Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан методы отделения

    Аналитические методы отделения фтора основаны на ограниченной растворимости неорганических фторидов летучести тетрахлорида кремния, реже трифторида бора устойчивости фторид-ных комплексов с алюминием, цирконием, железом, торием и титаном. [c.56]

    Главными методами отделения железа от остальных элементов являются 1) обработка сероводородом в кислом растворе (стр. 83), в результате которой металлы группы сероводорода, например висмут или мышьяк, осаждаются, а железо остается в растворе 2) осаждение сульфидом аммония в растворе, содержащем тартрат аммония (стр. 115) нри этом железо осаждается в виде сульфида железа, а алюминий, титан и другие элементы остаются в растворе 3) осаждение едким натром (стр. 109), в результате которого железо переходит в осадок и отделяется от ванадия, вольфрама, молибдена, мышьяка, алюминия и фосфора 4) сплавление с карбонатом натрия с последующим выщелачиванием плава водой (стр. 511), дающее практически тот же результат, что и предыдущий метод, с тем лишь различием, что алюминий в этом случае обычно отделяется не полностью, хром окисляется и переходит в раствор, а уран частью остается в остатке, частью переходит в раствор 5) извлечение эфиром из разбавленного солянокислого раствора (стр. 161), которое применяется главным образом для удаления большей части железа, если оно присутствует в таких больших количествах, что создаются затруднения при определении других элементов. [c.437]


    В разделе Методы отделения (стр. 524) было указано, что в солянокислых и сернокислых растворах купферон образует нерастворимое соединение с ураном (IV). Уран (VI) при этом не осаждается. Поэтому в некоторых случаях целесообразно определять уран следующим образом. Сначала проводят осан дение купфероном из раствора, содержащего уран в шестивалентной форме. Осадок отфильтровывают и в фильтрате, после разрушения купферона и восстановления цинком, как это описано в разделе Объемное определение восстановлением цинком и титрованием перманганатом (стр. 529), осаждают уран (IV) купфероном. Таким путем железо, ванадий, титан и цирконий отделяются от урана, а затем уран в свою очередь отделяется от алюминия и фосфора. Хром (II) также частично осаждается купфероном, но его влияние можно устранить, подвергнув раствор действию воздуха, как указано выше (стр. 529). [c.531]

    Известен метод отделения бериллия (не проверенный, однако, нами на смесях), заключающийся в продолжительном сплавлении с карбонатом натрия при высокой температуре и выщелачивании плава водой. Как указывают, бериллий количественно остается в осадке совместно с железом, титаном ИТ. п., тогда как хром (в виде хромата), фосфор и большая часть кремния и алюминия переходят в раствор [c.586]

    С СОЛЯНОЙ кислотой, непосредственно осаждают скандий совместно с цирконием, титаном и торием раствором тиосульфата, как указано в разделе Метод отделения . [c.614]

    Преимуществами этого метода являются получение осадков, легко отделяемых фильтрованием, и малое соосаждение. Осаждаются алюминий, хром (П1), железо (HI), титан (IV), цирконий (IV), торий (IV), церий (IV), висмут, олово (IV) в растворе остаются ванадий (V), кобальт, никель, марганец, цинк, кадмий, ртуть (II) и щелочноземельные металлы. Это один из лучших методов отделения алюминия от цинка. При pH 3,5—4,0 можно осадить алюминий, отделяя его от бериллия, а затем при pH больше осадить бериллий. [c.87]

    От железа титан можно отделить двукратным осаждением сульфида железа (II) в аммиачном растворе в присутствии тартрата. Хорошим методом отделения большей части железа от титана является извлечение хлорида железа (III) эфиром из раствора в соляной кислоте (1 1). [c.482]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]


