Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризуемость анизотропная

    Здесь а у., а у... — компоненты тензора а поляризуемости по осям координат хуг, фиксированным в молекуле. Поляризуемость а — это симметрический тензор (т. е. а у = = и т. д.), и она может быть представлена в виде эллипсоида с главными осями, фиксированными в молекуле. Вдоль этих осей векторы Р и имеют одинаковые направления, в то время как в общем случае это необязательно, согласно уравнению (2). Эллипсоид поляризуемости имеет ту же самую симметрию, что и распределение зарядов, которое, как правило, всегда следует симметрии ядерного скелета молекулы. Таким образом, любая ось симметрии молекулы является главной осью эллипсоида поляризуемости и любая плоскость симметрии содержит две оси эллипсоида. Когда все три главные оси эллипсоида равны, как это случается в молекулах типа сферического волчка, поляризуемость изотропна. В случае когда по меньшей мере две из них различны, например для линейных молекул, молекул типа симметричного и асимметричного волчка, поляризуемость анизотропна. [c.129]


    Анизотропная поляризуемость молекул [c.388]

    Полагают, что коэффициент теплопроводности полимерной цепи должен быть анизотропным, так же как поляризуемость, рассмотренная в разд. 3.9. Исходя из этого, теплопередача вдоль главной цепи может происходить с гораздо меньшим рассеянием, чем теплопередача от цепи к цепи через вторичные связи. [c.120]

    Так же, как и при рассмотрении рассеяния изотропными молекулами, нужно ожидать эффекта рассеяния на флуктуациях плотности для средней поляризуемости молекулы и на флуктуациях ориентации анизотропно поляризующихся молекул, т. е. на флуктуациях анизотропии молекул. Однако вывод соответствующих уравнений может быть упрощен в связи с тем, что достаточно рассмотреть интенсивность поляризованного рассеяния света отдельной анизотропной молекулой, ориентация которой усреднена. [c.231]

    Постоянная Керра В или молярная константа Керра К могут иметь как положительные, так и отрицательные значения. Знак этих величин обусловлен только дипольным членом 0г. Анизотропный член 0 всегда больше нуля, так как последовательность уменьшения или увеличения главных значений статических 01, аг, аз и электронных Ьи Ьз, Ьз поляризуемостей одинакова. Однако в [c.242]

    Помимо постоянного / -эффекта в молекуле в ходе реакции может возникнуть дополнительное смещение электронов в результате изменения окружающей среды — динамический индукционный Или индуктомерный эффект / . Этот эффект отражает поляризуемость молекулы. Для понимания процесса химического превращения необходимо знать, с какой легкостью изменяется распределение электронов в молекуле. Поляризуемость электронов в молекуле проявляется в оптических свойствах и обусловливает молекулярную рефракцию вещества. Суммарное значение поляризуемости для молекулы не отражает того факта, что в действительности она пространственно анизотропна это имеет важное значение при объяснении протекания реакций, поскольку в химических процессах наиболее существенны сдвиги электронов, совершающиеся вдоль линий связи. Значение оптической поляризуемости по осям координат для молекулы хлорбензола показано на схеме [c.66]

    Рассмотрим наиболее простой случай жидкости, образованной неполярными изотропными молекулами (поляризуемость молекулы — скаляр, тогда как у анизотропных молекул это тензор). Для слабых полей индуцированный дипольный момент молекулы представится выражением  [c.211]

    Анизотропные флуктуации имеются в однокомпонентных жидкостях и растворах, если в жидкой фазе есть анизотропные молекулы, или анизотропные ассоциаты (что, в сущности, то же самое). Анизотропия обычно наблюдается, если молекулы (или ассоциаты) не имеют шаровой симметрии. Тогда их поляризуемость — тензор второго ранга (см. гл. V). Нередко такие молекулы полярны, т. е. имеют постоянный дипольный момент. Связь между симметрией и ее дипольным моментом подробно рассмотрена в монографии В. И. Минкина, О. А. Осипова, Ю. А. Жданова [10]. Если молекула имеет центр симметрии, то это [c.144]


    Повышенная сжимаемость жидкой воды при малых температурах, минимум объема, большая вязкость воды и малая теплопроводность качественно понятны в предположении большой деформируемости молекулы воды. Близкодействие (взаимодействие ближайших молекул в воде) определяется структурой молекулы Н2О, большими амплитудами колебаний атомов и особенно атома водорода. Им обусловлены не только ионные, но и ориентационные дефекты кристаллов льда и жидкой воды, которые определяют диэлектрические свойства Н2О. Близкодействие молекул в воде, проявляющиеся в больших амплитудах колебаний отдельных атомов, в свою очередь обусловливает большую анизотропную поляризуемость молекулы. В результате чего во взаимодействии молекул в воде и льдах существенную роль играет дисперсионное межмолекулярное взаимодействие типа Лондона, определяемое атомными колебаниями атомов молекулы Н2О. Дальнодействующие силы такого типа определяют исключительную однородность воды, на которую указывает аномально малое рассеяние водой видимого света [c.4]

