Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

восстановление олова кадмия

    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]


    Редукторы применяют для восстановления ионов железа, титана, ванадия, молибдена, олова и др. При этом металлический висмут в сернокислом растворе восстанавливает Ре до Ре , У " " до У " ", Мо до Мо и не реагирует с Т " ". Металлический цинк и кадмий восстанавливают Ре до Ре , Т до Т , Мо до Мо , до АУ и V - до [c.393]

    Электровосстановление малеиновой кислоты в среде серной кислоты исследовано на катодах из меди, цинка, кадмия, ртути, алюминия, олова, свинца, висмута, железа, кобальта и никеля. Наибольший выход янтарной кислоты (95—100%) получен на ртутном катоде и наименьший (29—37%) на висмутовом и кобальтовом катодах [18]. Кинетика восстановления малеиновой кислоты на капельном ртутном катоде в кислых растворах подробно исследована в работах [19—21]. [c.53]

    При осаждении меди в виде роданида меди после восстановления сернистой кислотой в разбавленном сернокислом или солянокислом растворе получается удовлетворительное отделение меди от висмута и кадмия (из группы меди), и от сурьмы, олова и мышьяка (из группы мышьяка). Если присутствуют элементы, соли которых легко гидролизуются, например висмут, сурьма и олово, полезно прибавить винную кислоту. Метод этот часто применяется, когда нужно определить одну медь. Если другие элементы также должны быть определены, то лучше последовательно отделять все мешаюш ие элементы, как описано выше (см. Отделение ртути, серебра, висмута ). [c.95]

    По степени трудности восстановления ионов на катоде металлы условно можно разделить на три группы. К первой группе относятся металлы, восстанавливающиеся с низким перенапряжением (олово, кадмий, цинк, медь, серебро и др.). Выделение таких металлов происходит в основном на активных участках катода без заметной химической поляризации. [c.36]

    Промотированные металлы или окислы металлов, например восстановленная медь, олово, кадмий или свинец и в некоторых случаях железо или никель, содержащие такие активаторы, как марганец, магний, цинк или окись хрома хроматы и хромиты особенно пригодны для процессов восстановления, например медь с хромовокислым аммонием при нагревании превращается в хромит меди перед употреблением он восстанавливается обработкой водородом [c.257]

    Для катодного восстановления органических веществ применяют электроды двух типов типа платины и типа ртути. Электроды первого типа (платиновые металлы, в щелочных растворах— никель) характеризуются низкой поляризацией при выделении водорода их потенциал в отрицательную сторону можно сдвинуть не более чем на —0,3 В (о. в. э). Эти электроды хорошо адсорбируют водород, что способствует протеканию реакций восстановления по химическому механизму. При действии некоторых примесей (ядов) они легко теряют свою активность. На электродах типа ртути (также свинец, олово, кадмий и т. д.) из-за малой скорости выделения водорода можно реализовать значительно более отрицательные потенциалы — примерно до [c.376]


    А. Т. Ваграмян и сотрудники [14, 15] считают, что одной из основных трудностей восстановления ионов металлов на твердой поверхности является склонность металлов к пассивированию. По степени трудности восстановления ионов они делят все металлы на три группы. К первой группе относятся металлы, выделяющиеся на катоде с низким перенапряжением (олово, кадмий, цинк, медь, серебро и др.). Для металлов этой группы характерна малая скорость пассивации и электроосаждение на активных участках катода. Металлы, выделяемые с большим перенапряжением, объединяются во вторую группу (железо, никель, кобальт, хром, марганец и др.). Эти металлы отличаются большой склонностью к пассивированию. Считается, что возникновение на поверхности электрода пленки из чужеродных частиц затрудняет дальнейший разряд ионов. К третьей группе относятся металлы, осадить которые из водных растворов не удается (молибден, вольфрам, уран, ниобий, титан, тантал). Большая реакционная способность этих металлов приводит к образованию окисных соединений, на поверхности которых, по мнению А. Т. Баграмяна и его [c.55]

    Большой интерес представляет вопрос стереохимических превращений при электрохимическом восстановлении бутин-2-диола-1,4. Исследовано электрохимическое восстановление бутин-2-диола-1,4 на различных катодах. При изучении продуктов восстановления спектральным методом найдено, что на катодах из серебра, меди, никеля, кобальта, платиновой и палладиевой черни, железа и медно-серебряном катоде образуется г с-бутен-2-диол-1,4. На катодах из свинца, олова, кадмия или амальгамированной меди - продуктом электрохимического восстановления является транс-бу-тен-2-диол-1,4. На цинковом гладком катоде получается транс-изомер, а на губчатом цинке — 1 ыс-бутен-2-диол-1,4. Это, вероятно, связано с различными механизмами электрохимического восстановления бутин-2 Диола-1,4 на катодах из разных материалов. [c.145]

