Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Краски, определение воды

    Для определения внешнего вида накраски краску разбавляют водой в количестве 10 15% от массы краски, наносят на чертежную бумагу (ГОСТ 597—73) с по мощью щетинной кисти №10 или 12 (ТУ 86-6—73) и высушивают 2 ч при 20 2 °С. [c.244]

    ОПРЕДЕЛЕНИЕ ВОДЫ В ПЛАСТМАССАХ, ЛАКАХ, КРАСКАХ И ПОЛИТУРАХ [c.214]

    ОПРЕДЕЛЕНИЕ ВОДЫ В КРАСКАХ И ЛАКАХ [69] [c.217]

    Наполняют сосуд раствором сахара определенной концентрации, подкрашенным красной краской, закрывают пробкой с трубкой и погружают в ванну с дистиллированной водой (не до дна ), закрепив сосуд лапкой на штативе. Записывают в лабораторный журнал наблюдаемое явление и его краткое объяснение. Рассчитывают, до какой высоты к может подняться жидкость в осмометре. [c.49]


    При постепенном увеличении скорости течения воды в трубе путем открытия крана С картина течения вначале не меняется, но затем при определенной скорости течения наступает быстрое изменение его. Струйка краски по выходе из трубки начинает колебаться, затем размываться и перемешиваться с потоком воды, причем становятся заметными вихреобразования и вращательное движение жидкости. Течение становится турбулентным (рис. 1.40, вверху). [c.63]

    Для пигментов и лаков, помимо светопрочности, предъявляются требования устойчивости окрасок к маслу, спирту и другим органическим растворителям, а также воде, щелочам, кислотам. Краски для покрытия поверхностей (металл, дерево и др.) должны при минимальном расходе перекрывать собственный цвет материала, т.е. должны быть непрозрачными (кроющими). Для этой цели необходимы кроющие пигменты. Наоборот, для воспроизведения цвета в полиграфии методом трехцветной печати необходимы достаточно прозрачные пигменты. Пигменты, применяемые для получения типографских и других красок должны адсорбировать определенное, не слишком большое количество масла (или другого растворителя), т. е. иметь определенную м а с л о е м -кость. Пигменты для окраски пластических масс и резины должны быть устойчивы к нагреванию (в условиях изготовления этих материалов), не должны при нагревании окрашенных материалов перемещаться в материале (мигрировать). Важно, чтобы пигменты и лаки не были жесткими , легко диспергировали и распределялись в окрашиваемом материале — печатной краске, пластмассе и т.п. чтобы они имели оптимальную величину частиц и надлежащую кристаллическую форму. Прозрачность, маслоемкость, жесткость и другие свойства пигментов зависят от условий синтеза и способов получения их выпускных форм. Пигменты и лаки не должны содержать более 1—2% растворимых в воде солей и более 3% влаги. Красители и пигменты, применяемые для крашения волокон в массе, не должны содержать более 0,1—0,2% солей железа и кальция, влияющих на свойства волокон. [c.263]

    Определение содержания щелочных оксидов осуществляют методом ацидиметрического титрования с использованием 0,1 н раствора соляной кислоты и индикатора (0,2% спиртового раствора метилового оранжевого). Навеску жидкого стекла ( 0,5 г) Помещают на часовое стекло и взвешивают с погрешностью до .0002 г. Затем навеску смывают 75—100 мл горячей воды в коническую колбу на 250 см и кипятят при помешивании в течение 20 мин. Раствор охлаждают и титруют раствором соляной кисло- Ь в присутствии 3—4 капель индикатора до перехода желтой краски в бледно-розовую. [c.165]


    Существует определенная связь между коэффициентом растекания (см. 21) и адгезионным взаимодействием на границе раздела олифа — вода, которая определяет возможность переноса краски на увлажненную поверхность. Эта связь по отношению к различным сортам олифы следующая  [c.355]

