстрагируется на 87, — на 90 и марганец на 12%. Полученные результаты использованы для разработки экстракционного метода отделения железа от хрома, хрома от титана и ванадия, ванадия от титана. [c.237]

    Перспективны методы отделения рения, основанные на летучести некоторых его соединений. Так, рений отгоняется при введении по каплям азотной кислоты в горячий (около 200° С) сернокислый раствор неррениевой кислоты. Количественная отгонка рения достигается при 200—220 ° С добавлением по каплям соляной иЛи бромистоводородной кислоты к хлорнокисло.му раствору или бромистоводородной кислоты к сернокислому раствору. Применению этого метода препятствуют элементы, образующие в этих условиях летучие соединения, как, нанример, селен, германий и мышьяк. [c.374]

    Полярографическое определение металлических примесей в висмуте не представляется возможным проводить без их предварительного отделения. Так, определение свинца проводят после его электролитического отделения в виде РЬОа с дополнительной очисткой от висмута тиомочевиной [36]. Описан метод отделения висмута от свинца путем растворения висмута в ртути, микропримесь переводят в водный раствор и полярографируют [37], Медь отделяют рубеановой кислотой [38] в присутствии цитрата калия и ЫН40Н, удерживающих в растворе висмут и другие элементы. Селен определяют методом осциллографической полярографии [27] после осаждения его в элементарном виде с коллекторами. Показано, что возможно отделить 1—10 мкг 8е от 2—10 г В1. Достигнута высокая чувствительность определения—10- %. Условия электролитического выделения висмута из азотнокислых растворов были подробно изучены при определении свинца, кобальта, кадмия и цинка [25] на фоне роданида калия, а также никеля [39], молибдена и ванадия [40]. [c.327]

    Изучен обмен анионных хлорокомплексов селена и теллура на сильноосновном анионите Дауэкс-1. Теллур поглощается из концентрированного раствора соляной кислоты в виде [Те,С1бР , а селен из слабокислой и слабоосновной среды [191]. Предложен метод отделения Те (IV) от других элементов на колонке с анионитом Дауэкс-1х-10 путем восстановления его до элементарного на колонке раствором 4-н. НС1, насыщенным SO2. Затем теллур окисляют раствором 8-п. соляной и азотной кислот и элюируют 1-н. раствором соляной кислоты [192]. [c.47]

    Экстракционный комплексонный метод отделения урана. После разлолсения руды подходящим способом к раствору прибавляют аммиак и комплексон III, после чего уран экстрагируют хлороформом, диэтиловым эфиром, амиловым спиртом, этилацетатом или амилацетатом из нейтрального раствора. Бериллий, сурьма, титан и отчасти марганец при этом не образуют прочных комплексов и при нейтрализации выпадают в осадок. Вместе с ураном экстрагируются медь, серебро, висмут, ртуть, таллий, мышьяк, селен и теллур. В присутствии комплексона III не экстрагируются железо, кобальт, никель, индий, галлий, свинец, ва- [c.318]

    Еадмия в силикатных породах 5 10 %. Однако Селен можно опре-деиить в птве в концентрации 1(И%. Естественно, что методы отделения и характер анализируемого вещества во многих случаях оказываются решающими факторами, определяющими чувствительность метода в присутствии больших количеств мешающих веществ нижний предел колориметрического метода может повыситься в 10 или в 100 раз. В простейшем возможном случае — случае разбавленного водного раствора (например, природная вода) чувствительность колориметрического метода достигает 10 или даже 10г >% (0,1—0,001 мг/т), если определяемый микрокомпонент предварительно выделить. В подобных случаях чувствительность метода можно часто значительно увеличить, анализируя достаточно большие навески, если только имеется хороший метод для выделения определяемого микрокомпонента. [c.25]

    Методы, основанные на флуоресценции или на каталитйче-ском действии определяемого элемента также могли быть применены в некоторых случаях после обогащения, так как от часто имеют высокую абсолютную чувствительность. Такие методы, однако, менее ценны, чем спектрографические, так как при них иногда больше мешают посторонние элементы. При наличии хорошего метода отделения, позволяющего работать с большими навесками пробы, для конечного определения выделенного элемента можно применить колориметрические методы. Иллюстрацией к этому является упомянутое определение селена в почвах, при котором перегонкой можно легко выделить селен из очень больших навесок образца. [c.26]