    Железо, хром, кобальт, никель, цинк и многие другие элементы могут быть легко и просто удалены пз разбавленного сернокислого раствора электролизом с ртутным катодом [32]. Алюминии остается в разбавленном кислом растворе. Этот метод отделения алюминия не нашел широкого применения при анализе силикатных и других пород, так как титан, ванадий, цирконий и фосфор остаются в растворе вместе с алюминием. [c.101]

    Главными методами отделения железа от остальных элементов являются 1) обработка сероводородом в кислом растворе (стр. 78), в результате которой металлы группы сероводорода, например висмут или мышьяк, осаждаются, а железо остается в растворе 2) осаждение сульфидом аммония в растворе, содержащем тартрат аммония (стр. 107) при этом железо осаждается в виде сульфида железа, а алюминий, титан и другие элементы остаются в растворе 3) осаждение едким натром (стр. 101), в результате которого железо переходит в осадок и [c.399]

    Во всех этих методах титан и некоторые другие металлы, содержащиеся в металлическом титане в виде примеси, предварительно отделяют в виде купферонатов фильтрованием [545, ЫЭ1 или экстрагированием [431, 6551 их. Наиболее эффективен метод отделения мешающих элементов экстрагированием их купферонатов, предложенный Корбетом [6551. [c.219]

    Основное значение соосаждения—выделение невесомых количеств веш.ества. Однако соосаждение получило значительное применение также и для улучшения полноты выделения осаждаемого элемента. При отделении урана от других элементов соосаждение применяется довольно часто. Так, например, в первой половине этого раздела изложен трилонофосфатный метод отделения урана, в котором для полноты осаждения урана вводится в раствор сернокислый титан, с фосфатом которого очень полно соосаждается фосфат уранила [157]. Л. С. Василевская и Т. В. Дейкина [157] при выделении урана из пород, содержаш.их значительные количества фосфата кальция, рекомендуют осаждать уран при помош,и фосфатов совместно с алюминием и железом. П. А. Волков [184] для обеспечения большей полноты выделения урана (IV) в виде фосфата осаждает его совместно с фосфатом тория или циркония. Ю. А. Чернихов и [c.284]

    Легкость, с которой растворимые соли титана подвергаются гидролизу с образованием нерастворимой титановой кислоты, является основанием старейшего метода отделения титана от алюминия, железа, хрома и пр. окислы этих металлов сплавляют с пиросульфатом калия, плав растиоряют в холодной воде и раствор нагревают до кипения. Титан при этом полностью осаждается в виде зернистой легко отфильтровываемой метатитановой кислоты, между тем как другие металлы остаются в виде сульфатов в растворе  [c.596]

    Из других методов отделения ряда элементов от марганца следует отметить осаждение купферондм (стр. 143), в результате которого железо, титан, цирконий и ванадий могут быть количественно отделены от марганца электролиз с ртутным катодом в разбавленном сернокислом растворе (стр. 165), при котором осаждаются железо, хром, никель и молибден, а марганец оста ется в растворе извлечение железа и молибдена из солянокислых растворов из хлоридов эфиром (стр. 161) и осаждение железа, алюминия и хрома карбонатом бария.  [c.497]

    Наиболее ярким примером такого влияния, быть может, служит действие воды на пиросульфатный плав окисей тантала, ниобия и титана или содержащего эти окислы минерала. Предполагалось, что при обработке такого плава холодной водой титан количественно переходит в раствор, тогда как тантал и ниобий полностью остаются в нерастворимом остатке. Оказалось, однако, что последнее справедливо лишь в отсутствие титана, а между тем на этой реакции основан метод отделения титана от ниобия и тантала, которым широко пользовались на практике. В настоящее время установлено, что не только титан, в зависимости. от его содержания, влияет на растворимость тантала и главным образом ниобия, но что тантал в свою очередь, особенно большие количества его, препятствует полному переходу титана в раствор. [c.665]

