Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фтористый водород как катализатор изомеризации

    Кислые галогениды Из них наиболее активны и наиболее широко применяются хлористый и бромистый алюминий. К этому же классу относятся перечисленные ниже катализаторы. Фтористый бор ВРз, применяемый в сочетании с большим количеством фтористого водорода для изомеризации и-бутана, к-пентана и к-гептана при 32—85° [104] и полиметилбензолов при 20—121° [121, 160]. [c.49]

    Каталитическое действие галоидных солей алюминия и фтористых соединений, а также механизм изомерных превращений гомологов ароматических углеводородов g подробно рассмотрены в монографиях [3, 4]. Галоидные соли алюминия в промышленных установках изомеризации применения не нашли. Это объясняется их высокой коррозионной агрессивностью в присутствии влаги и сложностью регенерации. Применение в качестве катализатора фтористого водорода в смеси с трехфтористым бором позволило разработать эффективный процесс изомеризации. Однако наибольшее распространение в промышленной практике получили катализаторы на основе окиси алюминия и алюмосиликатов. [c.152]


    Комплекс установок изомеризации при использовании в качестве катализатора смеси НР -]-ВРз имеет определенные преимущества. Однако чрезвычайно высокая коррозионная агрессивность, а также токсичность фтористого водорода и трехфтористого бора затрудняют промышленную реализацию такого процесса, и в настоящее время в эксплуатации находится всего один комплекс установок с использованием смеси НР -I-BP3. [c.202]

    Следовательно, тот катализатор, который способен активировать парафины, пригоден для получения алкилата с сильной изомеризацией и перераспределением в продуктах реакции. С практической точки зрения это приводит к алкилатам с низким октановым числом, более широким интервалом кипения (особенно в сторону вышекипящих фракций) и к большему расходу катализатора и изобутапа. Для практического применения подходящую активность имеют безводный фтористый водород и концентрированная серная кислота. [c.36]

    Алканы, особенно изоалканы, взаимодействуя с алкенами в присутствии таких катализаторов, как галогениды алюминия, трехфтористый бор, фтористый водород и серная кислота, дают высшие члены ряда. Каталитическое алкилирование, таким образом, является методом получения топлив с высокими октановыми числами из некоторых газообразных низкомолекулярных алканов, образующихся в процессе переработки нефти. Как видно из предыдущего, изоалканы, необходимые для реакции алкилирования, могут быть легко получены с помощью процессов изомеризации. Так, изобутан, имеющий наибольшее промышленное значение как алкилиру-ющий реагент, получают изомеризацией н-бутана. Олефины, необходимые для каталитического алкилирования, например пропен и бутен, являются побочными продуктами другого процесса переработки нефти — каталитического крекинга. Алкилирование приводит к довольно сложным смесям продуктов. Так, например, алкилирование нзобутана пропеном в присутствии фтористого водорода при 40°С дает следующие продукты пропан, 2,3-диметилпентан, 2,4-ди-метилпентан, 2,2,4- и 2,3,4-триметилпентаны, 2,2,3- и 2,3,3-триэтил-пентаны. Продукт реакции является, таким образом, смесью высо-коразветвленных алканов, обладающих высокими октановыми числами. Реакция представляет собой цепной процесс, инициированный протонированием олефина фтористым водородом. Изопропил-катион отрывает гидрид-ион от изобутана, давая грег-бутил-катион, который присоединяется к пропену. Образующийся при этом диметил-пентил-катион, может претерпевать внутримолекулярную перегруппировку, давая изомерные катионы, которые превращаются в диме-тилпентаны за счет отрыва гидрид-иона. Продукты состава Сз образуются в результате взаимодействия изобутена, образующегося путем элиминирования протона из грег-бутил-катиона, с пропеном. [c.157]


    В качестве катализаторов изомеризации триметилбензолов предложены платина на окиси алюминия, трехфтористый бор на окиси алюминия и смесь фтористого водорода и трехфтористого бора. Условия и результаты изомеризации на хлорированном алюмоплатиновом катализаторе технического псевдокумола приведены ниже [19]  [c.219]

    Изомеризация положения. В присутствии таких катализаторов, как хлористый алюминий — хлористый водород, фтористый бор — фтористый водород, фосфорная кислота и алюмосиликат, полиалкилбензолы могут подвергаться изомеризации положения. Эта реакция часто сопровождается /п./)анс-алкилированием. [c.104]