    Осборн Рейнольдс предложил установку для экспериментального определения режима движения жидкости (рис. 39). В сосуд 1 наливается вода, которая через открытый раструб 5 горизонтальной стеклянной трубы 6 может выливаться через регулирующий кран 7 на конце трубы. К центру раструба 5 в начальное сечение трубы 6 подводится жидкая краска из сосуда 2 по тонкой трубке 4, с краном 3. Если с помощью крана 7 установить в трубе 6 скорость жидкости меньше некоторого критического значения, то жидкая краска, поступающая из трубки 4 к начальному сечению потока воды, образует в трубе 6 окрашенную нить (тончайшую окрашенную струйку), которая не смешивается с потоком воды по всей длине трубы. Это свидетельствует о ламинарном режиме движения воды в трубе 6. [c.61]

    Следовательно, металлические изделия требуют определенного ухода. Металлические фермы железнодорожного моста, железные крыши домов и другие изделия, подвергающиеся систематическому воздействию воздуха, воды, снега, покрываются различного рода красками, лаками, но даже в этих условиях, при самом тщательном уходе, крыша из железа может служить не более 5—10 лет. Металл из-за коррозии становится малопрочным, вплоть до того, что рассыпается на мелкие куски. Такие куски являются уже продуктом коррозии, т. е. соединениями железа с кислородом воздуха, воды, углекислым газом. [c.334]

    Широкое распространение в промышленности ООС и СК находят бакелитовые покрытия. Они применяются главным образом при защите теплообменной аппаратуры от коррозионного действия охлаждающей воды. В бакелитовый лак, представляющий собой растворенную в этиловом спирте резольную феноло-формальдегидную смолу, вводят алюминиевую пудру и полученную краску наносят на тщательно подготовленную поверхность металла 3—6 слоями. Каждый из слоев высушивают (отверждают) при определенном температурном режиме. В качестве наполнителя рекомендуется также графит. [c.41]

    Гелий. Хроматографический метод определения примесей кислорода и азота. — Взамен РТМ 26—04—66—74 Воздух. Криопродукты. Колориметрический метод определения примеси сероуглерода Краски печатные. Метод определения глянца Краски полиграфические. Методы испытаний. — Взамен ОСТ 29 13—85, ОСТ 29 96—84, ОСТ 29 97—84, ОСТ 29 98—84, ОСТ 29 105—85, ОСТ 29 114—86 Воды производственные тепловых электростанций. Метод отбора проб [c.393]

    Если жидкость нелетуча, возможен непосредственный учет капель. В летучие жидкости, такие, как вода, следует добавлять краску, которая оставляет на пластинке пятно. Это пятно можно, в свою очередь, откалибровать, как это делается при использовании пластинок, покрытых окисью магния. В случае капель крупнее 200 следует соблюдать осторожность, чтобы не допустить их слияния и растекания по пластинке. При другом калибровочном методе используется устройство с вращающимся диском или с вибрирующей бюреткой [34]. В этом случае образуются капли одного диаметра, которые наносят одновременно на матричную чашку и на окись магния или же силикон. Устройство с бюреткой было усовершенствовано. Используется калиброванная микробюретка, с помощью которой данный объем жидкости можно разбить на определенное число капель равного размера [35]. Измерив их на любой данной поверхности, можно сравнить истинный размер, высчитанный на основании объема, и кажущийся размер на пластинке. [c.113]

    В воднодисперсионные клеи иногда вводят антисептики, из которых наиболее активен и не снижает агрегативной устойчивости водорастворимый пентахлорфенолят натрия. Введение антисептиков необходимо для клеев, содержащих казеинат аммония и производные целлюлозы. Огнезащитные добавки менее широко применяются в клеях, чем-в воднодисперсионных красках. Например, добавка в клей на основе ПВА дисперсии около 10 % производного 1,2-дихлорпропан-З-фосфоната приводит к получению самозатухающей пленки клея. Недостатком воднодисперсионных клеев и красок является их низкая морозостойкость. Под морозостойкостью понимается способность воднодисперсионных систем восстанавливать первоначальные свойства после определенного числа циклов замораживания до заданной температуры и оттаивания. Появление кристаллов льда нарушает адсорбционные слои на частицах дисперсий и приводит к необратимой коагуляции. Полное вымораживание воды происходит при температуре от —15 до —40°С в зависимости от природы и содержания ПАВ, загустителей, стабилизаторов, пластификаторов и других компонентов, которые при охлаждении постепенно концентрируются в незамерзшей части воды. [c.70]