    Купфероновый метод можно применять к любому раствору горной породы, не содержащему кремния, элементов группы сероводорода и больших количеств фосфора. Обычно этот метод служит для отделения титана вместе с цирконием, железом, ванадием и пр. (стр. 145) от алюминия, хрома, а также фосфора, за исключением тех случаев, когда последний присутствует в значительных количествах и сопровождается циркониелг, торием или титаном. Тогда сначала сплавляют пробу с карбонатом натрия, выщелачивают плав водой, остаток переводят в сернокислый раствор (иногда применяя для этого сплавление с пиросульфатом) и в этом растворе проводят осаждение купфероном. Тем же способом удаляют и ванадий. Металлы сероводородной группы могут быть удалены из сернокислого раствора обработкой сероводородом (стр. 83), после чего удаляют железо прибавлением винной кислоты и сульфида аммония (стр. 90). Эти методы отделения служат для удаления всех мешающих веществ, кроме циркония. Фильтрат после отделения сульфида железа подкисляют, осаждают титан и цирконий купфероном, осадок прокаливают и взвешивают сумму окислов обоих металлов. Содержание титана находят затем по разности после сплавления смеси окислов с пиросульфатом, растворения плава в серной кислоте и определения циркония в виде нирофосфата (стр. 640). [c.968]


    Был предложен метод отделения циркония от железа и алюминия, подобный методу отделения титана от этих элементов, предложенному тем же автором. Метод основан на способности циркония осаждаться из нейтрализованного раствора хлоридов при двухмипутном кипячении в присутствии сернистой кислоты. По-видимому, это — очень хороший метод. Так как титан постоянно присутствует вместе с цирконием и также полностью осаждается, то в дальнейшем эти два элемента следует отделить друг от друга добавлением перекиси водоропа и растворимого фосфата. Еще не выяснено, пригоден ли этот способ для определения таких малых ко.п ичеств циркония, какие обычно встречаются в анализе горных пород, но для определения больших количеств этот метод был успешно использован в измененном виде. [c.973]

    Тантал в цирконии определяют фотометрически с пирогалловой кислотой [229]. Мешают титан и железо. Следы титана,,часто сопровождающие цирконий, уже вносят существенные ошибки в результаты определения малых количеств тантала. Наиболее эффективным методом отделения тантала от этих примесей и циркония является экстракция фторидного комплекса тантала циклогексаяоном[303]. [c.198]

    Для определения редкоземельных элементов в бериллии, уране и титане, а также в их сплавах и окислах, Калман с сотрудниками [40 ] рекомендуют соосаждение с фторидами кальция и магния и последующее катионообменное разделение. Ионы фтора удаляют прокаливанием, а редкоземельные элементы поглощают катионитом из М НС1. Кальций и магний элюируют той же кислотой. Наконец, редкоземельные элементы удаляют из колонки и определяют спектральным методом. Отделение редкоземельных элементов от цинка можно осуществить также в хлоридном растворе. В качестве элюента Фриц и Каракер [21 ] применили 0,1М раствор хлорида этхглен-диаммония вначале элюируется цинк, а затем — лантан. [c.327]

    Цирконий (IV) и гафний (IV) очень прочно удерживаются катионитами и могут быть количественно поглощены из 1М НС1. При низкой кислотности раствора поглощение протекает менее полно из-за частичной полимеризации ионов. Из 1М HG1 титан (IV) поглощается лишь в малых количествах и легко может быть элюирован той же самой кислотой. Основанный на этом метод отделения титана от циркония описан в работе Т. А. Белявской, И. П. Алимарина и И. Ф. Колосовой [11 ]. При хроматографическом элюировании цитратным раствором эти элементы появ-пяются в элюате в обратной последовательности [20]. Весьма просто осуществляется также выделение циркония из солянокислых растворов, содержащих хром и алюминий. Цирконий поглощают из 1М НС1, затем колонку промывают 1—1,5М HG1 для полного удаления хрома и алюминия и, наконец, элюируют цирконий 5М HG1. Эта методика использовалась в работах Т. А. Белявской и М. К. Чмутовой [12], Стрелова [106] и Ю. А. Усатенко и Л. И. Гуреевой [111 ]. Возможно также отделение циркония от железа и тория в солянокислых растворах [93]. [c.349]

