Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеазы денатурация

    В результате изучения взаимодействия ферментов с субстратами и ингибиторами удалось выяснить ряд важных вопросов, касающихся механизма ферментативных реакций. Детальное рассмотрение всех этих исследований увело бы нас слишком в сторону. Поэтому мы остановимся только на некоторых выводах, имеющих непосредственное отношение к предмету этой книги. Прежде всего рассмотрим свойства самого фермента. Активность фермента, как правило, зависит от целостности его третичной структуры. Под действием денатурирующих агентов, изменяющих конформацию фермента, его активность либо уменьшается, либо исчезает полностью. По меньшей мере в одном случае — для рибонуклеазы — установлено, что связывание фермента с субстратом способствует сохранению его конформации даже в присутствии агентов, которые в отсутствие субстрата вызывают денатурацию. Вместе с тем не вся первичная структура необходима для обеспечения активности. Например, фермент папаин, по своим свойствам подобный протеолитическим ферментам, сохраняет свою активность при отщеплении 3/5 его молекулы. Активный фрагмент папаина сохраняет чувствительность к действию денатурирующих агентов, и это свидетельствует о том, что для обеспечения активности необходима определенная третичная структура. В свете этих данных вЪз-никает вопрос почему молекулы ферментов так велики  [c.395]


    С. 11.13. Денатурация и ренатурация рибонуклеазы. Объяснение в кете. [c.373]

    Важной является проблема обратимости денатурации, т. е. возможность вновь получить белок с исходной пространственной структурой и биологическими свойствами. Такой процесс называется ренатурацией. Впервые полную ренатурацию белка удалось осуществить на примере рибонуклеазы (К. Аифинсен, 1961). [c.105]

Рис. 3-8. Денатурация и ренатурация на примере панкреатической рибонуклеазы (по Анфинсену). Рис. 3-8. Денатурация и ренатурация на примере <a href="/info/102112">панкреатической рибонуклеазы</a> (по Анфинсену).
    Полная денатурация белка долгое время считалась необратимой, но в 1956 г. Анфинсен показал, что денатурированная рибонуклеаза (гл. 1, [c.105]

    Уже давно известно, что некоторые ферменты имеют каталитически активные простетические группы. Активность этих ферментов, однако, также зависит от их белковых компонентов об этом свидетельствует резкое падение их ферментативной активности при нагревании или под действием других факторов, ведущих к денатурации белка. Некоторые ферменты (например, рибонуклеаза) относительно устойчивы к нагреванию. Это обусловлено тем, что их белковый компонент лишь с трудом подвергается денатурации [4]. Поскольку большинство глобулярных белков легко денатурируется, термостабильность рибонуклеазы и некоторых других подобных ферментов указывает на то, что структура их белков более устойчива и жестка, чем структура обычных глобулярных белков. Иногда очень трудно [c.273]

    Предполагают, что формирование активного центра фермента начинается уже на ранних этапах синтеза белка-фермента (см. главу 14) на рибосоме, когда линейная одномерная структура пептидной цепи превращается в трехмерное тело строго определенной конфигурации. Образовавшийся белок приобретает информацию совершенно нового типа, а именно функциональную (в частности, каталитическую). Любые воздействия, приводящие к денатурации, т.е. нарушению третичной структуры, приводят к искажению или разрушению структуры активного центра и соответственно потере ферментом каталитических свойств. Если при подходящих внешних условиях удается восстановить нативную трехмерную структуру белка-фермента (ренатурировать его), то восстанавливается и его каталитическая активность. Это было показано впервые на примере рибонуклеазы поджелудочной железы (см. рис. 1.13). [c.125]


    Опыты К. Анфинсена с рибонуклеазой однозначно показывают возможность сборки именно той пространственной структуры, которая была нарушена в результате денатурации (рис. 3.10). [c.36]