    Для определения продолжительности высыхания краски, внешнего вида, цвета, смываемости и адгезии накраски краску наносят кистью за один прием полоской размером 40X100 мм и толщиной слоя 100 10 мкм и сушат при 20 2°С в течение 2 ч. Для определения внешнего вида накраски краску разбавляют водой (ГОСТ 2874—73) в количестве 25—30% от массы краски. [c.248]

    В аналитической лаборатории Института органической химии им. академика Зелинского с успехом проводили определение воды в самых различных веществах углеводородах, спиртах, эфирах, окиси этилена, тетрагидрофуране, хлороформе, солях органических и неорганических кислот, стероидах, полинепертидах, целлюлозе, лигнине, гидроксиламинах, силиконовых маслах, анги-дроне, цеолитах, в азот- и серусодержащих соединениях, различных нефтепродуктах, пластмассах, красках и лаках, взрывчатых веществах, фармацевтических npenapt тах, в том числе антибиотиках и некоторых витаминах и т. п. [c.190]

    Для определения воды применяют 1) высушивание в сушильных шкафах до постоянного веса 2) гетерогенную перегонку жидких материалов с углеводородами или галогенопроизводными и измерение объема отслаивающейся воды 3) поглощение воды перхлоратом магния, СаЗО , СаСЦ, Р Об и т. п. и определение содержания ее по привесу поглотителя 4) обработку исследуемого в-ва карбидом кальция и измерение объема выделившегося ацетилена. Очень часто применяют т.н.реактив Фишера — иод-пиридин-метаноль-ный р-р, в состав к-рого входит ЗОа. Под действием воды происходит разрушение иод-пиридинового комплекса и выделение молекулярного иода. Определение воды выполняют титриметрически. Точку эквивалентности устанавливают по появлению отчетливой желто-оранжевой окраски свободного иода титр реактива — по стандартному р-ру иода в метаноле. При помощи реактива Фишера определяют воду в нефтяных фракциях, красках, лаках и политурах, пищевых продуктах и т. д. Титриметрич. метод применяется также для изучения процессов, связанных с выделением или поглощением воды. Известно много вариантов метода. В большинстве случаев воду эк-страг ируют из растворимых соединений или взвесей в неполярных растворителях и затем определяют титрованием реактивом. При анализе окрашенных в-в, а также нек-рых суспензий и эмульсий точку эквивалентности устанавливают электрометрически. Онре-деление воды затруднительно, а иногда невозможно в соединениях, вступающих в реакцию с одним из компонентов реактива (окислы и гидроокиси металлов, соли 2-валентной меди и 3-валентного железа, борная к-та и окислы бора и др.) в подобных случаях либо пассивируют эти в-ва по отношению к реактиву, напр, введением избытка уксусной к-ты устраняют влияние аминов и гидразинов, либо определяют мешающие в-ва в отдельных пробах и вводят соответств. [c.42]

    Сван [69] применил метод титрования реактивом Фишера для определения воды в красках и лаках. Опыты проводили следующим образом. Около 20 г образца отвешивали в колбе емкостью 250 мл с притертой пробкой. 10—25 мл сухого пиридина (0,1% воды или меньше) вводили в колбу, где находился образец, и в другую колбу (контрольный опыт) при этом количество взятого пиридина было различным в зависимости от вязкости образца. Затем смеси взбалтывали и добавляли к ним по 25—50 мл реактива Фишера (с водяным эквивалентом, равным 6 мг1мл), и закрытые колбы помещали в водяную баню при 50° на 45 мин., причем взбалтывание производилось через каждые 10 мин. После охлаждения до комнатной температуры смеси титровали пиридином, содержавшим 0,1% воды. Конец титрования определялся потенциометрически (электроды из вольфрама и платины, см. стр. 84). [c.217]