    Пероксидный метод в присутствии комплексона III со спек-трофотометрическим окончанием позволяет определять титан без отделения окрашенных ионов, не реагирующих с перекисью водорода [121, 123]. Для повышения точности предложено проводить спектрофотометрическое определение титана после отделения его ионообменным способом [124]. Метод с перекисью водорода применен [125, 126] для определения больших количеств титана в рудах и ильменитовых концентратах. [c.61]

    Экстракционный комплексонный метод отделения урана. После разлолсения руды подходящим способом к раствору прибавляют аммиак и комплексон III, после чего уран экстрагируют хлороформом, диэтиловым эфиром, амиловым спиртом, этилацетатом или амилацетатом из нейтрального раствора. Бериллий, сурьма, титан и отчасти марганец при этом не образуют прочных комплексов и при нейтрализации выпадают в осадок. Вместе с ураном экстрагируются медь, серебро, висмут, ртуть, таллий, мышьяк, селен и теллур. В присутствии комплексона III не экстрагируются железо, кобальт, никель, индий, галлий, свинец, ва- [c.318]

    Прн всех методах отделения фосфат-иона, описанных ниже, титан открывают в предварительной пробе после удаления сероводорода. В дальнейшем ввиду малой растворимости фосфата титана в кислотах он может оказаться практически полностью в осадке (частично также в виде HiTi04 и HjTiOs) и легко может быть потерян . [c.538]

    При всех методах отделения фосфат-иона, описанных ниже, титан обнаруживают в предварительной пробе после удаления сероводорода (если катионы IV группы отделяли в виде сульфидов). Вследствие малой растворимости фосфата титана в кислотах он практически полностью окажется в осадке (частично в виде Ti02-xH20) и легко может быть потерян . [c.463]

    Восстановление сульфата с последующим выделением H2S служит основой методов отделения и определения сульфата. Для восстановления сульфатов предложены смеси, содержащие титан с фосфорной кислотой [97] и иодистоводородную кислоту [98]. Образующийся H2S поглощают растворами солей цинка или кадмия или раствором NaOH и определяют затем титриметрически пли спектрофотометрически. В качестве титранта можно использовать ацетат ртути(II) с индикатором дитизоном [99]. [c.536]

    V) присутствуют одновременно, можно определить содержание каждого в отдельности, проводя измерение оптической плотности раствора при двух различных длинах волн проходящего света ( при 430—436 М.МК и при 546—565 ммк ). Можно также связать титан в комплекс добавлением фторида и определить с перекисью водорода один ванадий. В последнем случае такое же количество фторида надо ввести в стандартные растворы (пользоваться фотоколориметром не следует, так как плавиковая кислота разрушает кюветы). Железо (III) при этом также обесцвечивается. При отсутствии титана можно железо (III) связывать в комплекс фосфорной кислотой, добавляя ее и в стандартные растворы. Если анализируемый раствор содержит одновременно фосфор (V), ванадий(V) и вольфрам (что бывает при анализе некоторых сталей), то в растворе образуется желтого цвета фосфорованадиевовольфрамовая кислота (см. предыдущий метод). Отделение осадка вольфрамовой кислоты приводит к потере некоторого количества ванадия. [c.731]

    Титан. Реакция Б с мышьяковой кислотой и хлористым цир-конилом (стр. 125). Этот метод отделения арсената титана дает возможность специфически открывать титан посредством перекиси водорода. Реакция В с хромотроповой кислотой (стр. 126) Мрнее надежна. [c.169]