    В заключение необходимо обратить внимание на те трудности, которые возникают при изучении термодинамики и кинетики реакции денатурации из-за необратимости этого процесса для большинства белков. Известны лишь немногие случаи обратимой денатурации — например, для трипсина, химотрипсина, рибонуклеазы и ингибитора трипсина. Не следует думать, что немногочисленность известных случаев обратимой денатурации—это лишь следствие недостаточности наших знаний об условиях обращения процесса для большинства белков. Напротив, необратимость денатурации белков, построенных относительно более сложно и менее жестко , чем перечисленные выше, является закономерным следствием ничтожной вероятности полного восстановления чрезвычайно сложной системы связей, стабилизирующих конформацию полипептидных цепочек в нативной молекуле. Однако при рассмотрении обратимых реакций термодинамические и кинетические характеристики наиболее доступны и полнее выявляются. Возможно поэтому, что особый интерес представит в будущем выявление и исследование промежуточных состояний денатурируемого белка, сколь бы кратковременно ни было их существование. [c.193]

    Как известно, конформацию белковой молекулы можно нарушить посредством какого-либо внешнего воздействия. Такое нарушение ведет к увеличению объема молекулы, что проявляется в снижении объема выхода. Так, диаграмма элюирования сывороточного альбумина на сефадексе 0-200 мочевиной (5 М) содержит два пика, тогда как обычно его /Саг) = 0,43. Первый компонент элюируется гораздо раньше (/Са = 0,1) около 60% белка не претерпевает никаких изменений [76]. Вполне возможно, что часть молекул денатурировалась и занимает поэтому больший объем. По изменению объема выхода можно непосредственно проследить за различными стадиями денатурации белка [77]. Так, молекулярный вес рибонуклеазы, установленный на сефадексе 0-100, увеличивается после денатурации щелочью в 1,9 раза, после окисления надмуравьиной кислотой — в 3,0 раза, после обработки 4 М мочевиной — в 2,5 раза, а после обработки 8 М мочевиной — в 4,3 раза. Как можно убедиться с помощью гель-фильтрации на сефадексе 0-200 [160], химическая модификация сывороточного альбумина (ацилирование различными реагентами) приводит к весьма значительному увеличению объема. [c.171]

    Выбор того или иного метода для выделения ДНК в каждом конкретном случае определяется природой использованного биологического материала. С подробным описанием методов выделения ДНК из животных и растительных тканей и из бактерий можно познакомиться в другой работе [9]. При работе с микроорганизмами одним из наиболее подходящих является метод Мармура [10]. Он сводится к разрушению клеток, денатурации клеточных остатков и удалению РНК при помощи рибонуклеазы с последующим избирательным осаждением ДНК изопропанолом. С целью предотвращения загрязнения ДНК двувалентными ионами металлов и разрушения ее дезоксирибонуклеазой добавляют хелирующие агенты и додецилсульфат натрия. [c.63]

    Проведение ферментных реакций при повышенных температурах. Известно, что каждый фермент имеет свой характерный температурный оптимум, определяемый двумя противоположно идущими процессами,— обычным повышением скорости реакции от нагревания и денатурацией, ускоряющейся по той же причине. Температурный оптимум может быть повышен, если ферменты стабилизировать тогда все катализируемые процессы возможно будет значительно ускорять. Даже небольшое увеличение устойчивости фермента к нагреванию может быть весьма важным, особенно если при этом удастся превысить температуры, обычно переносимые микробами. Изучая и используя повышение температуры, можно иметь в виду следующие возможности а) естественную высокую устойчивость некоторых ферментов к денатурации. Таковы, например, папаин, проназа, рибонуклеаза и др.  [c.325]

    Примером может служить молекула рибонуклеазы, третичная структура которой фиксируется четырьмя дисульфид-ными мостиками (рис. 66). Если нативную (сохранившую свои природные свойства и, в частности, каталитическую активность) рибонуклеазу обработать мочевиной и меркаптоэта-нолом, то дисульфидные мостики разрываются — происходит денатурация с утратой биологической активности и изменением третичной структуры. После удаления реагентов, вызвавших денатурацию, рибонуклеаза под действием кислорода воздуха снова замыкает свои дисульфидные связи, принимая свойственную ей третичную структуру и вновь приобретая биологическую активность. [c.641]

