Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование методы физические

    Изложены общие теоретические основы аналитической химии и качес1 венный анализ. Рассмотрены гетерогенные (осадок — раствор), протолитические, окислительно-восстановительные равновесия, процессы комплексообразования, применение органических реагентов в аналитической химии, методы разделения и концентрирования, экстракция, некоторые хроматографические методы, качественный химический анализ катионов и анионов, использование физических и физико-химических методов в качественном анализе. Охарактеризованы методики аналитических реакций катионов и анионов, нх идентификация по ИК-спектрам поглощения. Приведены примеры и задачи. [c.2]


    Эту реакцию можно использовать не только для того, чтобы отделить олефины от парафинов, но и для разделения смеси низших олефинов. В последнем случае пользуются их различной реакционной способностью по отношению к серной кислоте. Например, из газовой смеси, содержащей этилен, пропилен, -бутилены, изобутилен и парафины, изобутилен поглощают холодной 50—65%-ной серной кислотой, н-бутилены — холодной 75%-НОЙ, пропилен — холодной 90%-ной, а этилен — горячей 90—96%-ной серной кислотой. Метановые углеводороды серной кислотой не поглощаются. Подробности этого процесса как в отношении стадии абсорбции, так и в отношении стадии гидролиза алкилсерных кислот в соответствующие спирты описаны в гл. 8. Применимость этого метода широка его можно использовать для разделения газовых смесей, содержащих от 2 до 100% олефинов. Сернокислотное поглощение олефинов применяли во время первой мировой войны в Англии для удаления небольших примесей этилена из коксового газа. Однако такой метод получения спиртов менее выгоден по сравнению с методом, предусматривающим предварительное выделение и концентрирование олефинов с последующей гидратацией. Поглощение олефинов серной кислотой все еще применяют в тех случаях, когда разделение физическими методами затруднительно, например при извлечении изобутилена из смеси с н-бутиленами и другими С4-углеводородами. [c.116]

    Нарушение количественных соотношений теории Аррениуса из-за пренебрежения ион-ионным взаимодействием проявляется также в том, что различные методы определения степени диссоциации а дают несовпадающие результаты. Так, а можно рассчитать по уравнению (1.6), зная изотонический коэффициент Вант-Гоффа. Далее, поскольку электропроводность раствора зависит от концентрации свободных ионов и, следовательно, от степени диссоциации, то а можно определить по измерению электропроводности. Наконец, как следует из электрохимической термодинамики разность потенциалов на концах равновесной электрохимической цепи связана с концентрацией ионов, участвующих в установлении электрохимического равновесия. Поэтому иногда степень диссоциации а можно рассчитать по измерению разности потенциалов соответствующей цепи. Расхождения в величинах а, рассчитанных тремя указанными методами, оказываются весьма существенными, особенно для растворов сильных электролитов. Для концентрированных растворов сильных электролитов последний метод иногда приводит к не имеющим физического смысла значениям а> 1. [c.20]


    Сорбционные методы концентрирования основаны иа использовании процесса сорбции готовым сорбентом. По механизму сорбции различают физическую адсорбцию (молекулярную), основанную на действии межмолекулярных сил между сорбентом и сорбируемым веществом, и хемосорбцию (ионный обмен, комплексообразование, окисление-восстановление и др.), основанную на протекании химических реакций между сорбентом и сорбируемым веществом. Сорбцию можно осуществлять в статическом, динамическом и хроматографическом вариантах. В этом разделе рассмотрен статический вариант сорбции, т. е. сорбция навеской сорбента в замкнутом объеме раствора или газа. Статический метод обычно используют при большой избирательности сорбента к извлекаемым компонентам. Извлекать можно микрокомпоненты и матрицу. Если сорбируют микрокомпоненты, то для конечного определения их либо десорбируют, либо озоляют сорбент. [c.316]