    Бромид олова заметно летуч, и метод отделения олова, основанный на его отгонке из раствора бромистоводородной кислоты, применялся Ониши и Сенделом для определения малых количеств олова в силикатных породах. Сначала удаляли отгонкой из солянокислого раствора мышьяк, сурьму и германий. Единственным элементом, сопровождающим олово в процессе отгонки бромида и оказывающим мешающее действие при последующем определении, является селен. [c.413]

    Желтый комплекс, который также можно использовать для фотометрического определения, теллур образует с тиомочевиной [1014, 1217, 1516, 1518, 1520]. Правда, спектры поглощения комплекса и тиомочевины различаются очень мало, так что измерение поглощения комплекса можно проводить только на краю полосы поглощения при 330 нм [1217]. Удовлетворительные результаты получаются только в том случае, если анализируемые растворы содержат определенные концентрации кислоты и тиомочевины, причем раствор должен содержать кислоту только одного типа. Оптимальные концентрации следующие 0,6—1,4 н. HNOs—10—12% тиомочевины [1518], 0,7—2,0 н. H2SO4 — 9—10% тиомочевины или 0,3—1,5 М Н3РО4—10—12% тиомочевины [1520]. Определению мешают другие металлы, также взаимодействующие с тиомочевиной Bi, Hg, Os, Pd, Pt, Se, Sb и Sn. Селен при нагревании раствора с тиомочевиной количественно восстанавливается и осаждается [1014]. В присутствии других мешающих элементов необходимо использовать другие методы отделения (см. выше). Определению мешает меньшее число элементов, если комплекс теллура(1У) с тиомочевиной экстрагировать трибутилфосфатом в присутствии роданида и затем фотометрировать при 400 нм [896]. [c.398]

    Селен при восстановлении Sn lg образует окраску, аналогичную окраске теллура так как он может находиться в металлическом висмуте вместе с теллуром, то были испытаны методы отделения селена от теллура. Отгонка селена в виде бромида (дважды) показала, что в присутствии висмута и теллура селен отгоняется количественно. [c.213]

    При определении натрия в селене и теллуре высокой чистоты применяют различные способы отделения основы. Большие количества селена отгоняют в форме 8еВг4 [ИЗО]. Натрий определяют атомноэмиссионным методом в пламени водород—кислород. После отгонки селена в остатке остаются К, Li, u, d, Fe, Al, TI, Bi, Hg, a и Mg. Для уменьшения влияния элементов (например, Са) в раствор вводят буферную добавку — нитрат алюлшния (25 г/л). Присутствие щелочных металлов — калия и лития — определению не мешает. Предел обнаружения натрия 10 %. [c.166]

    Для одновременного определения ультрамикроколичеств брома и многих других элементов в селене 250 мг вещества облучают в реакторе потоком 5-10 нейтрон/см сек в течение 24 час. Образец переносят в колбу прибора (см. рис. 2), вводят по 10 мг носителей для хлора, брома и иода в виде аммонийных солей и выполняют отделение галогенов согласно описанию в главе IV. Содержание приемников 5—6 анализируют методом 7-спектромет-рии по Вг применяя Се(Ь1)-детектор. Измерения выполняют через 12 час. после облучения [909]. [c.184]

    При анализе германиевых пленок [108, 336, 336а], а также двуокиси и тетрахлорида германия [108, 239, 240, 336а, 684] примеси (Ga, In, Bi и др.) концентрируют при отделении германия отгонкой в виде тетрахлорида из солянокислого раствора пробы Абсолютная чувствительность для каждого элемента 5 10- г Аналогичное обогащение проводится при анализе селена [1299] Селен отделяется дистилляцией в виде ЗеВг4, а примеси (Ga, Li Na, К, Са) определяют методом пламенной фотометрии. [c.165]

    Селен обычно взвешивают в элементарном виде после осаждения сернистым ангидридомили гидроксиламином в сильнокислом растворе. Наиболее часто применяют сернистый ангидрид. Восстановление гидроксиламином особенно удобно при анализе растворов, содержащих только селен и теллур, преимущественно в ик высшей вал (йтности, а также в присутствии азотной или серной кислоты. Излагаемые ниже два метода служат для отделения селена от теллура. [c.389]