    Наконец, при денатурации происходит утрата белками биологической активности. Воздействие денатурирующих агентов приводит к инактивации ферментов, гормонов и вирусов. Эта потеря специфических биологических свойств считается важным критерием денатурации. Однако имеется и ряд исключений. Например, активность инсулина сохраняется при денатурации мочевиной, в растворах которой сохраняют свою активность также трипсин, папаин и пепсин рибонуклеаза и лизоцим обладают тепловой устойчивостью, и их активность слабо изменяется при кипячении в разбавленной кислоте. Наряду с потерей ферментативной активности наблюдается и изменение иммунологических свойств. Как известно, иммунологическая активность белков характеризуется двумя показателями — антигенностью, т. е. способностью возбуждать образование антител, и специфичностью. Исследование этих показателей привело к выводу, что при денатурации ряда белков происходит понижение антигенности, но сохраняется иммунологическая специфичность. [c.191]


    При использовании других бактериальных РНК-полимеразных систем оказалось, что продукт состоит частично из ДНК— РНК-комплексов, которые диссоциируют при нагревании до 100 В растительных экстрактах (изолированный хроматин из зародышей гороха) РНК остается связанной в ДНК — РНК-белковые комплексы и освобождается в форме, доступной действию рибонуклеазы, только после предварительной обработки дезоксирибонуклеазой или после нагревания до 60" в течение короткого времени оказалось, что в этом комплексе отношение РНК к ДНК равно 1 2. Так как температура диссоциации комплекса ниже температуры денатурации ДНК, пришли к заключению, что освобождение РНК (и ДНК) из комплекса происходит вследствие денатурации белка. Однако вероятно также, что трехцепочечный полинуклеотидный комплекс должен быть менее устойчивым, чем двухцепочечный комплекс. [c.320]

    Спектры ПМР белков чрезвычайно сложны, однако в их расшифровке достигнуты весьма значительные успехи [170—175]. На рис. 2-41 приведены спектры ПМР -фермента рибонуклеазы, полученные при 60 и 220 МГц. Как легко видеть, при более высокой частоте разрешение выше. Обращает на себя внимание и тот факт, что после тепловой денатурации фермента (до 72,5°С) многие сигналы спектра, снятого при 220 МГц, оказываются более узкими. Это означает, что в результате денатурации все однотипные боковые группы белка попадают в примерно эквивалентное окружение. Кроме того, было показано, что спектры ПМР для белков, находящихся в кон- зормации статистического клубка, хорошо соответствуют спектрам, которые можно получить, исходя из стандартных химических сдвигов отдельных аминокислот [171], что согласуется с изложенным выше. [c.187]

    Свертывание может происходить значительно быстрее, чем синтез цепи. Свертывание in vitro осуществляется чрезвычайно быстро, по крайней мере для малых белков, не содержащих дисульфидных мостиков. Нуклеаза стафилококка повторно свертывается в течение 1 с [438], а метмиоглобин — в течение 10 с [439]. Если эти величины применимы также и к условиям in vivo, свертывание цепи может происходить по крайней мере в 10 раз быстрее, чем биосинтез аминокислотной последовательности. Дисульфидсодержащие белки, например панкреатическая рибонуклеаза, повторно свертываются за время от 1 до 10 с, если дисульфидные связи не были разорваны в процессе предшеств ющей денатурации [440]. Однако если такие белки развернуты и восстановлены, последующее свертывание цепи (которое включает образование правильной системы дн-сульфидных связей) продолжается при оптимальных условиях в течение многих минут. [c.182]

