Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие влияние температуры и давлени

    Все разобранные выше эффекты внешних воздействий на изменение равновесия (влияние температуры, давления и концентрации) могут быть обобщены в виде следующего правила, впервые сформулированного в 1884 г. французским химиком Ле Шателье. [c.141]

    Влияние температуры и давления на равновесие. Влияние температуры на равновесие ясно показано на рис. 1. Повышение температуры способствует как разложению исходных углеводородов до промежуточных продуктов, так и превращению последних в ацетилен. Кроме того, отмечается, что протеканию всех реакций способствует также уменьшение давления, так как все реакции идут с увеличением общего числа молей. Введение инертных газов должно оказывать такой же эффект, как и уменьшение давления. Однако разбавление водородом должно прекратить образование ацетилена, так как водород всегда является продуктом, по крайней море, одной стадии разложения исходного углеводорода. [c.63]


    Факторы, влияющие на равновесие. Принцип Ле Шателье. Влияние температуры, давления и катализатора. [c.167]

    Физическая адсорбция протекает самопроизвольно. Адсорбтив стремится целиком занять всю поверхность адсорбента, но этому препятствует процесс противоположный адсорбции — десорбция, вызванный как и диффузия, стремлением к равномерному распределению вещества вследствие теплового движения. Для каждой концентрации адсорб-тива в окружающей среде существует состояние адсорбционного равновесия, аналогичного равновесию между конденсацией и испарением. Понятно, что чем выше концентрация адсорбтива, тем больше адсорбция. Для каждой температуры существует свое состояние равновесия. Влияние температуры на адсорбцию вполне согласуется с принципами ле Шателье — Брауна, поскольку десорбция, как процесс, обратный адсорбции, сопровождается поглощением тепла. Чтобы определить количество адсорбированного вещества, необходимо экспериментально найти, чему равно давление газа или концентрацию адсорбтива в сосуде, в котором происходит адсорбция, до адсорбции и после нее. Адсорбцию очень часто определяют также по привесу адсорбента. [c.36]

    Химическое равновесие. Обратимость химических реакций. Закон действующих масс для химического равновесия. Константа равновесия. Сдвиг химического равновесия. Принцип Ле Шателье. Влияние температуры, давления и концентрации. [c.26]

    Изменение концентрации одного или нескольких компонентов приводит к изменению концентрации других компонентов, однако значение константы равновесия остается постоянным. Влияние разных факторов на химическое равновесие характеризуется принципом ле Шателье если изменить одно из условий равновесия, например температуру, давление или концентрацию, то равновесие сместится в направлении реакции, противодействующей этому изменению. [c.36]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]


    Каково влияние температуры, давления, концентрации и присутствия катализатора на величину константы химического равновесия  [c.76]

    Домашняя подготовка. Скорость химической реакции. Единицы измерения скорости реакции. Факторы, влияющие на скорость реакции. Закон действия масс и его математическое выражение. Константа скорости реакции. Скорость реакции в гомогенных и гетерогенных системах. Влияние катализаторов на скорость реакции. Необратимые и обратимые реакции. Химическое равновесие. Константа химического равновесия. Влияние различных факторов на смещение химического равновесия (концентрация, температура, давление). Принцип Ле Шателье. [c.107]

    Вторая задача, поставленная и разрешенная Вревским, заключалась в установлении зависимости между изменением равновесия под влиянием температуры (давления) и изменением состава нераздельнокипящей смеси.  [c.30]

    Влияние различных факторов на равновесие обратимых реакций. Принцип Ле-Шателье. Влияние температуры, давления и концентраций реагирующих веществ на равновесие в гомогенных и гетерогенных процессах определяется открытым в 1884 г. Ле-Шателье принципом, который формулируется так если на систему, находящуюся в состоянии равновесия, воздействовать извне, изменяя какую-либо из величин, определяющих состояние равновесия, то равновесие смещается таким образом, чтобы ослабить эффект воздействия. [c.43]

    Системы (X. 2) и (X. 3) дают полную характеристику адсорбционному равновесию в п-компонентной двухфазной системе при наличии искривленной поверхности разрыва. Используя эти системы, можно получить различные частные соотношения, описывающие влияние температуры, давления и других термодинамических параметров на состав поверхностных слоев. Ниже рассмотрим некоторые из таких соотношений для бинарных систем. [c.221]