    Объекты, погруженные в морскую воду, могут обрастать морскими организмами, например водорослями или ракушками. Эти наросты могут способствовать подосадковой коррозии (см. 4.4). Могут иметь место и другие вредные последствия, например забивка труб или увеличение сопротивления движению корабля. Но, с другой стороны, такие наросты могут при определенных условиях и повышать коррозионную защищенность, например стали. Образование наростов в водопроводных трубах можно предотвратить с помощью хлорирования, например раствором гипохлорита натрия или газообразным хлором, который добавляют в месте подачи воды. Обрастанию корпусов кораблей можно препятствовать с помощью окрашивания так называемой противообрастательной краской, которая выделяет вещества, ядовитые для морских организмов, например ионы меди или соединения олова. Медные поверхности тенденции к обрастанию не имеют. Медь, растворяющаяся при коррозии, действует как противообрастательное средство. [c.45]

    Рис. 1.2-4 показывает разительное улучшение возможЖ1Стей определения свинца в воде. На повьппение чувствительности методов анализа общество отвечало технологическими новациями чтобы отказаться от Ярименения свинца, стали испольэовать неэтилированный бензин заменили краски на основе свинца и свин1 вые водопроводные трубы отказались от припоев, содержащих свинец (например, стали производить бесшовные алюминиевые банки). Цикл осведомленности, социального отклика и технологической инновации стал прямым следствием нашей способности определять малые количества свинца в образцах сложнсго состава. [c.42]

    Сохранность живописи, особенно темперной,в значительной степени определяется составом и свойствами грунта (табл. 9). Темпера требует определенных характеристик грунта. Грзоп должен бьггь не слишком жирным, так как на грунты, содержащие много масла, не ложатся воднодисперсионные краски. Грунт не должен растворяться в воде, в противном случае он будет растворяться под действием темперных красок и частично смешиваться с ними. Поэтому грунт желательно фиксировав парами формальдегида или просто пропитьшать 4 %-м раствором фop альдегида с кисти. Если грунт клеевой, то полезно заду бить его чере холст перед началом реставрационных работ формальдегидом (пары иль 4 %-й раствор). [c.54]

    Ход определения. Навеску полимера или сополимера со стиролом (0,2—0,3 г) помещают в мерную колбу емкостью 25 мл и растворяют в 15—20 мл диоксана. После растворения раствор доводят до метки диоксаном. 2 мл полученного раствора переносят в мерную колбу емкостью 10 мл, прибавляют 6 мл воды, 0,3 мл 0,33Л1 раствора А1С1з, две капли метилового красного и затем по каплям раствор Ы(СНз)40Н до перехода краски индикатора в желтый цвет. Затем доливают раствор до метки водой, взбалтывают и фильтруют в сухую посуду. 3 мл фильтрата помещают в электролизер, прибавляют 0,2—0,4 мл раствора Ы(СНз)40Н, аэрируют раствор током инертного газа и полярографируют, начиная от —1,4 В. Затем добавляют 0,2—0,3 мл стандартного раствора 2-метил-5-винилпиридина и после перемешивания током инертного газа полярографируют вторично. Содержание 2-метил-5-винилпиридина в полимере (х, %) рассчитывают по формуле [c.129]

    Для испытания используют две вулканизованные в гидравлических прессах пластины, имеющие соответствующую заданию и одинаковую маркировку (шифр резиновой смеси, время и температуру вулканизации). Из каждой пластины штанцевым ножом вырубают 6—7 лопаток по ходу листования смеси или образцов для определения сопротивления раздиру. Для облегчения вырубки нож смачивают водой. После осмотра отбирают для испытания образцы без дефектов поверхности. Размеры образцов контролируют линейкой и толщиномером, отбрасывая образцы, не удовлетворяющие нормам. После контроля от каждой пластины должно быть 5 годных образцов. Размеры всех образцов заносят в протокол испытаний. Затем на 5 образцах № 1—5 (А) при помощи штампа и краски наносят метки рабочих участков. Оставшиеся 5 образцов № б—10 (Б) прокалывают шилом, прошивают иглой с ниткой в широкой части лопаток и прикрепляют к металлическому стержню. На стержень накалывают картонный ярлык, на котором указывают шифр резиновой смеси, продолжительность и температуру набухания, среду и фамилию учащегося. [c.207]