    Повторное свертывание модифицированных белков дает информацию о процессе свертывания. Исследования повторного свертывания нативных белков были дополнены опытами по повторному свертыванию модифицированных белков. В ранних исследованиях [445] было показано, что рибонуклеаза поджелудочной железы, иодинированная по расположенному на поверхности нативной структуры Туг-115, после денатурации теряет способность к повторному свертыванию. Эго показывает, что состояние остатка Туг-115 имеет важное значение для процесса свертывания. Для того чтобы установить, можно ли модифицировать белок (путем расщепления цепи и делеций в последовательности или путем присоединения объемных трупп к боковым цепям) без потери им способности к свертыванию, был проведен ряд систематических исследований нуклеазы стафилококка и панкреатической рибонуклеазы. [c.183]

    Эксперименты по повторному свертыванию выявляют быстро и медленно свертывающиеся цепи. Подразделение несвернутых цепей на два класса, быстро и медленно свертывающихся, было-установлено при исследовании рибонуклеазы [440, 447, 448]. В опытах по повторному свертыванию рибонуклеазы, денатурированной без нарушения системы дисульфидных связей, было обнаружено, что 20% цепей повторно свертываются в пределах 0,1 с (быстро свертывающиеся цепи.) Процентное содержание таь их цепей не зависит от способа денатурации (гуанидин гидрохлорид [449], нагревание-[450] и т. д.). Остальные 80% цепей (медленно свертывающихся) превращаются за время от 10 до 100 с в быстро свертывающиеся, которые затем укладываются моментально. Имеется сообщение об-аналогичном, хотя и менее количественном наблюдении в отношении ингибитора трипсина поджелудочной железы быка (BPTI), в котором 15% цепей свертывались значительно медленнее, чем остальные [451]. Это явление пока еще не объяснено. Согласно одной из гипотез [449, 452], в быстро свертывающихся цепях все пептидные-связи представлены правильными цис-транс-тоы 1 аш, тогда как медленно свертывающиеся цепи содержат неправильные изомеры . [c.184]

    В то время как основные типы РНК, обнаруживаемые в природе, являются однонитевыми нуклеиновыми кислотами, небольшая часть вирусов, например реовирусы, содержат РНК в виде двойной спирали. Эти РНК имеют такой состав оснований, в котором А = и и О = С. Они проявляют заметную устойчивость к гидролизу рибонуклеазами, если их не подвергать предварительной тепловой денатурации. Такие РНК могут быть выделены из растворов в виде нитей или же аналогичные нити могут быть приготовлены из препаратов синтетических двухцепочечных полимеров типа [(гА)-(ги)] и использованы для исследования методом диффракции рентгеновских лучей [63]. Данные рентгеноструктурного анализа свидетельствуют о том, что двухцепочечные РНК принимают спиральную форму, имеющую очень близкое сходство с /4-формой ДНК (наклон плоскости пар оснований к основной оси спирали около 10°, и на один виток спирали приходится 11 —12 оснований). Создается впечатление, что конформация такой /4-формы РНК, подобно /4-форме ДНК, диктуется формой углеводного кольца, находящегося в С-3-з/ (Зо-конформации. Вполне очевидно, что урацил может взаимодействовать с аденином столь же эффективно, как и тимин в образовании водородных связей. [c.60]

    Свойственная полипептидам и белкам, содержащим остатки тирозина и триптофана, естественная флуоресценция чувствительна к окружению этих остатков. Это обстоятельство можно в ряде случаев использовать, чтобы получить информацию о конформационной подвижности боковых радикалов остатков тирозина п триптофана в отношении близлежащих группировок в полипептидной цепи. Один пример — это истолкование изменений флуоресценции а-химотрипсина, возникающих при изменении состава растворителя, откуда следует достаточно близкое для протекания взаимодействия с переносом заряда расположение группировки — ONH— к остаткам тирозина и триптофана [59]. Доступность такого рода остатков тирозина в рибонуклеазе установлена в результате в основном качественного изучения флуоресценции [60] три обращенных наружу остатка тирозина в ферменте теряют флуоресценцию после 0-ацетилирования, в то время как боковые группировки трех других остатков тирозина скрыты . Этот вывод подкрепляется увеличением флуоресценции после денатурации трис (0-ацетил) фермента [60]. [c.441]