    Нефтезаводские газы, подлежащие разделению, представляют собой смесь углеводородов с водородом. Основные физические константы водорода и газообразных углеводородов приведены в табл. 12. Водород из этих газов вьщеляют методами глубокого охлаждения, абсорбцией, адсорбцией, диффузией через мембраны с избирательной проницаемостью для водорода. Метод глубокого охлаждения нашел промышленное применение для выделения Нз из водородсодержащих газов. Для получения водорода высокой степени чистоты используют метод короткоцикловой адсорбции на цеолитах. Водород очень высокой степени чистоты в небольших количествах получают диффузией через мембраны из сплавов палладия, проницаемых для водорода, но непроницаемых для других газов и паров. Разрабатываются и полимерные мембраны, обладающие аналогичными свойствами, Метод абсорбции углеводородами с последующей ректификацией, особенно при пониженной температуре, может быть также использован для концентрирования водорода. Этот процесс имеет место в системах гидроочистки (см, стр, 20). [c.42]

    Гидратация этилена осуществляется двумя методами при помощи серной кислоты (сернокислотная гидратация) и непосредственным взаимодействием этилена с водяным паром в присутствии катализаторов (парофазная каталитическая гидратация). Сернокислотный способ, открытый А. М. Бутлеровым, получил промышленное осуществление только в послевоенные годы. Он состоит из следующих четырех стадий 1) абсорбция этилена серной кислотой с образованием сернокислых эфиров 2) гидролиз эфиров 3) выделение спирта и его ректификация 4) концентрирование серной кислоты. Взаимодействие между этиленом и серной кислотой состоит из двух этапов первый — физическое растворение этилена в серной кислоте и второй — гомогенное взаимодействие обоих компонентов с образованием алкилсульфатов по уравнениям  [c.169]

    Регенерация реагентов. Часто в систему необходимо вводить вспомогательные исходные вещества, например, когда новый ход процесса будет более выгодным, чем при непосредственном взаимодействии основных исходных веществ, или даже единственно возможным. В этом случае нужно так организовать производственный цикл, чтобы вспомогательное исходное вещество можно было регенерировать. После регенерации это вещество возвращается в цикл, и его расход ограничивается только потерями. Такой метод широко используется в химической технологии. Отметим, что он отличается от рециркуляции реагента, олисанной на стр. 356. Обычно возвращаемое в цикл вспомогательное йсходное вещество регенерируется в результате химического превращения, а не выделяется из смеси физическими методами. Примером может служить использование концентрированной гидроокиси натрия для разложения боксита в производстве окиси алюминия методом Байера, сохранение в цикле окислов азота при башенном способе получения серной кислоты или введение в цикл аммиака при производстве соды методом Сольвея. В последнем случае процесс не может проводиться при, непосредственном взаимодействии основных исходных веществ по уравнению [c.377]

    Однако в ряде случаев чувствительность прямого эмиссионного спектрального анализа бывает недостаточной, в частности для контроля производства веществ высокой чистоты. В таких случаях проводят предварительное концентрирование Sb. Наиболее простыми, удобными и быстрыми методами концентрирования примесей Sb являются физические методы, в частности методы отгонки (дистилляции) Sb в вакууме, на воздухе и в токе газа-носителя. Однако такие методы применимы только к материалам, основу которых составляют элементы и их соединения, причем их летучесть значительно ниже летучести Sb. Применение концентрирования методами дистилляции примесей требует тонкого измельчения анализируемого материала, поскольку скорость диффузии отгоняемых примесей в твердой фазе мала. Тонкоизмельченную пробу нагревают током большой силы в графитовом стаканчике, зажатом между графитовыми щеками охлаждаемых водой медных электродов. Пары выделяющихся примесей конденсируются на охлаждаемой графитовой или металлической капсуле, которая затем используется в качестве электрода дуги или искры при последующем спектральном определении Sb и ряда других выделившихся вместе с ней примесей. [c.82]


    Однако для контроля веществ высокой чистоты чувствительность спектрального анализа недостаточна. В этих случаях применяют методы физического и химического обогащения. Физическое концентрирование основано на термической отгонке легколетучих форм кадмия из труднолетучей основы. Конденсат анализируют спектральным методом. Обычно эти два процесса совмещают, т. е. отгонку определяемого вещества производят непосредственно в зону разряда [14, 133, 628]. [c.129]

    Флуктуации ограничивают чувствительность при прямом анализе. Во многих случаях существенной стадией определения малой концентрации является обогащение. Не останавливаясь на методах выделения и концентрирования радиоизотопов, широко применяемых при радиохимических исследованиях, приведем в качестве примера тот факт, что метод физического обогащения (осаждение на заряженной проволоке) позволяет определить содержание в атмосферном воздухе продуктов распада торона при концентрации его порядка 1 атома в нескольких литрах воздуха. [c.19]