    Количественно содержание взвешенных нерастворимых примесей в воде (мг1дм ) определяют просасывапием известного ее объема через плотный бумажный или мембранный фильтр с порами, соответственно 1,0—2,5 или 0,005—0,5 мкм. Существуют визуальные методы определения мутности воды посредством сравнения ее с эталонными суспензиями, приготовленными из отмученного каолина, инфузорной земли или трепела. Контролируют также прозрачность (светопропускание) воды по высоте ее столба, через который можно читать нормальный типографский шрифт или видеть крест с толщиной линии 1 мм, нанесенный на белой пластинке черной краской [13 .  [c.25]

    Для точного определения микроколичеств веществ изготовлена из плексигласа специальная микрокювета с металлической оправой для фотопластинки (рис. 1) [45]. Микрокювета представляет собой пластинку из плексигласа размером 9x12 см, толщиной 1 см, в которой равномерно просверлены сквозные круглые отверстия диаметром 1 см на расстоянии 1,5 см друг от друга. Дном этих отверстий — ячеек служит хорошо отполированная и аккуратно приклеенная дихлорэтаном пластинка из прозрачного плексигласа толщиной 3 мм. Если концентрация реагирующих компонентов в некоторых ячейках слишком велика, то может происходить засвечивание расположенных рядом ячеек. Чтобы устранить засвечивание между ячейками, в микрокювете делают тонкие пазы и закрашивают их устойчивой по отношению к воде и щелочам черной краской. Такая микрокювета очень удобна в работе, так как можно снимать свечение сразу всех проб, стандартов и холостого опыта на одну пластинку. [c.86]

    Отбор проб сточных эод. Сточные воды отличаются непостоянным составом. Хозяйственно-фекальные сточные воды изменяются в зависимости от характера эксплуатации водопровода и санитарно-гигиенических устройств. Состав промышле1 [ных сточных вод зависит от хода производственных процессов и т. п. Поэтому однократного взятия пробы воды обычно недостаточно, и проводят отбор средней смешанной пробы (за час, смену, сутки) или же серийных проб по. предварительно разработанному плану. Определяют суточный максимум и минимум количества сточных вод и суточное, недельное или годовое изменение качества воды. По мере надобности проводится отбор согласованных проб в различных местах течения сточной воды. Продолжительность прохождения сточной воды между отдельными местами отбора определяют вычислением или при помощи вводимых в воду индикаторных веществ (краски, меченые атомы, растворы солей и т. п.). Следует обеспечить при этом быстрое и эффективное смешение вводимого вещества, со сточной водой. Определение с индикаторными веществами проводят заранее перед отбором проб, чтобы влияние введенного вещества прекратилось до взятия пробы на анализ. , [c.20]

    Возможным источником органических загрязнений технологической или питьевой воды могут быть защитные покрытия органического происхождения, наносимые на рабочие поверхности производственного оборудования. На основании данных проведенных исследований [23] запрещены для использования ряд противокоррозионных покрытий, а некоторые разрешены с определенными ограничениями. Так, например, эпоксидная смола ЭД-5 при контакте с водой загрязняет ее ядовитымы веществами, стимулирующими, кроме того, развитие общей микрофлоры и бактерий. Нитроглифталевая краска НКО-23 резко ухудшает органолептические свойства воды. Очевидно, что для обеспечения постоянного качества технологической и особенно питьевой воды необходимо применять конструкционные материалы, отвечающие специальным требованиям по химическим, физическим и противокоррозионным свойствам. [c.39]

    Мыло (натриевая соль жирных кислот) является давно известным и широко распространенным моющим веществом, отличающимся при определенных условиях хорошим моющим действием. Однако мыла обладают рядом существенных недостатков. В жесткой воде они образуют кальциевые и магниевые соли жирных кислот, нерастворимые в воде, которые в виде клейких хлопьез оседают в бельевых корытах и затрундяют стирку. (Для того, чтобы воду средней жесткости, содержащую 100 частей карбоната кальция на 1 млн. частей воды, приблизить по моющей способности к дистиллированной воде, надо затратить мыла на 10% больше.) Эти соли не обладают моющим действием, они оседают при стирке на ткань, ускоряя окисление тканей кислородом воздуха, делают ткань хрупкой и ломкой. В результате ускоряется износ тканей, ухудшается их внешний вид, краски блекнут. На умягчение воды и на образование кальциевых и магниевых солей жирных кислот расходуется около 30—35% мыла..  [c.286]