    Естественно, что полной обратимости денатурации следует ожидать для белков, не содержащих групп, вступающих в денатурированном состоянии в необратимые реакции (например, окисление 5 — Н-групп) [101]). Так, доказана обратимость денатурации рибонуклеазы [135], такаамилазы А [136] и а-амилазы [136]. В работах Анфинсена и др. [137—140] показано, что можно добиться ренатурации белков и с разорванными дисульфидными связями. Из этих данных следует, что денатурацию действительно можно трактовать как термодинамический конформационный переход и что нативная структура белка отвечает если не глобальному, то относительному минимуму свободной энергии. [c.249]

    Влияние лигандов, в том числе органических веществ, на структуру и свойства белков очень разнообразно. Известно, что низшие спирты, амины, амиды и другие вещества вызывают развертывание белковых глобул [128, 130], понижают температуру термического перехода глобула — клубок [131, 132] (в случае рибонуклеазы) и перехода тройная спираль — клубок (для коллагена) [133]. Существуют многочисленные наблюдения, показывающие, что образование комплексов белка с большим числом ПАВ [134—137] может сопровождаться частичной дезорганизацией молекулы белка, проявляющейся в изменении растворимости, вязкости, УФ-спектров, оптического вращения [138—146], Полная дезорганизация белка (денатурация) наблюдается при взаимодействии с большими количествами додецил- и тетрадецилсульфата натрия [142—145]. С другой стороны, известно и стабилизирующее действие органических соединений на структуру белка. Например, в работах [146—149] установлено, что низкие концентрации ПАВ стабилизуют белки против денатурации мочевиной в кислых и щелочных областях pH. Авторы [150] наблюдали стабилизирующее действие стероидов. В работе [151] также отмечалось стабилизирующее действие малых концентраций ПАВ на структуру белка и разрушающее больших. [c.28]

    Ковальски [4, 5] и Мендел [7, 8] сообщили о заметных изменениях в спектрах рибонуклеазы, снятых при 60 и 100 МГц. Изменения, главным образом, проявляются в сужении пиков при расщеплении дисульфидных мостиков или при нагревании водного раствора белка выше температуры 65 °С, при которой обычно происходит денатурация. Мак-Дональд и Филлипс [9—11, 24] показали, что если раствор денатурированного белка с неповрежденными ди-сульфидными мостиками охладить ниже температуры ренатура-ции, то при повторном свертывании цепей в спектре на частоте 220 МГц появляется много новых резонансных сигналов и изменяется распределение интенсивностей пиков по всему спектру. Это видно из рис. 14.8. Здесь (а) —спектр рибонуклеазы поджелудочной железы быка, построенный по спектрам составляющих его аминокислот, подобно тому, как это показано для лизоцима на рис. 14.4, а. Спектр (б) относится к термически денатурированному [c.363]

    Вследствие высокой специфичности по отношению к пептидным связям, образованным карбоксильными группами лизина и аргинина, наиболее часто применяют трипсин. Однако известно несколько случаев, когда скорость гидролиза трипсином подобных связей неодинакова иди когда в процессе гидролиза сохраняется С-концевая пептидная связь, образованная лизином [3]. Трипсин часто бывает загрязнен химотрипсином, который обладает меньшей специфичностью. В результате побочного действия химотрип-сина могут получиться вводящие в заблуждение пептидные фрагменты. Примеси химотрипсина могут быть в значительной степени уменьшены путем инактивации химотрипсина разбавленной НС1 [131] или при обработке мочевиной, которая необратимо денатурирует химотрипсин и не действует на трипсин [69]. Некоторые нативные белки (например, рибонуклеаза), обладающие жесткой третичной структурой, не подвергаются действию трипсина и химотрипсина. Денатурация посредством нагревания, обработки раствором мочевины или окислением надмуравьиной кислотой делает их доступными Действию протеолитических ферментов. [c.395]