    Закон Вант-Гоффа представляет собой частный случай общего закона, называемого принципом Ле Шателье. Принцип Ле Шателье определяет влияние различных условий на равновесную систему и формулируется следующим образом если изменить одно из условий, при которых система находится в состоянии химического равновесия, например температуру, давление или концентрацию, то равновесие смещается в направлении той реакции, которая противодействует произведенному изменению. [c.134]

    Понижение температуры и связанное с этим уменьшение степени ионизации V d" должно привести к уменьшению отношения iVs]/[V d"], а потому и электропроводности. Это демонстрируется рис. 87, где результаты расчета сопоставлены с экспериментом. Из рисунка видно, что понижение температуры прокаливания (отжига) приводит к расширению области давления паров кадмия (серы), в которой dS ведет себя как изолятор. Менее резкая зависимость п от Г в эксперименте [82] объясняется, по-видимому, невозможностью полностью заморозить высокотемпературное равновесие. Влияние температуры на положение границ перехода от одного механизма компенсации к другому вытекает из того обстоятельства, что константы равновесия, входящие в уравнения (VI.70), (VI.73) и (VI.90), являются функцией Т. [c.201]

    Все реакции дегидрирования являются равновесными. На равновесное состояние оказывают влияние температура, давление, содержание примесей в сырье, природа катализатора, материал реактора и некоторые другие факторы. Дегидрирование насыщенных соединений является реакцией эндотермической, а гидрирование — в большинстве случаев экзотермической. При низкой температуре равновесие целиком сдвинуто в сторону насыщенных соединений. Повышение температуры сдвигает равновесие в сторону дегидрирования. Однако повышать температуру можно до определенного предела. Повышение температурной границы, может привести к глубокому расщеплению молекулы исходного углеводорода за счет разрыва связей между углеродными атомами. [c.60]

    Для количественной оценки влияния температуры, давления, концентраций, коэффициента избытка одного из реагентов и концентрации разбавителя используют соотношения между константами равновесия, равновесным составом и равновесной степенью превращения. Эти соотношения для каждого конкретного случая получают путем решения системы уравнений, задаваемых константами равновесия, и уравнений стехиометрического баланса. Вид формул, связывающих константы равновесия, равновесный состав и равновесную степень превращения, зависит ог тина реакции. Как правило, мольные доли компонентов равновесной смеси связывают с числом молей исходного вещества, прореагировавшего к моменту равновесия, или со степенью превращения исходного вещества Хр. Число молей каждого из реагирующих веществ в исходной смеси может б 1ть произвольным. Обычно при расчетах исходят из 1 моль основного реагента и определяют число молей других веществ. [c.48]


    На фиг. 15 показано влияние температуры на равновесие эвтектических смесей частично растворимых веществ для случая возрастающей с температурой взаимной растворимости компонентов системы. Длина горизонтального участка АВ по мере увеличения температуры сокращается, составы обоих жидких слоев приближаются друг к другу, при этом равновесное давление системы прогрессивно растет. Пунктиром нанесена кривая растворимости GKF компонентов системы и линия dK, дающая [c.28]

    Равновесная глубина дегидрогенизации перечисленных реакций увеличивается с повышением температуры и уменьшением давления. Влияние температуры на дегидрирование парафиновых углеводородов до олефинов в условиях термодинамического равновесия показано на рис. 1 и в табл. 2. Вполне очевидно, что 50%-ная конверсия парафинов Сд и выше в альфа- [c.190]

Рис. 18-12. Влияние растворенного вещества на положение кривой равновесия жидкость-пар для растворителя. При каждой температуре давление пара уменьшается и составляет Рис. 18-12. <a href="/info/1668625">Влияние растворенного</a> вещества на положение <a href="/info/13763">кривой равновесия жидкость</a>-пар для растворителя. При каждой <a href="/info/841633">температуре давление пара</a> уменьшается и составляет
    ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ НА СОСТОЯНИЕ РАВНОВЕСИЯ. РАЗЛИЧНЫЕ ТИПЫ КРИВЫХ РАВНОВЕСИЯ НА ТРЕУГОЛЬНОЙ ДИАГРАММЕ [c.32]

Рис. 79. Влияние температуры и давления на положения равновесия в реакции синтеза аммиака. Рис. 79. <a href="/info/15368">Влияние температуры</a> и давления на <a href="/info/21083">положения равновесия</a> в <a href="/info/31358">реакции синтеза</a> аммиака.
    В противоположность описанным выше методам, применяемым для исследования равновесия при постоянном давлении, динамический метод удобен для получения данных о равновесии при постоянной температуре. Это несколько ограничивает применимость динамического метода, так как процессы ректификации проводятся при практически постоянном давлении. Этот метод, однако, весьма удобен, если желательно сравнить влияние различных разделяющих агентов на коэффициент относительной летучести заданной смеси при одинаковой температуре. [c.151]