    Восстановление углем (коксом) проводят обычно тогда, когда получаемые металлы совсем не образуют карбидов или образуют непрочные карбиды (соединения с углеродом) таковы железо и многие цветные металлы — медь, цинк, кадмий, германий, олово, свинец и др. [c.232]

    К важнейшим восстановителям относятся различные металлы — алюминий, железо, цинк, кадмий, олово, применяемые в виде палочек, стружек, опилок, зернистого порошка. Степень их измельчения влияет на скорость восстановления. Применяют также амальгамы натрия, кадмия, свинца, висмута и других металлов, сплавы, например сплав [c.152]

    Для восстановления молибдена жидкими амальгамами цинка, олова или кадмия применяли обычные делительные воронки [1424]. [c.204]

    Металлы и амальгамы металлов. Наиболее универсальным методом восстановления вещества до определенной степени окисления является, по-видимому, обработка раствора пробы металлом. В качестве восстановителей используют цинк, алюминий, кадмий, серебро, ртуть, медь, никель, висмут, свинец, олово и железо. [c.317]

    Определение в виде металлической рту и. В описываемом ниже методе ртуть взвешивают в виде металла после, восстановления ее хлоридом олова (II) в солянокислом растворе. По данным авторов железо, кадмий, висмут, медь, свинец, сурьма, нитраты и сульфаты определению не мешают. [c.251]

    Рис. 10.2 можно использовать для выбора потенциала при осаждении нужного металла из смеси. Так, например, при потенциале катода— 0,6 в относительно НКЭ будет происходить осаждение олова без помех со стороны таллия и кадмия. При помощи электролиза концентрацию олова можно снизить до р5п=7,4 (4-10 М), в то время как ион таллия (I) не может быть восстановлен, если концентрация таллия ниже 0,8 М (рТ1 = 0,Г), а ион кадмия совсем не может быть восстановлен. Водород в данном случае выделится не может, так как его перенапряжение на покрытом оловом аноде слишком велико. [c.186]

    Дисперсии натрия в эфире, толуоле или тетрагидрофуране применяются для восстановления многих метал лов из их галогенидов Получаемые таким способом порошки кадмия, хрома, кобальта, меди, железа, мар ганца молибдена никеля, алюминия, олова, цинка, индий, магния и других металлов обладают высокой химической активностью и пирофорны Смеси натрия с галогенидами металлов чувствительны к удару При этом хлорид и бромид железа(П1), бромид и иодид железа(И) хлорид и бром ид кобальта(П) вызывают очень сильные взрывы Сильные взрывы дают смеси натрия с галогенидами алюминия, сурьмы, мышьяка висмута, меди (И), ртути, серебра, свинца, а также с пентахлоридом ванадия Хлорид алюминия, галогениды меди(1) кадмия, никеля дают слабые взрывы Смеси натрия с галогенидами щелочных и щелочноземельных металлов не взрывоопасны [c.241]

    Этим способом получается функция ао( ) для разнообразных систем последовательных комплексов меди(П) [13, 16], цинка [11, 16, 48—50, 58, 71], кадмия [10, 16, 22, 29, 37, 71], свин-ца(П) [4, 16, 17, 25, 26, 28, 37, 38, 53], олова[П] [59] и таллия(1) [16, 38, 53] с неорганическими и органическими лигандами. Однако нельзя предполагать, что эти катионы обратимо восста-навливаются в присутствии всех лигандов. Так, свинец(П) восстанавливается необратимо в иодидных растворах [30], хотя его восстановление обратимо в хлоридных 25] и бромидных [26] растворах. Данные для систем никеля(II) с пиридином [72] и [c.222]


    Некоторые исследователи предлагают для восстановления катализаторов наносить тонкодиспергированные металлы (медь, серебро, золото, цинк, кадмий, ртуть, олово или металлы подгруппы Ш Б и 1У Б периодической системы) в количестве не более 0,5 % вес, 79.  [c.60]

    Значения константы а, приведенные в табл. 4, показывают, что перенапряжение водорода является наибольшим у таких металлов, как свинец, кадмий, цинк, таллий и олово, и наименьшим — у платины, вольфрама, кобальта и никеля. Промежуточное положение занимают железо, серебро и медь. Следовательно, на первых металлах катодная реакция восстановления водорода идет с большими затруднениями. На платине же и никеле разряд ионов водорода происходит гораздо легче. Каждый лежащий ниже в таблице металл, будучи введенным в состав впереди стоящего металла, усиливает коррозию основного металла, если только не возникнет новая фаза, обладающая повышенным перенапряжением. Вследствие пониженного перенапряжения водорода на примеси реакция восстановления водорода будет в основном протекать на этой примеси и притом со значительной скоростью, это и вызовет ускорение сопряженной анодной реакции ионизации металла, т. е. приведет к разрушению металлической структуры. [c.18]