    Не всегда проста осушка металлической поверхности под окраску, в особенности конструкций на открытом воздухе в условиях влажной атмосферы. Большую важность имеет также удаление окалины, которое может представлять определенную трудность. Подвергавшаяся горячей прокатке сталь почти всегда имеет очень плотно сцепленную окалину, которая может остаться даже после травления в конце процесса изготовления сортамента. Окалина будет поглощать влагу, вызывая ухудшение сцепления слоя краски, который будет отлущиваться при взаимодействии окалины с водой, сопровождающемся увеличением объема. Кроме того, окалина на стали состоит из окислов, обладающих известной электронной проводимостью, а поэтому функционирующих в качестве достаточно эффективных катодов, способных стимулировать коррозию на обнаженной части поверхности. В местах поглощения влаги возникают местные гальванические элементы и начинается питтинг. Невзирая на значительные затраты ручного труда, необходимо с особой тщательностью удалять окалину. Для этого чаще всего применяют пескоструйную обработку, обработку струей ингибированной воды высокого давления, а также очистку пламенем. При очистке последним способом окалина после обезжиривания быстро нагревается с таким расчетом, чтобы она в результате сильного расширения при нагревании отслоилась от нижележащего сравнительно холодного металла. Затем без промедления наносится защитное покрытие. Часто используется также выветривание, при котором неокрашенная конструкция выдерживается до шести месяцев на открытом воздухе. Прокатная окалина подвергается изменениям размеров и отслаивается. При этом значительно облегчается последующее ее механическое удаление. Большое значение придается полному удалению окалины. Это наиболее важная операция при окраске, поскольку хорошая подготовка поверхности в сочетании с плохой окраской предпочтительней плохой подготовки при хорошей окраске. [c.158]

    Эрдхейм в рекомендовал определять отбеливающие земли реакцией адсорбционного окрашивания суданской красной краской, используя ее в качестве индикатора (см. также А. III, 232 и ниже). Монография о методах окрашивания глинистых минералов была написана Фаустом , а собственно методы рассматривались Хим-мельбауэром Суида и Хундесхагензо исследовали диагностическое значение методов окрашивания органическими красителями для силикатных коллоидов. Окрашивание силикагелей фуксином, метиловым фиолетовым или малахитовой зеленью, т. е. типичными основными красителями, не может выщелачиваться. Однако кислотные красители легко вымываются водой из коллоидной кремнекислоты. Слабокислый силикагель избирательно адсорбирует основные красители, и, наоборот, кислые красители преимущественно адсорбируются на гелях глинозема. Соответствующие смеси трехкислотных красителей, которые одновременно дают возможность адсорбироваться кислотным и основным красителям, например в смеси кислотного фуксина и метиленового голубого, могут употребляться для определения химических свойств и электростатических зарядов в данном коллоидном геле. [c.307]

    Метод с применением азо-азокси БН [ 1, 2]. К нескольким миллилит-)ам нейтрального анализируемого раствора добавляют воды до объема М.Л, а затем 4,3 мл четыреххлористого углерода, 0,7 мл 0,02%-ного аствора азо-азокси БН в четыреххлористом углероде и 1 мл 20%-ного la TBopa едкого натра и проводят экстракцию в течение 2 мин. Через —3 мин после отстаивания определяют кальций по ослаблению оранже-о-красной окраски раствора реактива визуально или фотометрически. )краска растворов реактива устойчива в течение 8—12 ч. Определению альция (4—8 мкг ъ5мл раствора) не мешают каждый из следующих эле-ентов в количествах 1 мг Li, К, Rb, Sr, Ва, Zn, Al, Ge, Pb, V, As, Bi, )r (VI), Se, Mo, W, U 0,1—0,2 мг Ag, s, Mg, a, Sn, Sb 0,05—0,1 мг ie. d, Hg, La, Sm, Th, Fe 0,01—лг r (III), e (III), Mn (II) 0,005 мг i и Zr. [c.351]

