Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель светопоглощение

    Расчет концентрации кобальта и никеля с учетом значений молярных коэффициентов светопоглощения [c.196]

    Выполнение работы. 1. Выбор светофильтров. Для выбора оптимальных светофильтров снимают кривые светопоглощения растворов соли никеля и тиоцианатного комплекса железа. Для этого в мерную колбу вместимостью 100 мл помещают 20 мл стандартного раствора железоаммонийных квасцов и доводят водой до метки (раствор I). Аликвоту объемом 10 мл раствора I помещают в мерную колбу вместимостью 50 мл, подкисляют 5 мл НС1, добавляют 5 мл раствора тиоцианата калия (аммония) и доводят до метки водой. Приготовленный раствор фотометрируют при различных светофильтрах. Затем фотометрируют неразбавленный раствор соли никеля. Полученные данные наносят на график оптическая плотность - длина волны. На основании кривых светопоглощения выбирают два светофильтра, соответствующие максимальному поглощению каждого из компонентов -соли никеля (Х ) и тиоцианатного комплекса железа (Х2). [c.168]


Таблица 2.5. Данные по светопоглощению системы никель(П) — этилендиамин, полученные методом изомолярных серий Таблица 2.5. Данные по светопоглощению <a href="/info/389844">системы никель</a>(П) — этилендиамин, <a href="/info/3912">полученные методом</a> изомолярных серий
    Выполнение работы. 1. Выбор светофильтра и построение градуировочного графика. Для выбора оптимального светофильтра снимают кривые светопоглощения растворов соли никеля и тиоцианатного комплекса железа. Для этого в мерную колбу вместимостью 100 мл помещают 20 мл стандартного раствора железоаммонийных квасцов и доводят водой до метки (раствор II). Аликвоту 10 мл раствора II помещают в мерную колбу вместимостью 50 мл, подкисляют 5 мл [c.154]

    Полученные для железа и никеля данные наносят на один график в координатах оптическая плотность - длина волны. Значения X. для каждого светофильтра приведены в описаниях соответствующих приборов. На основании кривых светопоглощения производят выбор светофильтра. Подходящим является тот участок спектра, где поглощение тиоцианатного комплекса железа является максимальным, а поглощение соли никеля незначительно. [c.155]

    Применение светофильтров расширяет возможности применения колориметрии чем уже полоса пропускания света определенной длины волны и чем ближе она к максимуму светопоглощения раствора анализируемого вещества, тем более точны результаты анализа, так как достигается более точное следование закону Бера, справедливому для монохроматического света. При этом нужно стремиться, чтобы светофильтр соответствовал также и минимуму поглощения света примесями веществ, присутствующих в растворе. Например, применяя смесь 50% ацетона и 50% воды, в которой растворены соли железа и никеля, можно устранить влияние никеля на определение железа подбором соответствующих светофильтров. [c.466]

    Определение кобальта [394] основано на измерении уменьшения светопоглощения раствора эриохромчерного А при 630 ммк (максимум поглощения), вызванного прибавлением соли кобальта и связывание.м реагента в комплекс, поглощающий при 560 ммк. Определение ведется в присутствии комплексона Н1, маскирующего 100-кратные количества никеля, цинка, свинца и кальция. Мешают кадмий, медь, барий, стронций и магний. [c.146]


    Для фотометрического анализа важно подчеркнуть следующее. Молярный- коэффициент светопоглощения е характеризует внутренние свойства вещества и не зависит от объема раствора, толщины слоя и интенсивности освещения. Поэтому величина е является наиболее важной, общепризнанной и объективной характеристикой возможной чувствительности фотометрического определения. Значения, е в области максимума для различных окрашенных соединений сильно отличаются. Так, полосы поглощения простых ионов (акво-комплексов) меди, никеля и других в видимой части спектра характеризуются низкими значениями е порядка 10. Окрашенные аммиакаты перекиси и другие простые комплексы имеют значения [c.36]