    Осаждение сероводородом в кислом растворе — важцый метод отделения и концентрации следов олова в присутствии железа и других металлов, не осаждаемых при этих условиях. Если раствор содержит вольфрам, ванадий и титан, осаждение производят в присутствии винной кислоты. От меди и других металлов подгруппы меди олово отделяют, осаждая эти элементы в виде сульфидов в щелочной среде, но при этом часто теряют олово вследствие соосаждения последнего. Олово можно-осадить и отделить от меди сероводородом в кислом растворе, если добавить достаточно тиомочевины, чтобы связать медь в комплекс . [c.366]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    С применением купфероиа было предложено несколько методов отделения, имеющих лищь незначительные различия. Вла-цил и Затка [26] описали отделение с купфероном в две стадии, сначала из 2%-ного раствора серной кислоты, а затем из буферного раствора с pH 5—5,5 для удаления железа, титана и других элементов. Как было показано выше, титан не экстрагируется, если pH раствора около 10 [24]. Кисс [27] рекомендовал метод, основанный на удалении железа экстракцией в изобутил-метилкетон из 6 н. соляной кислоты, перед удалением титана купфероном. Такой прием позволяет определить железо в той же аликвотной части раствора. Миллер и Чалмерс [28] предложили экстрагировать купферонаты железа, титана и ванадия раствором о-дихлорбензола перед экстракцией алюминия и бериллия в диэтиловый эфир в виде комплекса с ацетилацетоном. Известно, что марганец и никель купфероном не извлекаются, а относительно связывания купфероном хрома существуют некоторые сомнения, однако хром можно удалить отгонкой в виде хромилхлорида [29]. [c.100]

    Притчард [30] применил метод отделения алюминия от сопутствующих ему элементов (железо, титан, магний, марганец и кальций), основанный на осаждении их едким натром в присутствии ЦДТА. При этом алюминий остается в растворе. Мерци и Саундерс [31, использовавшие этот метод, обнаружили потерю алюминия в результате адсорбции его осадком гидроокиси. [c.100]

    Танпип.под названием настойка чернильных орешков применявшийся более ста лет тому назад как реактив для качественною анализа, постепенно вышел из употребления и в начале XX века применялся в металлургическом анализе только в качестве индикатора в молибдат-ном методе определения свинца, по Александеру. Предложенный нами метод отделения тантала от ниобия, опубликованный в 1925 г. [7], положил начало серии исследований, которые показали, что таннин является важнейшим реагентом для количествслного разделения и определения ряда редких и обычных элементов, в особенности элементов группы аммиака, не осаждающихся аммиаком и сернистым аммонием из вич-но кислого раствора. Водный раствор таннина, будучи коллоидальной суспензией отрицательно заряженных частиц, осаждает положительно заряженные частицы гидроокисей металлов полученные адсорбционные комплексы очень хорошо коагулируют и совершенно нерастворимы. Несмотря на большой объем, они легко фильтруются и промываются (особенно при смешивании с бумажной массой) при прокаливании переходят в окислы, удобные для взвешивания. Танниновые комплексы некоторых элементов бесцветны, другие имеют яркие и характерные окраски, что является фактором огромного значения для качественного и количественного анализов. Самым замечательным свойством этих реакций является то, что осаждению не препятствует присутствие органических гидроксикислот винной, лимонной и т, д. В то время как теория взаимодействия таннина с растворами тартратных (и других) комплексов металлов до сих пор неясна, его практическое применение имеет большую ценность в аналитической химии таких редких элементов, как германий, тантал, ниобий, титан, цирконий, торий, ванадий, уран и др. [c.13]