    Как видно из сказанного выше, все виды ксилолов отличаются высоким содержанием л-изомера, представляющего наименьшую ценность. Поэтому были разработаны многочисленные процессы каталитической изомеризации л-ксилола. В качестве катализаторов используют окислы металлов, алюмосиликаты, фтористый водород и фтористый бор [17]. Особый интерес представляет применение цеолитных катализаторов, позволяющих вести изомеризацию в жидкой фазе при 200—260 °С с выходом продуктов изомеризации 95—98% [21]. В ходе изомеризации образуется равновесная смесь, содержащая 24% п-ксилола, 55% л-ксилола и 21% [c.120]

    Реакции алкилирования, кроме того, могут катализироваться сильными кислотами типа фтористого водорода, серной кислоты, сульфоновых и фосфорных кислот, в присутствии этих несомненно кислотных катализаторов протекают многие реакции изомеризации, и поэтому они широко применяются в нефтяной промышленности для проведения перегруппировок. В присутствии хлоридов металлов в качестве катализаторов изомеризация протекает легче с галоидными солями алюминия, чем с галоидными солями железа или галлия, и поэтому последним двум катализаторам отдают предпочтение при исследовании механизма реакции. [c.80]

    Реакция изомеризации предельных углеводородов принадлежит к числу низкотемпературных реакций. В табл. 33 помещены данные по изменению свободной энергии при изомерных превращениях к-бутана и к-пентана, а в табл. 34 — вычисленные по этим данным равновесные концентрации изомеров. Приведенные цифры позволяют сделать вывод о том, что для превращения к-бутана желательна температура не выше 100°, к-пентана — от 100 до 150° и изопентана — ниже 100°. Скорость изомеризации при этих температурах настолько незначительна, что необходимо применение активных катализаторов. К числу их можно отнести хлористый и бромистый алюминий, фтористый водород и некоторые другие. Практическое применение получил хлористый алюминий, который позволяет осуществить процесс изомеризации к-бутана и к-пентана при 100—150° с удовлетворительной скоростью. Однако превращение изопентана в неопентан в этих условиях не наблюдается. [c.303]

    Изомеризация. грег-Бутилат калия. Ацетиленов и алленов фтористый водород—бора трифторид. Диенов Дихлормалеиновый ангидрид. Дитерпе-нов Палладиевые катализаторы. Оксаспиропентана Лития иодид Олефинов трег-Бутилат калия. Лития дифенилфосфид. Лития фосфат. Медь хлористая. Тиофенол — азодиизобутиронитрил. [c.665]

    Изомеризация ароматических углеводородов в жидком фтористом водороде сильно ускоряется при введении в систему трехфтористого бора. О скорости изомерных превращений ксилолов в присутствии этого катализатора можно судить по данным Мак-Коли и Лина [28], приве- денным в табл. 11. [c.18]

    Фтористый водород имеет целый ряд преимуществ перед другими катализаторами [1,2]. Опыты проводили в следующем порядке орто-б/иор-бутилфенол смешивали в стальном реакторе с четыреххлористым углеродом в весовом соотношении 1 3, затем в реактор при перемешивании подавали 96—98%-ный фтористый водород в количестве 3 молей на 1 моль ортоизомера. Реакция изомеризации проходила при комнатной температуре и атмосферном [c.51]

    Изомерный состав алкилбензола частично определяется изомерным составом олефина или хлорпарафина, используемого для алкилирования бензола, однако главную роль играют условия алкилирования и природа катализатора. Фтористый водород вызывает изомеризацию олефинов, а А1С1з способен изоме-ризовать олефины, хлорпарафины и полученные алкилбензолы. Степень изомеризации этих соединений можно варьировать, подбирая условия реакции. Так, содержание 2-фенилдодекана в про- [c.524]

    Изомеризация и дезалкилирование протекают и на окиси алюминия, активированной газообразным хлористым водородом. Из крезоловой фракции (ДАВ 6) получено в продуктах реакции до 20%, а при рециркуляции до 52% фенола [10]. Можно предполагать, что хорошим каталитическим действием будет обладать окись алюминия, активированная фтористым водородом [14]. Изомеризация протекает также под действием алюмосиликатных контактных катализаторов [15]. Наилучшие результаты были достигнуты при температуре 380°, после прибавления 20% нара и нри объемной скорости 0,5 . При этих условиях дезалкнлиро-валось 20% алкилфенолов и 15% изомеризовалось часть перешла в газообразные продукты, а из части образовалась смола. У крезолов наступало нерераспределение метильных групп в эквивалентных количествах образовались фенол и ксиленолы [5]. [c.361]