    Влияние температуры и давления на состав пара и состав азеотропной смеси. Законы Вревского. Состав пара, равновесного с жидким раствором заданной концентрации, зависит от температуры, при которой находится равновесная система, и от общего давления над раствором. Так, пар, находящийся в равновесии с жидкостью состава X (рис. 134) при температуре Т1, имеет состав Xi, а при температуре Гг — Х . Направление изменения состава пара над раствором заданной концентрации с изменением температуры и давления устанавливает первый закон Вревского при произвольном повышении температуры или давления пар, находящийся в равновесии с раствором заданного состава, обогащается тем компонентом, парциальная молярная теплота испарения которого больше. Этот закон справедлив для любых летучих смесей независимо от того, образуют или не образуют они азеотропные смеси. [c.393]

    При температуре выше 280 0 равновесие сдвигается в сторону образования изомерных продуктов при этом глубина гидрирования снижается, а при 300-320°С содержание комплексообразующих углеводородов уменьшается на 24 (масс.). Было изучено [46] влияние изменения давления (от 2 до 7 МПа) на процесс гидроочистки жидких парафинов при оптимальной температуре гидрирования 280°С. При 7 МПа содержание ароматических углеводородов было снижено до 0,05 (масс.). [c.250]

    Влияние температуры на равновесие систем бензол— циклогексан и толуол — метилциклогексан при различных парциальных давлениях водорода показано на рис. 2 [24]. Повышение парциального давления водорода и снижение температуры позволяют уменьшать содержание ароматических углеводородов в системе. [c.15]

    Поскольку эта реакция протекает без изменения объема и ее равновесие не зависит от давления, данный метод применяют при любых давлениях, допустимых в промышленной практике, не включая в исходные данные давление в качестве режимного показателя. При этом снижается точность расчета, так как на состав получаемого газа оказывает влияние и реакции, протекающие с изменением объема. Однако полученные результаты расчетов иллюстрирует лишь характер изменения показателей газификации жидких топлив с различным отношением С Н, а вычисленные количественные соотношения между этими показателями справедливы только для принятых в расчетах условий теплового режима газификации, состава дутья и выхода сажи. В других условиях количественные соотношения отдельных показателей будут иными. К.Полем и Г.Мартенсом [б]предложен метод расчета для процессов газификации жидких топлив, протекающих при любых температуре, давлении и составе дутья. Авторы исходят из того предположения, что состав получаемого газа в этих процессах удовлетворительно определяется равновесием реакций [c.115]

    Согласно правилу фаз Гиббса, число степеней свободы такой системы 1 = 2+2-3=1, т. е. только один из параметров, характеризующих состояние такой системы (температура, давление, состав паровой фазы), может быть выбран произвольно. Соотношение между количествами фаз не оказывает влияния на состояние равновесия. Таким образом, достаточно, например, задаться температурой системы, чтобы определилось равновесное состояние, т.е. давление системы и состав паровой фазы. [c.80]

    На рис. 11 (стр. 105) показано влияние температуры на равновесные концентрации бутанов, бутиленов и дивинила. При составлении этого графика и табл. 22 было сделано допущение, что свободные энергии образования всех четырех бутиленов одинаковы при любой температуре, однако это не соответствует действительности. В табл. 28 приведены более точные уравнения свободной энергии. Последние уравнения использованы для расчета констант равновесия при постоянном давлении (Кр) и равновесных степеней превращения для двух типичных реакций изомеризации при обычной и более высоких температурах. Полученные результаты помещены в табл. 29, где X обозначает процентное содержание данного продукта в равновесной смеси (транс-бутилена-2 в третьей графе и изобутилена в четвертой графе). [c.127]

    Общую формулировку влияния температуры, давления и концентрации на равновесную систему дает ирницин Ле Шателье если на систему, находящуюся в равновесии, оказать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воЗ действия. [c.25]