    Железо, медь, олово, никель и хром также образуют комплексы с этим реагентом но эти соединения разлагаются при энергичном встряхивании органического экстракта после добавления 10 н. соляной кислоты. Таким образом удается подавить влияние железа (до 0,2%), меди, олова, никеля и хрома (при содержании каждого из этих элементов до 0,05%). Максимум светопоглощения комплексом кобальта с 2-нитрозо-1-нафтолом наблюдается при 360 нм, но при этой длине волны реагент также сильно поглощает свет. Измеряя оптическую плотность при 530 нм, можно снизить до минимума поглощение света реагентом, а содержание свободного реагента в органическом экстракте можно снизить промывкой его разбавленным раствором гидроокиси натрия. [c.40]

    Пиридилазо)хромотроповая кислота образует с кобальтом и никелем соединения, имеющие максимальное светопоглощение при 640 нл (Со) и 570 нл (N1). Для раздельного их определения после измерения оптической плотности решают систему уравнений [7281 [c.107]

    Колориметрическое сравнение со стандартом можно также проводить другими способами или измерять светопоглощение полученного раствора в фотоколориметре с зелеными светофильтрами (Х=520 ммк) и рассчитывать содержание никеля по калибровочной кривой. [c.161]

    Простые (гидратированные) ионы слабо поглощают свет, т. е. их молярные коэффициенты поглощения невелики (см. гл. 4). Так, молярные коэффициенты поглощения хлоридов или нитратов редкоземельных элементов составляют от единиц до нескольких десятков молярные коэффициенты поглощения растворов простых солей меди, никеля и хрома (III) составляют 100—200 единиц. Таким образом, фотометрические методы, основанные на измерении собственного светопоглощения гидратированных ионов некоторых металлов, как правило, обладают малой чувствительностью. В то же время определение любого иона без предварительного проведения химической реакции имеет большие преимущества [11, 12]. Прежде всего, такие методы требуют очень мало времени для выполнения анализа. В этом случае необходимо время только для наполнения кюветы и проведения измерения. Второе преимущество состоит в том, что не требуется расходовать реактивы. Но главное достоинство метода заключается в легкости применения автоматики в контроле производства, так как в данном случае по пути движения жидкости или газа необходимо лишь установить фотоэлемент и освещать его через слой контролируемых жидкости или газа светом с определенной длиной волны. Показания фотоэлемента записывают с помощью автоматических самописцев. Так можно определять содержание окислов азота при проведении различных процессов, содержание основного компонента в ваннах никелирования, меднения или хромирования, а также многие другие компоненты, которые поглощают свет в доступной для исследования области с помощью простой аппаратуры. [c.373]

    Исследуемый формазан образует комйлеКсЫ со многими мefaллймri, но в спектральной области максимального поглощения света ионов меди и никеля светопоглощение соединений других элементов ничтожно мало или совсем отсутствует. Легкость образования медно- и никельформаза-нового комплексов, высокая чувствительность реакции позволили провести исследования процесса комплексообразования формазана с Сц2+ и N1 +. С этой целью были изучены оптимальные условия образования окрашенных соединений меди и никеля с формазаном и показана возможность их экстракции. [c.148]

    При Хэфф=496 нм (с. ф. 6) светопоглощение ро-данидного комплекса железа намного превышает светопоглощение соответствующего комплекса никеля. Для [c.148]

    Изменение свойств оксидного слоя при поляризации электрода было обнаружено при изучении пассивации никеля в кислых растворах по-тенциостатическим и эллипсометрическим методами. В активной области на поверхности электрода образуется предпассивирующий оксидный слой толщиной в несколько нанометров. При потенциале пассивации толщина этого слоя не изменяется, тогда как показатель преломления и коэффициент светопоглощения претерпевают резкое изменение. Предполагается, что оксидный слой при потенциале пассивации превращается из ионного проводника в электронный проводник. При этом диффузия ионов металла через оксидный слой становится невозможной, и процесс растворения металла прекращается. [c.369]


    Изменение свойств окисного слоя при поляризации электрода было обнаружено при изучении пассивации никеля в кислых растворах потенциостатическим и эллипсометрическим методами (Дж. Бокрис). В активной области на поверхности электрода образуется предпасси-вирующий окисный слой толщиной в несколько десятков ангстрем. При потенциале пассивации толщина этого слоя не изменяется, тогда как показатель преломления и коэффициент светопоглощения претер- [c.383]

    Молярные коэффициенты светопоглощения 8-оксихино-линатов кобальта(П) и никеля(П) в растворе хлороводородная кислота — ацетон равны при .дфф = 365 нм = 3530, = 3230. При А-зфф = 700 нм свет поглощает только оксихинолинат кобальта Есо = 429. [c.196]