    Под влиянием смеси трехфтористого бора и изопропилфторида различные жидкие парафины с разветвленной структурой претерпевали изомеризацию наряду с незначительным диспронорционированием [70]. Катализатор, состоящий из фтористого бора и фтористого водорода [32], также эффективен для превращения н-бутана в изобутан при условии, что в качестве инициатора реакции присутствовал олефин. Этот же катализатор вызывает изомеризацию и диспропорционирование н-пентана и н-гептана. [c.42]

    Катализаторами изомеризации олефинов в растворах являются комплексы ВРз (с фтористым водородом, диэтиловым эфиром, водой), сильные органические кислоты (хлор-, фтор- и этансульфоно вая), галогениды Ре, А1, Pd, НИ с кислотными свойствами. Как правило, эти катализаторы активируют процессы цис-транс-шош риза-ции, миграции двойной связи и перемещения алкильных групп по углеродной цепи без изменения длины цепи. [c.89]

    Изомеризующую активность окиси алюминия можно значительно повысить добавками фтора [18], хлористого [11], бромистого и фтористого водорода [13] (табл. 43), серной, фосфорной, борной, муравьиной и других кислот [19, 20]. Обработка окиси алюминия фтором (0,36%) ускоряет скелетную изомеризацию [18] содержание изобутена в фракции С4 при 400 °С и объемной скорости подачи сырья 500 ч составляет 23,6%, а степень превращения бутена-1 в побочные продукты не превышает 6,4%. При увеличении содержания фтора в катализаторе до 5% содержание йзо-бутена в фракции С4 повысилось до 36,4%, однако степень превращения бутена-1 в побочные продукты крекинга и полимеризации увеличилась до 89,6%. При обработке окиси алюминия хлористым водородом (см. табл. 42) образуется мало побочных продуктов и заметно увеличивается выход изобутена (при 400 °С от 15,5% на АЬОз до 28,8% на АЬ0з+НС1). [c.147]

    Разработаны также процессы жидкофазной изомеризации. Так, в процессе фирмы Mobil hemi al (США) изомеризация проводится в жидкой фазе при 200—260 °С и 2,1 МПа над цеолитным катализатором [156]. В процессе фирмы Ниппон Гасу Кагаку (Япония) катализатором изомеризации служит смесь фтористого водорода и трехфтористого бора. Процесс осуществляется в жидкой фазе при 100°С и 3 МПа [159]. Отличительной особенностью лроцесса является то, что сырьем здесь служит почти чистый Л1-КСИЛ0Л. Это позволяет значительно уменьщить мощность установки изомеризации и выделения целевых продуктов, но требует сооружения специальной установки по выделению ж-ксилола. Ком-бинация установок изомеризации по способу фирмы Ниппон Гасу Кагаку и выделения Л1-ксилола методом экстракции с использованием того же реагента — комплекса фтористого водорода с трех-фтористым бором делает процесс в целом весьма экономичным. Недостатком, сдерживающим щирокое распространение данного способа, является высокая коррозионная агрессивность и токсичность фтористого водорода и трехфтористого бора. Основные показатели различных процессов изомеризации приведены в табл. 35. [c.197]

    Применение для изомеризации триме-тллбензолов смеси фтористого водорода и трехфтористого бора с целью получения мезитилена основано на каталитической активности HF+ BFg и на избирательной растворимости мезитилена в фазе, обогащенной катализатором. Изомеризацию триметилбензолов проводят в йидкой фазе. Реакционная смесь состоит из верхнего— углеводородного слоя и нижнего — кислотного. В верхнем слое из углеводородов, в которых растворен фтористый водород и трехфтористый бор, псевдокумол и гемимеллитол изомеризуются в мезитилен, который переходит в нижний слой. Это вызвано образованием эквимолекулярного соединения мезитилена с трехфтористым бором, которое растворяется во фтористом водороде. Образование эквимолекулярного соединения мезитилена было показано при рассмотрении кривых давления насыщенных паров метилбензолов со смесью HF +BF3 (см. рис. 3.45 на стр. 133). Таким образом, в соответствующих условиях псевдокумол и гемимеллитол удается почти полностью изо-меризовать в мезитилен. Подробно реакция изомеризации этого тина рассмотрена на примере превращения диметилбензолов в л4-кси-лол (см. стр. 133). [c.220]

    Изомеризация алкенов протекает при контакте с различными кислотными катализаторами органическими кислотами, как moho-, ди- или три-хлоруксусная или бензолсульфоновая минеральными кислотами, как плавиковая, хлорная, серная, фосфорная и кремнийфосфорная солями кислотного характера, например бисульфатом калия галогенидами металлов, например хлорным железом или хлорным оловом окислами кислотного характера, как алюмосиликаты и некоторые формы окиси алюминия. Применение концентрированных кислот, например 96%-ной серной кислоты, фтористого водорода или сочетания хлористый алюминий — хлористый водород, нежелательно, так как в этом случае изомеризация в значительной степени сопровождается полимеризацией [109]. Опубликованы [21, 25] обширные обзоры литературы по изомеризации алкенов, из которых видно громадное разнообразие кислот, использующихся для этой цели. [c.85]