    Фазовая диаграмма описывает влияние температуры, давления и состава на вид и число фаз, которые могут сосуществовать. Число фаз определяется согласно правилу фаз Гиббса рядом переменных (разд. 5.2). Вид фаз, которые могут сосуществовать в каких-то конкретных условиях, зависит от химической природы компонентов. Графическое представление фазового равновесия более удобно, чем составление числовых таблиц, поскольку позволяет охватить взаимные связи между всеми переменными, провести интерполяцию или экстраполяцию. Использование нескольких видов диаграмм полезно потому, что позволяет подчеркнуть зависимость от нескольких переменных. Проще всего строить двухкоординатные диаграммы, но они, конечно, ограничены изменением только двух переменных. Для того чтобы показать влияние других переменных, необходимо построить серию таких диаграмм при постоянных значениях одной или более переменных, например в виде изобар, изотерм или изоплет (исходная смесь постоянного состава). Во многих случаях целесообразно пользоваться пространственными трехмерными фазовыми диаграммами. Известным исследователем Рузебу-мом [138] — пионером систематизации данных по фазовым равновесиям — построено несколько пространственных моделей диаграмм. Прекрасные стереоскопические диаграммы (восемьдесят образцов) сделаны Хамасом и Палом [132]. [c.250]

    Изменение давления (температуры) оказывает различное, часто значительное влияние на фазовое равновесие жидкость — пар, причем обычно относительная летучесть компонентов под вакуумом возрастает [70, 71]. А. Г. Мо-рачевским рассмотрено влияние температуры (давления) на изменение состава и относительную летучесть компонентов в азеотропных и неазеотропных системах и показано, что при изменении температуры на несколько десятков градусов зависимость состава пара от температуры практически линейна и может быть рассчитана с помощью уравнений  [c.112]

    Адсорбция газов электродами и диспергированными твердыми телами происходит под влиянием физических и химических сил притяжения, действующих на поверхности этих тел. Подобным же образом, если раствор привести в контакт с твердым телом, в случае инертного растворителя возможна адсорбция растворенного вещества. К силам, ответственным за физическую адсорбцию, относятся дисперсионные (лондоновские) силы, короткодействующее отталкивание и дипольные силы в твердых телах теплота реакции имеет тот же порядок величины, что и теплота конденсации газов, т.е. приблизительно от 1 до 10 ккал моль . В случае хемосорбции происходит переход электронов между твердым телом и адсорбированным слоем, в котором принимают участие силы валентности, и теплота этого процесса фавнима с теплотой химических реаидда (10-100 ккал моль 1). Физическая адсорбция обратима, тогда как химическая необратима. Как в случае адсорбции газа, так и в случае адсорбции из раствора количество адсорбированного вещества на грамм твердого тела зависит от природы адсорбента и адсорбата, условий равновесия, включая температуру, давление, концентрацию. Физическая адсорбция газов на твердых телах максимальна вблизи точки кипения адсорбатов. Это обстоятельство широко используется для измерения поверхности и структуры пор в электродах. Химическая адсорбция в большинстве случаев происходит при таких значениях температуры, давления и соотношениях адсорбата и твердого тела, при которых можно ожидать начала химической реакции между адсорбатом и поверхностью твердого тела. Согласно Зммету [1], "химическая адсорбция имеет место в процессе посадки водорода на металлы, азота на поверх- [c.303]

    Влияние температуры на выходы ацетилена и этилена уже обсуждалось в разделе Равновесие . Сторч [87] пытался связать конверсию до ацетилена и этилена со средним парциальным давлением метана произведение среднего парциального давления метана на величину конверсии до ацетилена и этилена представлено в виде константы, обладающей размерностью давления и являющейся функцией температуры. Эта константа бьиЕа рассчитана для данных, приведенных в табл, 4. Было рассчитано среднее парциальное давление метана рсщ при условии, что разло-жепие метапа происходит согласно уравнепию (3)  [c.68]

    Влияние на растворимость внешних условий. Поскольку растворнмосгь характеризует истинное равновесие, для определения влияния температуры и давления на растворимость можно воспользоваться принципом Ле Шателье характер действия Тир будет определяться соответственно знаком ДЯр и ДУ р, а его величина — их абсолютным значением. [c.236]

    Большинство систем природного газа находится при давлении сходимости 210,9—351,6 кгс/см2. Для таких систем при давлении в пих, равном 70,3— 84,4 кгс/см2, влияние давления сходимости на величину константы равновесия номинально, особенно для расчетов процесса обычной сепарации. В табл. 4 представлены некоторые значения константы равновесия К для системы природный газ—нефть [26], которые необходимы для таких расчетов. Табл. 4 составлена на основании данных Винна, Катца, Гачмуса. Этими данными удобно пользоваться при обычных расчетах. Графики зависимости констант равновесия углеводородов от давления при температурах 26,7 и 37,8° С, построенные по данным этой таблицы, представлены на рис. 35. [c.49]