    Важно подчеркнуть и взаимосвязь физических и химических методов. Физические методы часто очень выигрывают от сочетания их с химическими методами разделения и концентрирования. Физические и химические методы дополняют друг друга ведь не все аналитические задачи под силу физическим методам. [c.9]

    Важно подчеркнуть и взаимосвязь физических и химических методов. Химия нужна для понимания процессов в плазме, пламени. Физические методы часто очень выигрывают от сочетания их с химическими методами разделения и концентрирования (гибридные методы). Физические, физико-химические и химические методы дополняют друг друга. Следует ожидать приближения к некоему равновесию между этими методами, причем физические методы (инструментальные, автоматические) будут основными. [c.235]

    Методы определения веществ. При анализе следовых количеств веществ охотно прибегают к физическим методам анализа, которые характеризуются большой чувствительностью (табл. 8.10). Для обнаружения следовых количеств тяжелых металлов перспективным общим методом является спектрографический анализ (разд. 5.2) или специальные варианты масс-спектроскопии [19]. Остальные методы позволяют определить содержание только одного элемента (или отдельных элементов). Выбор метода следует проводить в зависимости от решаемой задачи. Метод инверсионной вольтамперометрии (разд. 4) сочетает метод определения с методом концентрирования, что дает особо высокую чувствительность определения. [c.401]

    Спектральные методы в анализе кремния применяют чаще после предварительного концентрирования примесей физическим или химическим путем. Для физического концентрирования использовалось сплавление кремния в перл высокочастотным индукционным током, причем образующийся возгон примесей конденсируется в специальном приемнике [17]. По данным авторов, возможно определение примесей до 10 —Ю %-При анализе 51 и 51С по методу испарения достигается чувствительность Ю —10[40, 41]. Химическое концентрирование производится обработкой пробы фтористоводородной и азотной кислотами с удалением кремния в виде тетрафторида. Нелетучие примеси собирают на сульфате стронция [42] или на угольном порошке [43], которые затем подвергают спектральному анализу. В этом случае, чувствительность, прежде всего, будет определяться поправкой на холостой опыт, которая в свою очередь зависит от чистоты применяемых реактивов, материала посуды и т. д. При особо благоприятных условиях работы чувствительность определения может быть повышена для некоторых примесей до 10 —10- %. Чувствительность в значительно меньшей степени ограничивается чистотой реактивов при обработке пробы кремния парами фтористоводородной и азотной кислот [5—7, 9], поскольку уменьшается возможность попадания в пробу загрязнений, присутствующих в кислотах. Повышение чувствительности анализа тетрахлорида кремния, в некоторых случаях до 10 %, может быть достигнуто, прежде всего, за счет увеличения навески пробы [44]. Тетрахлорид в этом случае удаляют испарением в токе азота. Не ясно, не происходит ли одновременно улетучивание и некоторых примесей, например титана. [c.36]

    Физические методы концентрирования [c.199]

    Для концентрирования элементов могут быть применены все известные способы количественного разделения. Эти способы можно разделить на две основные группы химические и физикохимические методы концентрирования и физические методы концентрирования. [c.170]

    Сочетая те или иные методы концентрирования с физическими или физико-химическими методами анализа, можно достичь высокой степени чувствительности, во много раз превышающей чувствительность отдельных методов. Так, сочетая предварительную экстракцию определяемых примесей с последующим использованием спектрального анализа, можно повысить чувствительность определения от Ю- —10- % до 10- —10- %. [c.388]

    Рассмотрим метод электролитического разделения меди и цинка. Медь и цинк занимают различные места в ряду напряжений (см. рис. 12.3). Для разделения таких металлов можно ограничиться определенными физическими условиями, а именно приложить к электродам напряжение, достаточное для количественного осаждения меди, но недостаточное для выделения цинка даже из концентрированных растворов его солей. Для электролиза Г М раствора сульфата цинка необходимо напряжение =1,7 — (—0,8) = = 2,5 В. Если приложить меньшее нагряжение, например 1,7 В, цинк выделяться не будет. Полноту выделения меди в этих условиях можно вычислить из уравнения Нернста. Напряжение разложения 1,7 В при выделении на аноде кислорода в ряду напряжений соответствует потенциалу на катоде, равному нулю, т. е. потенциалу стандартного водородного электрода. Подставляя это значение в уравнение Нернста , находим  [c.227]