    Исследовались каталитические свойства многочисленных сильных кислот фтористого водорода, фтористого бора, галоидсульфоновых кислот, этансульфоновой кислоты и др. Однако ббльшая часть экспериментальных данных, используемых для выяснения механизма изомеризации насыщенных углеводородов, была получена с применением хлористого и бромистого алюминия, серной кислоты и алюмосиликатов. Поэтому рассмотрение реакций изомеризации, катализируемых сильными кислотами, будет ограничено реакциями, протекающими на перечисленных четырех катализаторах. По тем же причинам обсуждение изомеризации в присутствии гидрирующих катализаторов на кислотных носителях будет ограничено реакциями, протекающими в присутствии платины на содержащей галоид окиси алюминия, никеля на алюмосиликатах и алюмомолйбденового катализатора. [c.88]

    Алкены также являются источниками карбениевых ионов для ал-килирования, В качестве катализаторов используют протонные кислоты — серную кислоту, фосфорную кислоту и фтористый водород, а также кислоты Льюисз — BF3 и AI I3 [24], Проведенные исследования показывают, что такие факторы, как селективность и тенденция к изомеризации алкильной группы в более устойчивую структуру, аналогичны описанным для алкил галогенидов как алкилирующих агеН тов [25]. [c.234]

    Жидкий фтористый водород применяют в качестве растворителя спиртов, альдегидов, эфиров и катализатора для процессов полимеризации, изомеризации и алкилирования, в частности при синтезе высокооктановых моторных топлив. Для этих же целей в ряде случаев применяют и фтор сульфоновую кислоту и гексафторфос-форную кислоту. Значительные количества безводного газообразного и жидкого HF применяют для получения фторзамещенных органических соединений — фторуглеродов, испольауемых в качестве теплоносителей, диэлектриков, средств огнетушения, термоустойчивых смазочных веществ, а также для изготовления термо- и химически стойких пластических масс — фторопластов, — в частности тетрафторэтилена (тефлона) и проч. хлорсодержащие фторугле-роды, называемые фреонами, получили широкое распространение в качестве рабочих тел в холодильных машинах. Безводный HF [c.315]

    Гомогеннокаталитическая изомеризация алкенов. Активность протонных кислот в миграции двойной связи во внутрь углеводородной цепи стала известна после опытов А.М. Бутлерова с диизобутиленом. Такими катализаторами являются безводные серная кислота, хлористый, бромистый и фтористый водород. Гомогенными катализаторами этих реакций являются растворы кислот Льюиса галогениды алюминия, бора, цинка. Мшрация двойной связи наблюдается в присутствии солей алюминия, хрома, железа и кобальта. [c.896]

    Изомеризация парафинов. Главное практическое применение реакции изомеризации парафинов получили в нефтяной промышленности для превра-ш.ения нормального бутана в изобутан, а также для изомеризации пентановой и гексановой фракций в продукты с высоким содержанием изомеров с разветвленной цепью. Хотя сами по себе эти практические применения реакций изомеризации не представляют особого интереса для химика-органика, однако с.иедует отметить, что эти реакции протекают обратимо по уравнению первого порядка и в интервале от низких до умеренных температур (20—150°) приводят к образованию более разветвленных и более компактных молекул. Катализирующий эти превращения хлористый алюминий можно наносить на боксит или другие носители. Его можно также применять в виде илистого шлама или в растворе плавленой треххлористой сурьмы для проведения процесса в жидкой фазе. В качестве катализаторов применяют также бромистый алюминий, фтористый бор в сочетании с фтористым водородом [471] и серную кислоту. [c.162]

    В качестве катализатора изомеризации вторичных эфиров применяют кипящий раствор 10—20%-ной серной кислоты в ледяной уксусной кислоте. Этим способом осуществлена изомеризация изопропилфенилового эфира (в о-изопропилфенол) [572], а также етор-бутилмезитилового эфира [573. Катализаторами могут также служить фтористый бор [574], хлористый цинк в присутствии хлористого водорода [575, 5781 и натрий [577]. [c.179]