    Раствор помещают в эрленмейеровскую колбу и прибавляют к нему, каждый раз встряхивая, маленькими порциями восстановленное железо (Ferrnm redu tum) до исчезновения желтой окраски, после чего в раствор вносят еще 5—10 г восстановленного железа. Колбе дают постоять около 3 часов, неоднократно взбалтывая ее содержимое. По истечении этого времени осаждение сурьмы и меди можно считать законченным. Восстановление можно ускорить осторожным нагреванием. Фильтруют через сухой, быстро фильтрующий фильтр и, взяв 50 мл фильтрата, разбавляют водой и нейтрализуют соляную кислоту углекислым натрием. Фильтр прорывают оттянутой стеклянной палочкой, смывают осадок возможно малым количеством воды в 1/2 литровую колбу для титрования, растворяют приставший к фильтру остаток в смеси соляной кислоты с бромом, давая стечь раствору в ту же колбу, и удаляют избыток брома осторожным нагреванием. К полученному таким образом раствору прибавляют для объемного определения олова 2 — 3 г обезжиренных алюминиевых стружек или крупного алюминиевого порошка, затыкают колбу пробкой с двумя отверстиями и умеренно нагревают, все время пропуская ток углекислоты. Время от времени в колбу прибагляют несколько капель концентрированной соляной кислоты до тех пор, пока не растворится почти весь алюминий. Прибавив еще 50 мл соляной кислоты, нагревают до растворения губчатого олова. Затем охлаждают в токе углекислоты, прибавляют несколько миллилитров крахмального раствора и 15 капель раствора индикатора и, продолжая пропускание углекислоты, титруют раствором хлорного железа до появ. ения неисчезающей при взбалтывании голубой г краски (ср. стр. 398, 532). [c.531]

    К смеси 5 мл спирта и 5 мл воды прибавляют 25—30 капель 1%-го спиртового раствора салицилового альдегида и 20 мл концентрированной серной кислоты. Свободный от сивушного масла спирт при этом окрашивается, по охлаждении, в лимонно-желтый цвет. Если присутствуют хотя бы следы сивушного масла, то смесь приобретает в проходящем свете желтую, а в отраженном — красноватую краску. Ни в каком случае недопустимо появление красноватого или красного цвета (в проходящем свете). Эта реакция Комаровскогоможет служить и для количественного определения сивушного масла в спирте. Салициловый альдегид можно заменять спиртовым раствором фурфурола (1 1000). Надо заметить, что поми.мо сивушного масла и другие вещества, встре- [c.244]

    Узнав вышеуказанный закон, невольно рождается вопрос существует ли граница для разнородных химических превращений, или же они безграничны, т.-е. можно ли из данного вещества получить равное ему количество всяких других веществ Другими словами, существует ли вечное, некончаю-щееся превращение одной материи во все другие, или же круг этих превращений ограничен Это второй существеннейший вопрос химии, вопрос о качестве вещества, вопрос, очевидно, более сложный, чем вопрос о количестве. Видя, как из воздуха и элементов почвы образуются разнообразные вещества растений, как железо превращают в краски, напр., в чернила, берлинскую лазурь и т. п., можно подумать, что нет конца качественным изменениям веществ. С другой стороны, ежедневный опыт привел к сознанию того, что из камня нельзя сделать питательного вещества, из меди — золота и т. п. Поэтому определенного ответа нужно ждать от изучения и проверки [возникающих ] при этом предположений. Вопрос этот решался в разные времена различно. Наиболее когда-то распространенное в этом отношении мнение утверждало, что все видимое состоит из четырех стихий воздуха, воды, земли и огня. Оно ведет свое начало еще из Азии, оттуда оно перешло к грекам и с особенною полнотою изложено было Эмпедоклом, жившим за 460 лет до р. х. Такое понятие не было выводом из точных исследований, а основывалось, повидимому, на различении тел газообразных (как воздух), жидких (как вода) и твердых (как земля) и на признании их изменений, совершаемых огнем, т.-е. жаром. Арабские ученые стали опытным путем итти к разрешению вышепредложенного вопроса. Чрез Испанию они внесли в Европу любовь к исследованиям вопросов подобного рода, и с того времени является много адептов этой науки, считавшейся таинственною и названною алхимиею. Алхимики, не имея еще ни одного строгого закона, как исходного пункта для своих исследований, весьма различно решали вопрос о качественных превращениях веществ. Важная заслуга их состояла в том, что они делали множество опытов, открыли многие новые пре- [c.31]