    В некоторых других видах РНК также обнаружено формирование спиральных структур. Сообщалось, например, что комплементарная РНК (стр. 237), получаемая ферментативным путем in vitro на ДНК (как на матрице), выделенной из бактериофага Т2, содержит при определенных условиях высокоупорядоченную двойную спиральную структуру, сходную с таковой ДНК [74]. Однако это, по-видимому, не относится к информационной РНК, присутствующей в полисомах (стр. 281). Форму двойной спирали имеют также РНК различных вирусов, в том числе РНК реовируса раневой опухоли и репликативных форм вируса полиомиелита [36, 74, 75], вируса Сендай [76] и вируса эпцефаломиокардита [77]. Об этом свидетельствуют результаты, полученные при определении относительного содержания комплементарных оснований и при изучении тепловой денатурации о том же говорят и устойчивость к панкреатической рибонуклеазе и отсутствие реакции с формальдегидом, а также данные рентгеноструктурного анализа 178, 95]. [c.59]

    Переход спираль—клубок в белках и обратный переход клубок-спираль, наблюдающийся при обратимой денатурации (трипсин, рибонуклеаза), представляют собой примеры того, что в статистической механике называют кооперативными переходами. Мы имеем дело с одновременным переходом многих частиц (в данном случае звеньев цепи белков) из упорядоченного состояния в неупорядоченное. Причина одновременности и резкости перехода заключена во взаимодействии частиц. Можно проиллюс-трировать [c.75]

    Наиболее убедительным доказательством того, что первичная структура определяет вторичную и третичную, могут, по-видимому, служить опыты по восстановлению нативной структуры белка после денатурации ренатура-ция белка). Если, например, полностью развернуть молекулу рибонуклеазы путем восстановления четырех ее дисульфидных мостиков меркаптоэта-нолом в 8 Af мочевине, а затем вызвать реокисление таких развернутых молекул в контролируемых условиях, то молекулы (от 95 до 100%) вновь приобретают нативную конформацию, что подтверждается восстановлением не только физических свойств, но и ферментативной активности. Этот опыт схематически представлен на фиг. 42. Статистические расчеты показывают, что если бы реконструкция дисульфидных мостиков происходила совершенно произвольно, то нативную конформацию приобретало бы лишь небольшое число молекул —около 1%. В табл. 20 приведены данные по рена-турации некоторых белков. Во всех случаях, за исключением инсулина, степень восстановления нативных структур значительно превышает величину, которой следует ожидать, исходя из статистических соображений. Эти данные вовсе не означают, однако, что процесс образования дисульфидных связей в белках может протекать in vivo без направленного катализа. Реконструкция нативных белковых структур после восстановительного разрыва дисульфидных мостиков представляет собой слишком медленный процесс, не соответствующий скорости синтеза биологически активных белков [c.113]

    Процесс установления равновесия иногда занимает день или больше. Поскольку при таких больших сроках возможны денатурация или бактериальное загрязнение, искажающие результаты эксперимента, разработан ряд приемов, позволяющих ускорить установление равновесия. Длительность этого процесса прямо пропорциональна квадрату высоты столба жидкости. Если оиа равна 1—3 мм, процесс установления равновесия длится в течение нескольких часов. Для ячеек с высотой столба жидкости 0,8 мм это время при седиментации сахарозы, рибонуклеазы и бычьего сывороточного альбумина равно соответственно 15, 45 и 70 мин. Однако при таких размерах снижается точность и чувствительность к гетерогенности, хотя в этом случае можно работать при больших угловых скоростях. С помощью многоканальных ячеек производится одновременное определение нескольких концентраций при одинаковой температуре. К уменьшению времени достижения равновесия приводит также такой режим вращения ротора, при котором начальное значение скорости выбирается несколько завышенным и затем постепенно снижается. Концентрацию можно измерять с помощью интерференционного метода Релея, а молекулярный вес рассчитывать, используя значение градиента концентрации в точке перегиба (т. е. средней точке на фиг. 35, Л). Для обеспечения постоянства скорости, необходимого в некоторых экспериментах по седиментационному равновесию, лучше всего использовать магнитную подвеску стального р тора в высоком вакууме. В этих условиях скорость уменьшается всего на 1 об1мин за сутки. [c.194]