    Определение кобальта в виде оксалатного комплекса [272, 546, 547, 1450]. При окислении двухвалентного кобальта двуокисью свинца в оксалатном растворе, забуференном уксусной кислотой II ацетатом аммония, образуется зеленый триоксалат-ный комплекс трехвалентного кобальта Со(С204)зЗ-. Максимум светопоглощения зеленого раствора находится при 600 ммк. 20-кратное по отношению к кобальту количество железа (П1), никеля, алюминия и 2-кратное количество хрома (1П) не мешают определению. 2-кратные количества меди и равные количества марганца значительно увеличивают величину поглощения. [c.161]

    Возможно [875] использование комплекса [Au( N)2] для пря мого спектрофотометрического определения золота в электролитах золочения. Растворы [Au( N)2] имеют максимум светопоглощения при 239 нм, закон Бера соблюдается при концентрации 35 Л1кг/л<л Аи. Не мешают 0,8 жг/л л Ni или Со(1П). При большем содержании никеля его отделяют на катионите дауэкс-50 УХ8, в фильтрате определяют золото. [c.141]

    Определение микроколичеств кобальта проводят, применяя экстракцию внутрикомплексного соединения кобальта в хлороформ, из уксуснокислой среды (pH 2,5 5). Максимальное светопоглощение экстракта оранжевого цвета наблюдается при длине волны 415 нм. Градуировочный график в области концентраций кобальта 10—50 мкг в объеме 25 мл прп толщине поглощающего слоя 5 мм имеет вид прямой линии. Молярный коэффициент погашения комплекса при Дтах — 415 нм составляет 2,9-10. Окрашенные соединения с реагентом образуют медь, железо ( I), никель (П), их разрушают кипячением с 1 М азотной кислотой после прибавления реагента. Собственную окраску железа (ill) маскируют фосфат-ионом. [c.70]

Рис. 3. Кривые светопоглощения вод[[ого раствора ди-метилглиокснма (/) и его соеди[[енин с никелем (2) Рис. 3. <a href="/info/1165738">Кривые светопоглощения</a> вод[[ого раствора ди-метилглиокснма (/) и его соеди[[енин с никелем (2)
    Соединения с альдегидами и кетона-ми. Могут представить интерес комплексы кобальта с ацетилацетоном. Трехвалентный кобальт экстрагируется ацетилацетоном в кислой среде, в то время как ионы никеля и двухвалентного кобальта не образуют экстрагирующихся соединений поэтому разделение никеля и ко- 2. Светопоглощение бальта может быть достигнуто экстрак- раствора соединения ко-цией после окисления кобальта до трех- бальта с ннтрозо-Н-солью валентного. Свойства ацетилацетонатов [c.33]

    Hз)2 6H402N0H [1433]. Реагент образует с ионами кобальта окрашенное соединение, экстрагируемое изоамиловым спиртом. Максимум светопоглощения этанольного раствора комплекса находится при 374 ммк, молярный коэффициент поглощения равен 19 680. Определение можно выполнить при содержании кобальта порядка 0,5 мкг в 1 мл органической фазы. Экстракция происходит количественно при pH 4—7. Ионы железа (Н1), меди, хрома и никеля мешают, другие обычные катионы в 100-кратном количестве по отношению к кобальту не влияют. [c.143]

    Определение с использованием этилендиамина [1066]. Бесцветный комплекс двухвалентного кобальта с этнленднамином [Со(еп)з]2+ на воздухе при рН>6 быстро окисляется до желтобурого [Со( )з]з+, окраска которого устойчива 2 часа. Кривая светопоглощения растворов комплекса имеет два максимума — при 320 и 365 ммк. При 400 ммк закон Бера выполняется в пределах концентрации от 50 до 750 мкг Со в 25 мл раствора. Определение возможно в присутствии 20-кратных количеств никеля и при равной концентрации м,еди. Катионы железа (1П), хрома и марганца образуют с этилендиамином гидроокиси, частично адсорбирующие кобальт. Другие катионы в 100— 200-кратном количестве не мешают. [c.144]