    Для примера сернистых соединений тяжелых металлов опишем сернистые соединения As, Sb и Hg. Трехсернистый мышьяк или аурввнг-мент As-S встречается в природе и образуется в чистом виде, когда раствор мышьяковистого ангидрида в присутствии H I приходит в соприкосновение с сернистым водородом (без НС1 осадка не образуется). Тогда получается красивый желтый осадок As O -)- 3H-S = ЗН О - - As S , который при накаливании плавится и улетучивается без разложения. As S легко получается в коллоидальном растворе (гл. 1, доп. 76). Коллоидальный раствор сернистого мышьяка получается проще всего при прямом действии №S ва чистый водный раствор As O . Желтый раствор как при испарении на водяной бане, так и при замораживании (тогда лед получается бесцветный) дает красное видоизменение (Н. Winter, 1905), уже нерастворимое в воде, хотя растворяющееся в щелочах, N HS и т. п. и представляющее следы кристаллизации. От прибавки многих солей, соляной кислоты и т. п. сернистый мышьяк выпадает в виде желтого осадка и притом вполне, так что в растворе затем не остается следов мышьяка. Сплавляясь As S образует полупрозрачную желтую массу и в этом виде получается заводским путем. Природный имеет уд. вес 3,4, а сплавленный искусственно — 2,7. Употребляется как желтая краска и, вследствие своей нерастворимости в воде и кислотах, менее вреден, чем другие соединения, отвечающие мышьяковистой кислоте. По типу AsX известен реальгар AsS, частица вероятно As S . Реальгар (сандарак) находится в природе в виде просвечивающих красных кристаллов, уд. веса 3,59, и может быть получен искусственно чрез сплавление мышьяка с серою в определенной, указанной формулою, пропорции. Его готовят в большом виде, перегоняя смесь серного и мышьякового колчеданов. Подобно аурипигменту, он растворяется в сернистом калии и даже в едком кали. Применяется он в практике для сигнальных в фейерверочных огней, потому что с селитрою дает вспышку и большое пламя яркобелого цвета. [c.519]

    Описаны различные методы получения на стекле покрытий из полимеров, содержащих титан. Согласно одному из методов стекло в виде волокна или листов погружается в разбавленный раствор конденсированного бутилата титана. Используемые концентрации варьируют от 1% для волокон до 0,0001% для ветровых автомобильных стекол. Покрытие способствует также адгезии при изготовлении слоистых стекол. Получаемые прочные прозрачные покрытия, которые не содержат пигмента и не чувствительны к действию воды, могут быть использованы для снижения интерференции в оптических инструментах за счет отражения поверхностью определенной фракции падающего светового потока . Тонкие пленки полимерной двуокиси титана образуются и на поверхности других твердых веществ, например пластмассы, эмали, волокна, краски или каучука. Улучшение свойств покрытий достигается при отверждении пленок парами оксиароматических соединений, например фенолов или нафтолов, используемых вместо воды. Получены пленки, сильно поглощающие ультрафиолетовое излучение [c.234]


Смотреть страницы где упоминается термин Краски, определение воды: [c.622]    [c.106]    [c.42]    [c.132]    [c.569]    [c.102]    [c.112]    [c.42]    [c.290]    [c.87]    [c.206]    [c.672]    [c.42]   
Акваметрия (1952) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Определение воды в пластмассах, лаках, красках и политурах

Экстракционные методы для определения воды в лаках и краска



© 2025 chem21.info Реклама на сайте