    Изомеризация с кислыми галогенидами. Необходимость промоторов. При обычном приготовлении и применении хлористый и бромистый алюминий являются катализаторами для изомеризации насыщенных углеводородов однако было установлено, что эти соли неэффективны в отсутствии промоторов или инициаторов. Например, чистый бромистый алюминий не действует на к-бутан [134, 218] даже при температуре до 84° [99] и в отсутствии влаги он не действует на к-гексан [87], к-гентан [87], метилциклопентан [265], циклогексан [265] и щшлопентан (217]. Чистый безводный хлористый алюминий не действует на к-бутан [218], к-пентан [78, 219], н-гексан [110], к-гептан [110], 2,2-диметилбутан [129] и 2,2,4-триметилпентан [110] при умеренных температурах. Далее, к-бутан не изомеризуется катализатором фтористый бор — фтористый водород при 50° до тех пор, пока в нем не будут содержаться следы олефина. Поэтому можно заключить, что некоторые вещества, присутствующие иногда в качестве примесей, играют значительную роль при катализе кислотными галогенидами. [c.54]

    Несколько лучшие результаты были получены в присутствии платинированной окиси алюминия, активированной фтористым водородом. Следует сразу отметить, что катализаторы на основе окиси алюминия оказались более высокотемпературными по сравнению с алюмосиликатными. Так, например, фторированная (- 1% фтора) окись алюминия, содержащая 0,5% платины, осуществляла в такой же степени изомеризацию н.гептана при 410°, как платинированный алюмосиликат при 370°. Однако, несмотря на более высокую температуру, селективность у платинированной окиси алюминия оказалась несколько выше, чем у платинированного алюмосиликата. Так, при изомеризации на этом катализаторе н.до-декана при 410° и 10 атм было получено около 50% разветвленных додеканов при общем выходе жидких продуктов 80%, в то время как на платинированном алюмосиликате уже при 350 выход не подвергшейся крекингу додекановой фракции составлял только 30%. Некоторое уменьшение удельной поверхности окиси алюминия благоприятно влияет на селективность катализаторов, приготовленных на ее основе. Однако катализатор, приготовленный из окиси алюминия с очень большим насыпным весом (0,85 г1мл) и удельной поверхностью, равной 140 м г, оказался малоактивным, так что сильное снижение удельной поверхности и уменьшение размера пор катализаторов недопустимо. [c.163]

    Толуол в отличие от соединений с более объемистыми алкильными заместителями не деметилируется в заметной степени в присутствии алюмосиликатных катализаторов при температуре 500—550° [166, 229]. Аналогично ведут себя ксилолы [170], но в случае триметилбензолов при 550° наблюдается образование небольших количеств метана [166]. Основными направлениями превращения метилбензолов под влиянием алюмосиликатов являются их изомеризация и межмолекулярное перераспределение метильных групп. Диспропорционирование ксилолов в присутствии этих катализаторов с заметной скоростью идет при температуре, близкой к 500° [227, 230]. В этих условиях достаточно активным катализатором оказалась также окись алюминия, обработанная предварительно парами фтористого водорода [229]. На окиси алюминия, не подвергавшейся подобной активации, реакция не идет. В присутствии хлористого алюминия, осажденного на угле, ксилолы быстро диспропор-ционируются при 250° [70]. [c.26]

    Таким образом, согласно современным представлениям, в отличие от существовавшей ранее точки зрения [5, 45, 248, 288] апротонные кислоты Льюиса (А1С1з, А1Вгз, ВРз) не принимают непосредственного участия в процессе изомеризации. Их роль сводится к увеличению кислотной силы среды и тем самым к повышению равновесной концентрации протонированных молекул (о-комплексов). В соответствии с этим изомеризация ароматических углеводородов может протекать и в отсутствие кислот Льюиса под влиянием сильной протонной кислоты, но в это.м случае для достижения заметной скорости превращения приходится проводить реакцию при более высокой температуре. В качестве примера можно указать на изомеризацию гомологов бензола при нагревании их с жидким фтористым водородом. Подобным же образом объясняется действие алюмосиликатных катализаторов, обладающих довольно высокой протонной кислотностью [162]. [c.44]


Смотреть страницы где упоминается термин Фтористый водород как катализатор изомеризации: [c.108]    [c.442]    [c.465]    [c.196]    [c.178]    [c.156]    [c.665]    [c.248]    [c.36]    [c.100]    [c.101]    [c.103]    [c.72]    [c.331]    [c.334]    [c.340]   
Фтор и его соединения Том 1 (1953) -- [ c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Водород фтористый

Катализаторы изомеризации

Фтористый бор как катализатор

Фтористый водород как катализатор



© 2025 chem21.info Реклама на сайте