    Кремнеземистый остаток может содержать как сульфат бария, так и окислы тантала и ниобия и небольшое количество тория. Кремнезем определяют выпариванием с фтористоводородной и серной кислотами. Остаток сплавляют с бисульфатом, сплав выщелачивают горячим 5%-ным раствором оксалата аммония и сульфат бария отфильтровывают. Оксалатный фильтрат точно нейтрализуют аммиаком по метиловому красному, тантал и ниобий осаждают таннином. Фильтрат обрабатывают небольшим избытком аммиака и достаточным количеством таннина, осадок (содержащий все другие присутствующие металлы) прокаливают и полученные окислы сплавляют с бисульфатом. Сплав кипятят с водой до разложения, добавляют аммиак к горячему раствору для выделения металлов в виде гидроокисей, промытый осадок растворяют в разбавленной соляной кислоте и раствор добавляют к окисленному фильтрату после сероводородной обработки. К объединенному раствору добавляют 5 г NH4 I и кипятят с избытком аммиака (без карбонатов) после охлаждения осадок отфильтровывают, промывают холодным 2%-ным аммиачным раствором хлористого аммония и растворяют в соляной кислоте. Из этого раствора торий и редкоземельные элементы осаждают щавелевой кислогой, титан — нейтрализацией оксалатного фильтрата и добавлением таннина (гл. XII, разд. III), а другие металлы — из фильтрата от титана обработкой его ацетатом аммония и таннином. Метод отделения циркония и урана от железа и алюминия см. гл. XXI, разд. III. Кальций и магний определяют обычным путем в фильтрате от аммиачного осаждения тория и других элементов. [c.207]

    Т. А. Белявская и Э. П. Шкробот [25] разработали ряд методов отделения алюминия от железа и титана, основанные на амфотерности алюминия. После поглощения анализируемой смеси катионитом СБС в Н-форме алюминий избирательно извлекался из колонки 10 %-ным раствором едкого натра, титап или железо десорбировали 2 N раствором соляной кислоты в фильтратах железо определяли колориметрически с роданидом аммония, титан — колориметрическ1г с перекисью водорода, алюминий в форме оксихинолипата. Эти же авторы показали возможность разделения смеси алюминия и цинка 5%-пой лимонной кислотой с pH И в этом случае алюминий быстро вымывался из колонки катионита, а цинк оставался в сорбированном состоянии в форме комплексного аммиаката. Разработанные методики Т. А. Белявская и Э. П. Шкробот успешно применили к определению железа, алюминия и цинка в их сплавах, причем продолнжтельность анализа сокращалась примерно в 2 раза. При изуче-нг ТИ хроматографического разделения смесей меди, алюминия и магния Д. И, Рябчиков и В. Ф. Осипова [26] показали, что магний и алюмииий. легко разделяются путем промывания колонки щелочью если пропускать через колонку щелочной аммиачный раствор, то медь поглощается в форме комплексного аммиаката, а алюминий в форме алюмината переходит в фильтрат. [c.131]

    Разделение скандия и титана. Как было показано, в присутствии органических растворителей сорбционное. поведение элементов в растворах щавелевой, винной и лимонной кислот резко отличается от их сорбционного поведения в водных растворах названных кислот. Это различие мы положили в основу хроматографических методов отделения скандия от титана. На катионите КУ-2Х8-Н разделение проведено с использованием в качестве элюента 0,02 М раствора щавелевой кислоты, содержащего 60% ДМФ. В этих условиях скандий сорбируется на 100%, а титан практически не сорбируется. На анионите AB-I7X8- 2O4 разделение проведено из 0,2 М раствора щавелевой кислоты, содержащего 70% метилового спирта. С катионита и анионита скандий легко десорбируется 4 М НС1. Диаметр колонок 0,5 см, скорость пропускания растворов 1 капля/сек, высота слоя ионита h различна в зависимости от условий опыта. Данные о разделении приведены в таблице. [c.221]


Смотреть страницы где упоминается термин Титан методы отделения: [c.172]    [c.175]    [c.6]    [c.586]    [c.638]    [c.650]    [c.315]    [c.358]    [c.13]    [c.172]    [c.175]    [c.102]    [c.378]   
Фотометрическое определение элементов (1971) -- [ c.394 ]

Колориметрические методы определения следов металлов (1964) -- [ c.781 , c.782 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения



© 2025 chem21.info Реклама на сайте