    Новые полярографические методы, приемы и приборы позволили включить полярографию в арсенал методов анализа полупроводниковых материалов. Методами амальгамной полярографии и пульсполярогра-фии определяются следующие примеси 2п, РЬ, Си, Сё, В , 1п, Ое, Оа, 5п, 5Ь и т. д., а также трудно определяемые другими методами металлоиды селен, теллур и другие при содержании до 10- —10 %. Во многих случаях полярографическому определению предшествует химическое отделение определяемой примеси от электроактивной основы или от мешающих элементов. Для этой цели широко применяются методы экстракции. [c.133]

    Колориметрические определения Ag, Hg, РЬ, 1п, Оа, Зе, Те, Со, Мп и В1 возможны также при соответствующих операциях отделения от мешающих элементов. Серебро и свинец следует определять по реакции с дитизоном [20], индий и галлий после экстракции соответственно с 8-ок-сихинолином [21] и люмогаллионом [22]. В лучах ультрафиолетового света возможно флуоресцентное определение индия и галлия с кверцети-ном [23] соответственно с чувствительностью 1 10 % и 5-10 %, выделив экстракцией вначале галлий из солянокислого раствора, а затем индий из раствора бромидов. Селен и теллур могут быть сконцентрированы в аммиачном растворе на гидроокиси железа и определены по цветным реакциям соответственно с 3,3 -диаминобензидином и бутилродамином Б. Определение кобальта возможно по реакции с нитрозо-К-солью, марганца по каталитической реакции с серебром в присутствии окислителя, а висмута по образованию комплекса с тиомочевиной. Ртуть также может быть определена фотоколориметрическим методом по реакции с дитизоном [20] или с тиураматом меди [24]. В последнем случае определению ртути мешает только серебро. [c.385]

    А. И. Зелянская и Л. С. Горшкова [228] применили катионообменный метод для отделения меди от малых количеств селена в аммиачных растворах. После окончания стадии поглощения колонку промывают разбавленным (1 9) раствором аммиака, вытекающий раствор и промывные воды соединяют и определяют в них селен. Ана-логи шая операция применялась для отделения теллура от меди [c.259]

    В случае совместного присутствия селена и теллура представляет интерес метод разделения, основанный на использовании концентрированной соляной кислоты. Селен (IV) и теллур (IV) эффективно удерживаются сильноосновными анионитами (рис. 15. 3 см. также [31, 58 ]). Возможность разделения этих элементов, а также отделения их от полония показана Сасаки [51 ]. Позднее разделение этих элементов исследовано Шнндевольфом [52]. Теллур (VI) не поглощается анионитом и может быть легко отделен от теллура [IV] в 3—12М соляной кислоте [30]. На этом основано отделение теллура от иодидов. Раствор, содержащий теллур и иодиды в 4M НС1, пропускают через колонку, причем весь теллур (VI) обнаруживается в вытекающем растворе. Затем при последовательном элюировании 0,1 и ЮМ растворами НС1 собираются соответственно теллур (IV) и иод [25 ]. [c.392]

    В элементном селене никель определяют спектрально [75], спектрофотометрически после отделения экстракцией диэтилдитиокарбамата или хроматографически [303] (чувствительность 10 %), либо активационным методом [1278] (чувствительность 5-10" %). [c.164]

    Проводилось изучение процессов очистки, осушки и абсорбции газов в контактной системе установлен ряд кинетических зависимостей для процесса абсорбции серного ангидрида моногидратом и олеумом, изучены условия образования тумана, что позволило предотвратить или снизить образование тумана серной кислоты, который связывался с мышьяком и селеном в промывном отделении и увеличивал потери серы в процессе абсорбции. Эта работа в 1951 г. была удостоена Государственной премии СССР [4]. На основании полученных результатов были разработаны новые методы очистки обжигового газа, оптимальный режим абсорбции влагосодержащего газа ( горячий режим ), позволявший снизить до минимума образование тумана, изучалась конденсация паров серной кислоты, оптимальный режим концентрирования серной кислоты и др. [c.57]


Смотреть страницы где упоминается термин Селен методы отделения: [c.213]    [c.176]    [c.379]    [c.30]    [c.83]    [c.52]    [c.7]    [c.280]    [c.84]   
Фотометрическое определение элементов (1971) -- [ c.345 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения



© 2025 chem21.info Реклама на сайте