    При проведении химического анализа используют химические, физико-химические и физические методы в сочетании с химическими, физико-химическими методами разделения и концентрирования элементов. Выбор метода обнаружения или количественного определения компонентов зависит от фазового состояния объекта анализа, его химико-аналитических свойств и способа проведения анализа (мокрым или сухим путем, с разрушением или без разрушения пробы и т.п.). При выборе метода учитывают также требуемую точность определения, чувствительность метода, необходимую скорость проведения анализа, оснащение лаборатории и другие факторы. [c.229]

    Разность потенциалов ф"—ф. как было упомянуто в 48, нельзя измерить. Коэффициенты активности также нельзя измерить ни порознь, ни в комбинации 1п/,- —Поэтому уравнение (50.6) не представляет собой экспериментально проверяемого соотношения между измеряемыми величинами. Однако в принципе можно рассчитать методами статистической термодинамики, и можно показать, что разность потенциалов ф"—ф определяется уравнением (50.6) как величина, имеющая физический смысл. Правда, практически ситуация несколько иная, поскольку до сих пор точный расчет Д. удается провести только для предельного случая бесконечного разбавления. Для разбавленных растворов электролитов существуют приближенные формулы, при помощи которых можно примерно определить ф"—ф. Для концентрированных растворов электролитов в настоящее время нужно ограничиваться утверждением, что ф"—ф, по крайней мере в принципе, является физически определяемой величиной. Аналогичные рассуждения справедливы в особенно важном случае, когда одна фаза является раствором электролита, а другая металлическим проводником. Тогда разность потенциалов называется потенциалом отдельного электрода. Этот вопрос будет рассмотрен в 52. [c.247]

    Как следует из определения, концентрирование всегда связано с разделением и перераспределением веществ по различным фазам, поэтому все методы, пригодные для разделения (см. разд. 5.1), используют и для концентрирования. Наиболее распространенные методы перечислены в табл. 5.3. Они, как правило, сочетаются с физико-химическими или физическими методами анализа, но в некоторых случаях определение заканчивают гравиметрическими или титриметрическими методами. При выборе метода концентрирования руководствуются природой объекта и его химическим составом, последующим методом анализа, продолжительностью проведения всех операций, обеспеченностью необходимым оборудованием и т. п. [c.98]

    Для решения первой задачи помимо указанных физических методов анализа пригодны методы ультрамикроанализа, в том числе ультрамикрохимический анализ. Он представляет собой совокупность приемов использования специальной аппаратуры для работы с ультрамалыми объемами растворов. Для взвешивания образцов созданы ультра микровесы, для измерения малых объемов — микробюретки, микропипетки и т. п. Все операции проводят с помощью специальных манипуляторов, аналитические эффекты наблюдают под микроскопом. Для решения второй задачи в качестве предварительной операции используют концентрирование. Оно необходимо в тех случаях, когда нужно увеличить концентрации микрокомпонентов для последующего анализа или отделить следовые количества определяемых компонентов от основных (матрицы) или других микрокомпонентов. При абсолютном концентрировании микрокомпоненты переводят из большого объема в меньший. [c.98]

    К физическим методам извлечения водорода из водородсодержащих смесей относятся низкотемпературная конденсация и фракционирование, адсорбционное выделение при помощи молекулярных сит, абсорбционное выделение при помощи жидких растворителей, концентрирование водорода методом диффузии через мембраны [4, 111, 129, 134, 143, 150]. [c.8]

    Работы по идентификации сернистых соединений, содержащихся в нефтях, связаны с концентрированием и выделением сернистых соединений из различных нефтяных фракций. Выделение сернистых соединений можно осуществлять физическими и химическими методами. [c.264]

    Для выделения и концентрирования радиоактивных изотопов применяется ряд методов, основанных как на химических, так и физических свойствах разделяемых элементов. [c.94]