    Так, в кислой среде метилртуть хлоридом олова не восстанавливае в щелочной среде — на 67 %. Добавление к восстановителю ионов ме повышает степень восстановления метилртути до 82 %, а при предвари ном добавлении к анализируемому раствору комбинированного рас окислителя (персульфата калия) и катализатора (ионов меди (П)) в< новление метилрути достигает 100 % [360]. Эффективность восстанов органических форм ртути зависит от концентрации щелочи и хлорид ва, а также от соотношения анализируемой пробы и восстановителя 602, 607]. Для достижения полноты восстановления ртутьорганическу динений используют катализаторы — соли золота, серебра, кадмия, к та, палладия. Наиболее эффективны соли кадмия [487]. Впервые ком рованный восстановитель хлорид олова — кадмий (II) в щелочной ср( пользован при определении метилртути в биологических образцах Магоса) [462]. В дальнейшем его использовали для анализа как биоло [c.98]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Для восстановления железа следует применять висмутовый редуктор или висмутовую амальгаму,так как в растворе присутствует титан более энергичные воссано-вители (кадмий, цинк) восстанавливают не только железо, но также титан. При йодометрическом определении железа, а также прп восстановлении хлористым оловом, присутствие титана не имеет значения. [c.467]

    Цементацию металлическим цинком применяют для восстановления ионов индия и отделения их от ионов алюминия, которые остаются в растворе. На металлической меди осаждают сурьму, которую можно таким способом отделить от ионоь олова и свинца. Металлическим железом разделяют медь и кадмий и т. д. Цементацию применяют также как метод концентрирования. [c.25]

    Перенапряжение водорода на электроде играет важную роль при восстановлении в протонных растворителях, так как оно определяет, насколько отрицательным может быть значение потенциала, при котором еще не происходит восстановления среды— процесса, конкурирующего с восстановлением исходного вещества. Металлы обычно делят на группы с низким, средним и высоким перенапряжением водорода. К первой ipynne относится платинированная платина, ко второй — гладкая платина, никель, медь, к третьей — олово, снинец, кадмий, ртуть. Пере-напряжеине водорода на различных материалах зависит от плотности тока, при которой его измеряют. [c.182]

    Известно, что одни катализаторы преимущественно пригодны для введения водорода, например в органические соединения (г и д-рогенизация, восстановление) и они же нужны для отщепления водорода, например при переходе гидроароматических соединений в ароматические. Таковы металлы платиновой группы, никель, кобальт, железо, медь. Меньшую роль играют другие металлы, например серебро, кадмий, олово. Палладий и платина дают особенно выдающийся эффект в гидрогенизации, так как их препараты можно применять с успехом для обработки водородом в жидкой среде и при обыкновенной температуре. [c.480]

    Полярографические методы используют для определения примесей Си [549, 552], Sn [172, 490, 549, 552, 1123], d [549, 552], Pb [490, 549, 551, 552]. Медь и кадмий определяют на аммонийноаммиачной фоне, олово — на фоне 6 М H I (потенциал восстановления от —0,4 до —0,6 в отн. Hg-электрода), свинец — на фоне кислого насыш енного раствора Na I (при том же потенциале восстановления) [549]. Для отделения от больших количеств ионов Сг(ПТ) и r(VI), мешающих определению указанных элементов, а также для отделения их друг от друга используют хроматографические методы [172], осаждение купфероном [11231 и сульфидов [549] на различных коллекторах. [c.174]

    Определение нонов родин. Продукты коррозии снимают 0,5—1 н. раствором соляной кислоты. На бумагу наносят каплю анализируемого раствора, затем каплю раствора хлористого олова. При наличии ионов родия появляется желтое пятно продуктов восстановления родия. Для обнаружения ионов родия в присутствии золота, платины, палладия на стекло помещают две-три капли анализируемого раствора и крупинку сульфида кадмия, перемешивают в течение 2—3 мин. Затем на бумагу наносят каплю фильтрата н четыре-пять капель воды. Хроматограмму обрабатывают раствором хлористого олова. При наличии нонов родия появляется желтая зона продуктов его восстановлеиня. [c.249]