    Шапиро [60] привел формулы для расчета процесса разделения бинарных смесей с малым содержанием менее летучего компонента, а также для расчета почти азеотропных смесей. В качестве примера проведен расчет процессов разделения смесей вода — этиловый эфир уксусной кислоты (1,75%), бензол —толуол (4%) и этанол — вода (11%). На примере разделения смеси 1,3-бутадиена — 1-бутен азеотропной ректификацией с метиламином Хунсманн [61а] указывает последовательность расчета азеотропной колонны. Сначала исследуют фазовое равновесие двух- или трехкомпонентных систем в технически важной области давлений, результат представляют рядом уравнений и проводят последовательный расчет от нижней тарелки к верхней тарелке. Влияние температуры, а также избытка амина подтверждается вычислениями. Результаты расчетов подтверждены опытами для условий ректификации на маленькой колонне получилось весьма удовлетворительное согласие. [c.313]

    Смещение равновесия под влиянием изменения давления определяется изменением объема, которое происходит в процессе реакции. Для газовых реакций изменение объема можно определить, принимая во внимание, что молярные объемы различных газов при одинаковых условиях также одинаковы. Таким образом, если реакция идет с уменьшением числа молей (реакция соединения), то ее течение сопровождается уменьшением объема. В тоже время повышение давления при постоянной температуре и постоянных количествах реагирующих веществ осуществляется посредством сжатия системы, т. е. уменьшения ее объема. При этом, очевидно, увеличиваются концентрации всех составляющих систему веществ. Изменение концентрации веществ сильнее сказывается на скорости той из обратимых реакций, когорая идег с уменьшением числа молей. Следовательно, при увеличении давления равновесие сментается в направлении реакции, идущей с уменьшением числа молекул, и, наоборот, понижение давления вызывает смешение равновесия в сторону реакции с увеличением числа молекул. Значительные изменения объема могут происходить только в реакциях, в которых участвуют газы, т. е. когда хотя бы одно нз [c.103]

    В соответствии с правилом фаз Гиббса двухкомпопентпая система (ге = 2), состоящая из двух жидких и одной паровой фаз (N = 3), в условиях равновесия имеет только одну степень свободы L = I. Это означает, что из параметров, характеризующих состояние систомы (температуры, давления, состава паровой фазы), только один параметр может быть выбран произвольно (соотношение между количествами жидких фаз не оказывает влияния на состояние равновесия). [c.71]

    Как уже отмечалось, температура, давление , концентрации реагентов и др. существенно влияют на скорость процесса и на состояние равновесия системы. Поэтому если при повышении температуры величина Кр уменьшается, а скорость реакции возрастаег, без дополнительного расчета скоростей нельзя предсказать суммарное действие изменения температуры на практическую степень превращения продуктов реакции. Аналогичная ситуация может сложиться при повышении давления с ростом давления растет концентрация, поэтому в большинстве случаев увеличивается скорость реакции. Но если процесс протекает с увеличением объема, то неизвестно, какой будет общий итог. В таких случаях необходимо рассмотреть конкурентное влияние кинетических и термодинамических факторов на протекание реакции и найти оптимальные значения температуры, давления и других параметров. [c.12]

    Изменение размеров дисперсных частиц оказывает влияние иа показатели фазового перехода (перегрев, переохлаждение, Т кпп, Тпл). В процессе фазового перехода при заданном давлении различают две температуры первая Тгт п, при которой начинается фазовый переход, для случая Гщгп и вторая Г тах, при которой он прекращается, — Гтах. Процесс кипения происходит тем интенсивнее, чем больше перегрев Тп—7 rmax), а процесс конденсации — чем больше переохлаждение (Гк—Г тах). Температура пара в пузырьке должна равняться температуре окружающей жидкости 7 ж, т. е. она находится в равновесии с температурой перегретой жидкости (7 ж = 7 п).В результате перегрева в пузырьке возрастает давление pi = p+Ap. [c.120]


Смотреть страницы где упоминается термин Равновесие влияние температуры и давлени: [c.25]    [c.92]    [c.377]    [c.83]    [c.143]    [c.251]    [c.13]   
Основы общей химии Т 1 (1965) -- [ c.133 ]

Основы общей химии том №1 (1965) -- [ c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесие влияние температур



© 2024 chem21.info Реклама на сайте