    Физическое или химическое концентрирование искомой примеси является мощным методом определения следов. Существует много очень точных методов анализа, которые можно использовать для исследования исходного образца, но при этом имеется риск неполного определения примеси. [c.275]

    Арсенал методов разделения и концентрирования велик и постоянно пополняется. Для решения задач используют почти все химические и физические свойства веществ и процессы, происходящие с ними. [c.210]

    Химические свойства компонентов, определяемые структурой внешних атомных орбиталей, специфичнее их физических свойств. Весьма распространены, например, химические методики группового концентрирования поливалентных катионов, взаимодействующих с определенными функциональными аналитическими группировками (экстракция, соосаждение, концентрирование на хелатных сорбентах), изова-лентных ионов, образующих комплексы с синтетическими ионитами (ионный обмен), некоторых анионов, реагирующих с материалами твердых электродов с образованием малорастворимых пленок (инверсионная вольтамперометрия). В отличие от химических методов концентрирования такой физический метод, как дистилляция, позволяет концентрировать все летучие (или, наоборот, малолетучие) примеси, центрифугирование основано на различной плотности разделяемых компонентов, фильтрация-на их разном агрегатном состоянии. Благодаря не столь однозначной зависимости физических свойств от химической природы примесей и основы более универсальные физические методы предварительного обогащения дополняют химические методы, давая в руки аналитиков эффективные приемы абсолютного и относительного концентрирования. [c.24]

    Были предложены также другие многочисленные методы для предварительного концентрирования или выделения металлнорфиринов из нефти, однако, как правило, они оказались неудовлетворительными. Наиболее удачными методами выделения металлнорфиринов из нефти, по-видимому, в неизменном состоянии, являются физические методы. Физические методы, которые применялись до сих пор, былн основаны на избирательной растворимости, снособности к адсорбции, летучести или вязкости. [c.51]

    Определение следов веществ физическим методом после их концентрирования методом препаративной газо-жидкостной хрома гограф,ИИ, Определение дихлорэтиле-нов в четыреххлористом углероде. [c.42]

    Рассмотрим метод электролитического разделения меди и цинка. Медь и цинк занимают различные места в ряду напряжений (см. рис. 35). Для разделения таких металлов можно ограничиться определенными физическими условиями, а именно приложить к электродам напряжение, дэста-точное для количественного осаждения меди, но недостаточное для выделения цинка даже из концентрированных растворов его солей. [c.197]

    В аналитической химии миироколичеств большое значение имеют методы, основанные на предварительном концентрировании определяемых микроэлементов и последующем анализе котщентрата физическими, прежде всего, [c.414]

    Другой путь увеличения чувствительности существующих каталитических методов определения — использование мицеллярных сред. Мицеллярный (имеющий физическую природу) и химический кататшз сочетают в целом ряде метопов, чувствительность которых повышается практически на порядок по сравнению с определением в водной среде. Данный эффект объясняется различными механизмами, в частности, концентрированием катализатора на поверхности мицелл при образовании комплекса с одним из реагентов, участвующих в индикаторной реакции (6.3-5). [c.351]

    Краткий обзор проблем по использованию методов концентрирования, основанных на различных физических и химических принципах, в целях снижения лредела обнаружения в неорганическом анализе. [c.384]

    Существует несколько нитрующих систем. Главным фактором пр1 выборе реагента является реакционная способность арена. Нитрующиь агентом может быть концентрированная азотная кислота, но она мене< реакционноспособна, чем ее смеси с серной кислотой. В обоих случая активной нитрующей частицей является ион иитрония. Существовани этой частицы подтверждено многими физическими методами, с помощьк которых в определенных условиях можно также определить ее концен трацию. При растворении азотной кислоты в концентрированной серно кислоте образуются 4 нона (на одну молекулу азотной кислоты), чт) показывают измерения понижения температуры замерзания [1]  [c.228]


Смотреть страницы где упоминается термин Концентрирование методы физические: [c.113]    [c.21]    [c.67]    [c.126]    [c.230]    [c.3]    [c.17]    [c.135]    [c.14]    [c.45]    [c.216]    [c.2]    [c.238]   
Методы концентрирования микроэлементов в неорганическом анализе (1986) -- [ c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Методы концентрирования

Методы физические



© 2025 chem21.info Реклама на сайте