    Определение кобальта в виде комплекса с диэтилентриами-ном[1480]. Диэтилентриамин (Н2ЫСН2СН2)2МН образует с ионами кобальта при пропускании через раствор воздуха окрашенное соединение, максимум светопоглощения которого находится при 460 ммк. Комплекс устойчив при pH 1 —14. Медь, хром и марганец мешают, однако присутствие никеля допустимо, так как комплекс никеля с диэтилентриамином имеет максимум поглощения при 540 и 850 ммк. Поэтому кобальт можно определить в присутствии никеля, измеряя оптическую плотность раствора при 460 ммк и вводя поправку на содержание никеля после измерения поглощения при 850 ммк. Содержание кобальта находят по калибровочной кривой закон Бера соблюдается в пределах от 0,001 до 0,006 г-ион/л Со. [c.144]

    Максимум светопоглощения. пиридината кобальта находится при 490 —510 м.ик, а пиридината никеля — при 370 и 620 ммк. Поглощение света пиридинатом никеля при 500 ммк незначительно, и это послужило основанием для разработки спектро-фотометрическо о метода определения кобальта в присутствии никеля (а также никеля в присутствии кобальта). Содержание кобальта находят по калибровочному графику, вводя поправку на поглощение пиридината никеля. Ошибка определения кобальта при 25-кратном количестве никеля составляет около 2,57о, чувствительность определения 0,001 г-ион/л Со. [c.145]

    Сг207 " = 7 7 1. Максимум светопоглощения находится при 380 и 550 ммк. Метод пригоден для определения 10—80 мкг Со. Мешают ионы трехвалентного железа, никеля, меди, алюминия, цинка, кадмия, бария и свинца. При фотометрическом определении кобальта в форме окрашенного соединения с этилендиамин-гетрауксусной кислотой, образующегося в аммиачном растворе в присутствии Н2О2 [1320], оптическую плотность измеряют при 580 ммк. М ешают железо, титан, никель и медь. [c.146]

    Красные комплексы цинка и кадмия с ПАН экстрагируют хлороформом. Экстракт обрабатывают диэтилдитиокарбаминатом натрия при этом комплекс цинка остается без изменений, тогда как комплекс кадмия разрушается с образованием дитпокарбаминатно-го комплекса желтого цвета. На этом основан метод определения цинка и кадмия при их совместном присутствии. Метод применен для фотометрического определения цинка и кадмия в никеле [246]. Максимум светопоглощения комплекса индия с ПАН в хлороформе находится при 530 и 560 ммк, аналогичный комплекс железа (П1) имеет максимум при 525 и 775 ммк. Комплекс индия при 775 ммк совсем не поглощает, что позволяет одновременно определять индий и железо. Эти данные использованы для разработки метода определения индия в цинковых хвостах [247]. Экстракционно-фотометрический способ определения кобальта с помощью ПАН применен при анализе окиси тория [248], для определения ванадия в сталях [249] и урана в присутствии других элементов [250]. [c.247]

    Метод основан на различии pH образования пиридинроданида никеля и кобальта. Комплекс никеля экстрагируют хлороформом при pH 4,6, и экстракт фотометрируют при 320 ммк-, комплекс кобальта (после отделения никеля) извлекают гексаном из раствора с pH 5,6. Экстракт фотометрируют при 620 ммк. Пиридинроданид-ный комплекс палладия экстрагируют из слабощелочных растворов различными органичными растворителями. Максимум светопоглощения комплекса в метилизобутилкетоне находится при 395 ммк. Комплекс рутения (1П) извлекают из кислых растворов и экстракт фотометрируют при 570 ммк. На этом основан метод определения палладия и рутения. Аналогичный вариант предложен для определения платины и родия [368]. [c.254]

    Аммины кобальта (II) были изучены не только путем измерений со стеклянным электродом, но также измерением окислительно-восстановительного потенциала аммиачных растворов кобальта (II), к которым добавляли соль гексамминкобальта (III). Экспериментальные подробности этих окислительно-восстановительных измерений будут рассмотрены ниже (стр. 250), но результаты измерений использованы здесь для расчета констант системы комплексов кобальта (II). Аммины никеля исследовали не только измерением со стеклянным электродом, но также определением светопоглощения. Из полученного спектра поглощения в сочетании с константами устойчивости, найденными измерением со стеклянным электродом, можно рассчитать спектр отдельных амминовых комплексов никеля аналогично вычислению спектра отдельных ионов амминмеди (II), проведенному ранее автором [II, стр. 46]. [c.187]