    Использование уравнения Линдерштрема-Ланга [22] позволяет более детально обработать кривые титрования и получить некотор то добавочную информацию. На рис. И приведены полученные спектрофотометрически кривые титрования трех обратимо титруемых фенольных групп рибонуклеазы при трех ионных силах. По оси ординат отложена величина, стоящая в левой части уравнения (22) и равная рК+ДрК (а). Видно, что в соответствии с теоретическими результатами электростатическое взаимодействие обусловливает линейную зависимость поправочного члена к рК от степени ионизации а. Рассчитанная по уравнению (22) величина т оказывается равной 0,11, 0,09 и 0,06 при ионных силах 0,01, 0,03 и 0,15, что приближенно совпадает со значением, вычисленным по формуле (23), если принять радиус белковой глобулы 6=17 А, как должно быть для компактной структуры молекулы данного молекулярного веса. Это показывает, что в случае рибонуклеазы отсутствуют какие-либо особенности в титровании трех фенольных групп. Напомним, что, как уже отмечалось, три другие фенольные группы в молекуле рибонуклеазы не титруются вплоть до значений pH, приводящих к денатурации. [c.37]

    Рассмотрим теперь влияние температуры на систему бутан — вода. Водный раствор бутана имеет более высокое значение Ср, чем каждая из жидкостей в отдельности. Парциальная моляльная теплоемкость бутана в воде при постоянном давлении равна -]-80 кал/(град моль) [13]. Теплоемкость жидкого бутана составляет приблизительно 30 кал/(град-моль). Почему же для повышения температуры бутана в воде требуется больше тепла, чем для повышения температуры бутана и воды в отдельности Это явление может быть объяснено, если предположить, что водное окружение растворенного бутана стало более льдообразным . При повышении температуры водного раствора бутана, кроме тепла, необходимого для нагревания бутана и воды в отдельности, мы должны поставить дополнительное тепло, необходимое для плавления льдообразной структуры, окружающей растворенные молекулы бутана. Именно это дополнительное тепло объясняет положительный знак ДСр, который обусловлен растворением бутана в воде. Если мы считаем, что углеводородные заместители в биологически активных молекулах действуют на воду аналогично тому, как это делает бутан, то следует ожидать различий в теплоемкостях продуктов и реагентов для любой реакции, приводящей к изменению общей доступности углеводородных заместителей для молекул воды и сопровождающейся изменением гидрофобных взаимодействий. Для тепловой денатурации рибонуклеазы при 30 °С величина АСр равна +2 ккал/(град-моль). Такое большое значение АСр согласуется с представлением о том, что боковые гидрофобные группы не- [c.176]


Смотреть страницы где упоминается термин Рибонуклеазы денатурация: [c.151]    [c.48]    [c.243]    [c.340]    [c.793]    [c.72]    [c.281]    [c.21]    [c.21]    [c.184]    [c.520]    [c.63]    [c.177]    [c.310]   
Химия биологически активных природных соединений (1970) -- [ c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Гистидиновые остатки в рибонуклеазе ЯМР при денатурации

Денатурация

Рибонуклеаза

Рибонуклеаза денатурация и ренатурация

Энтальпия денатурации рибонуклеазы



© 2024 chem21.info Реклама на сайте