    Альфонси [9—13] провел широкое исследование потенциостатического выделения и определения содержания сурьмы в сплавах, состоящих из свинца, олова, висмута и меди. Танака [14—16], работавший, главным образом, с синтетическими образцами, определил условия, при которых следует производить отделение сурьмы от золота, серебра, ртути, меди, висмута, кадмия, цинка и ванадия в целом ряде общеизвестных электролитов. Данлэп и Шульц [17] разработали две кулонометрические методики, дающие возможность определять содержание сурьмы в каждой из ее окисленных форм отдельно, а также полное содержание сурьмы. По первой методике после предварительного восстановления сурьмы (V) в присутствии гидразингидрата сурьма (П1) восстанавливается до амальгамы на ртутном катоде при потенциале —0,28 в в фоновом электролите, содержащем 0,4Ai винной кислоты и М соляной кислоты. По второй методике сурьма (V) сначала восстанавливается до сурьмы (П1) при потенциале —0,21 в, а затем далее до амальгамы при потенциале —0,35 в. Процесс восстановления проводится в электролите, содержащем 0,4 М винной кислоты и 6 М соляной кислоты. Даже в присутствии небольших количеств мышьяка, свинца, олова, железа или урана можно добиться точности 0,5% (средняя квадратичная погрешность) при содержании сурьмы 5 мг. В табл. 1 приведены различные условия эксперимента при определениях сурьмы потенциостатическим методом. [c.45]

    Катоды. Достигнуты хорошие результаты при использовании в препаративной работе в качестве катодов следующих металлов меди, цинка, кадмия, ртути, олова, свинца, никеля и платины. Все катоды, за исключением ртутного, имели форму полос или пластин. Медь и никель применяли также в форме сетки. В качестве катодов, помимо металлов, успешно применяли уголь и графит. Медь, никель, свинец и платина поступают в продажу в форме пластин медь, никель и платина—в форме сеток кадмий, цинк, свинец и олово—в форме стержней. Уголь и графит выпускаются в виде стержней или больших полос, которые можно распилить на куски нужной формы. Используемые металлы должны быть возможно более чистыми. Вполне вероятно, что при работе с одной формой пластин или стержней можно получить лучшие результаты, чем с другой (см. раздел об условиях, влияющих на восстановление, стр. 326). [c.320]

    Материал катода. Скорость и степень восстановления, а иногда и тип продукта зависят от природы материала катода. На стр. 317 указывалось, что более полное и быстрое восстановление обычно происходит на катодах с высоким перенапряжением водорода. Во многих случаях, однако, перенапряжение водорода не является решающим фактором. При электролитическом восстановлении нитробензола до анилина очень хорошие выходы получены на катоде из никелевых проволок и при использовании в качестве като- тита соляной кислоты [53]. Кадмий, цинк, свинец и ртуть являются активными катодами для восстановления метилпроиилкетона до пентана [541. Олово и алюминий, представляющие собой катоды с высоким перенапряжением водорода, практически неактивны. Бензойная кислота восстанавливается в бензиловый спирт только на катодах из свинца и кадмия 155], а К,М-диметил-валерамид восстанавливается до Ы,М-диметиламиламина только на свинце 156] (исследовано П катодов). [c.326]

    Лучшими восстановителями для селена и теллура считаются двуокись серы, гидразин, гидроксиламин, гипофос-фориая кислота и хлорид двухвалентного олова. Из них двуокись серы применяется наиболее давно и лучше изучена с точки зрения чистоты осаждаемого элемента. Из концентрированных растворов соляной кислоты (выше 8 н. НС1) селен осаждается в очень чистом виде и не загрязнен теллуром [29]. В 3—5 и. соляной кислоте двуокись серы количественно осаждает как теллур, так и селен [28]. При осаждении теллура двуокисью серы эффективным промотором является гидразин. При снижении кислотности увеличивается соосаждение металлов, особенно меди, кадмия, висмута, сурьмы, олова и молибдена [3[. Азотную кислоту перед восстановлением двуокисью серы необходимо удалить. Если в растворе присутствует элементарный бром, то он восстанавливается в самом начале, при пропускании двуокиси серы до осаждения элемента. При отделении селена важно, чтобы температура не поднималась выше 30° [29 [. В теплом растворе в качестве промежуточного продукта всегда образуется летучий монохлорид селена, в результате чего могут быть потери, если не соблюдать необходимых мер предосторожности [30]. Даже при комнатной температуре необходимо добавлять большой избыток восстановителя, чтобы уменьшить вероятность образования монохлорида. [c.365]


Смотреть страницы где упоминается термин восстановление олова кадмия: [c.108]    [c.94]    [c.84]    [c.30]    [c.80]    [c.91]    [c.168]    [c.175]    [c.21]    [c.189]    [c.91]    [c.798]    [c.191]    [c.514]    [c.1053]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.640 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление олова



© 2025 chem21.info Реклама на сайте