    Отсюда видно, что формулы (1) и (2) не совсем отвечают экспериментальным результатам при концентрациях аммонийной соли больше 2 н., но они, однако, применимы как к растворам хлорида аммония, так и к растворам нитрата аммония до этой концентрации. В сущности такой результат неудивителен. Дело в том, что как исследования светопоглощения, проведенные Хаустоном [16], так и измерения активности хлор-иона Хасса и Еллинека [17] показывают, что в 1 н. растворах хлоридов кобальта (II) и никеля не образуются хлоро-комплексы. Только при более высоких концентрациях хлорида или при более высоких температурах будет происходить образование комплексов, которое сопровождается изменением окраски разбавленного водного раствора кобальта (II) от красного до синего и соответствующих растворов никеля — от зеленого до желтого. Наконец, можно упомянуть, что образование гидроксо-комплексов не может мешать образованию амминов, так как тенденция акво-ионов кобальта (II) и никеля к гидролизу слишком мала (указание на литературу см. табл. 9, стр. 77). [c.192]

    К определениям с экстрагированием относится определение никеля, основанное на взаимодействии диметил-глгюксимата никеля с натрийбортетрафенилом с образованием соединения, экстрагируемого органическими растворителями в экстракте фотометрируют бор по реакции с куркумином. Молярный коэффициент светопоглощения в пересчете на никель достигает уникальной величины — 360 000. Метод позволяет определять до 3-10 г никеля [c.49]

    Влияние палладия на дальнейшее определение никеля нами не изучалось, так как доля его в загрязнениях особочистых материалов ничтожна по сравнению с долей никеля. Количества кобальта, соизмеримые с количеством никеля, не представляют опасности для дальнейшего определения никеля, поскольку диоксиматные комплексы кобальта обладают малыми молярными коэффициентами поглощения в области максимального светопоглощения никеля. Влияние меди обычно устраняется реэкстракцией ее комплексного соединения аммиаком. [c.104]

    Теперь можно вычислить исправленное светопоглощение раствора с номером /, соответствующим Хеп 0.1—0,9 при длине волны , из значений Л набл и Л теор, рассчитанного из уравнения (2.18). Результаты приведены в табл. 2.6 и на рис. 2.7. Сразу же становится ясным, что найденная величина Хтях сильно зависит от длины волны и наблюдаются все максимумы, соответствующие комплексам 1 1, 1 2 и 1 3. Это объясняется тем, что наибольшее координационное число никеля (И) равно шести и, следовательно, он взаимодействует с этилендиамином, образуя последовательно три комплекса состава 1 1, [c.46]

    Внутрйкомплексные соединения многих металлов интенсивно окрашены и имеют значения молярных коэффициентов светопоглощения в органических растворителях до 1-10 . Это обстоятельство позволило разработать большое количество экстракционно-фотометрических методов определения малых количеств (до 1-10 %) ионов меди, серебра, цинка, железа, алюминия, никеля, кобальта и других элементов в самых разнообразных образцах ([37, 101, 114, Н5, 117—120, 129—133] см. также стр. 142). [c.77]

    Таким способом можно определять нанограммовые количества (1 10" г) никеля, меди, железа, кобальта и палладия, используя хелатные соединения бора [190]. При взаимодействии внутрикомплексных соединений определяемых металлов с органическими соединениями бора получаются смешанные внутрйкомплексные соединения, хорошо экстрагируемые органическими растворителями. После разрушения смешанного хелатного комплекса определяют стехиометрическое. (чаще удвоенное по отношению к определяемому иону металла) количество бора по очень чувствительной реакции с куркумином. Например, при определении никеля путем взаимодействия диметилглиоксимина никеля н тетрафенилбората натрия молярный коэффициент светопоглощения в пересчете на никель достигает уникальной величины — 360 000 [190]. [c.143]


Смотреть страницы где упоминается термин Никель светопоглощение: [c.73]    [c.23]    [c.389]    [c.389]    [c.89]    [c.204]    [c.389]    [c.389]    [c.204]    [c.210]    [c.46]    [c.140]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Светопоглощение



© 2025 chem21.info Реклама на сайте