    Структура и свойства конденсированных фаз определяются свойствами молекулы, и выяснение особенностей свойств молекулы Н2О по сравнению со свойствами других представителей гомологического ряда молекул (Н2О, НгЗ, НгЗе, НгТе), конденсированные фазы которых не обладают особенностями воды, представляется очень важным. Молекула Н2О легче и меньше, чем другие представители этого ряда. Она построена из атомов, которые сильнее различаются по электроотрицательности по сравнению с атомами других гомологов. Из этого следует, что связь в молекуле Н2О наиболее прочная. Молекула Н2О обладает максимальной энергией связи и наибольшим потенциалом ионизации среди указанных молекул. Она имеет наибольший по величине дипольный момент и наибольший угол молекулы (НОН). Особенности молекулы определяются характером взаимодействия атома кислорода и двух атомов водорода. Распределение электронной плотности заряда по молекуле Н2О анизотропно. На атомах И сосредоточены заряды по —[-0,3 е и заряд 0,6 е — на неподеленных парах электронов. Результатом распределения эффективных зарядов, по молекуле Н2О, больших амплитуд атомных колебаний и сравнительно высоких -частот нулевых атомных колебаний протона является большая величина и анизотропия атомной поляризуемости молекулы Н2О. [c.5]

    Электронная поляризуемость молекулы Н2О велика и анизотропна. [c.24]

    Дальнодействие межмолекулярного взаимодействия важно для процессов молекулярного рассеяния света. Однородность воды в области видимого света, с одной стороны, и неоднородность в области частот 10 з сек обусловливается дисперсионным дальнодействующим взаимодействием, определяемым большой анизотропной поляризуемостью молекул Н2О в жидкой воде. [c.160]

    Поляризуемость входящего в молекулу атома анизотропна, в связи с чем дисперсионные силы зависят от ориентации фрагментов молекулы друг относительно друга. Однако поскольку влияние ориентации мало и его трудно измерить, то им обычно пренебрегают и считают дисперсионные силы изотропными. [c.39]

    Для определения формы макромолекул (а также их анизотропной поляризуемости) пользуются и двойным лучепреломлением в потоке (динамооптический эффект Максвелла). Динамооптиметр представляет собой два коаксиальных цилиндра, между стенками которых находится исследуемая жидкость — раствор полимера. Внутренний цилиндр — ротор — вращается вокруг общей оси, увлекая за собой жидкость. В ней устанавливается градиент скорости — слой, примыкающий к стенке ротора, движется с наибольшей скоростью, слой, примыкающий к стенке неподвижного цилиндра, неподвижен. В результате макромолекулы ориентируются в растворе и подвергаются растягивающему усилию. Жидкость становится анизотропной, подобной двухосному кристаллу. Двойное лучепреломление наблюдается в направлении, параллельном оси динамооптиметра. Его измерение дает указанные сведения. [c.83]

    Теория размеров, формы, а также дипольных моментов, анизотропных поляризуемостей и т.д. полимерных цепей должна исходить из физического механизма их гибкости. Так или иначе гибкость определяется поворотами вокруг единичных связей. Впервые учет несвободы движения звеньев проводился на основе [c.130]

    Жидкость, содержащая анизотропные ориентированные частицы, обладает двойным лучепреломлением — она подобна двухосному кристаллу. Двойное лучепреломление измеряется в направлении г, параллельном оси динамооптиметра. Конечная причина двойного лучепреломления — анизотропия поляризуемости частицы. Для твердых эллипсоидов вращения с отношением большой и малой осей, равным Ь, теория дает для двойного лучепреломления [c.164]

    Внутренняя анизотропия непосредственно зависит от строения электронной оболочки макромолекулы. Анизотропную поляризуемость молекулы можно вычислить, если известны анизотропные поляризуемости образующих молекулу химических связей и их расположение. Тензор поляризуемости молекулы выражается суммой тензоров поляризуемости связей. Такой метод расчета называется валентно-оптической схемой [62, 72]. Тензоры поляризуемости определены для всех важнейших связей из данных по молекулярной рефракции, поляризации рассеянного света и эффекта Керра [2, 62, 72]. В случае гибкой макромолекулы вычисленную величину Да следует усреднить по всем конформациям [2, 3, 5]. [c.165]


    Во всем предыдущем изложении поляризуемость рассматривалась как скаляр. В действительности же поляризуемость несферической электронной системы — молекулы или атомной группы — тензорная величина, имеющая различные значения по разным направлениям в молекуле. Это необходимо учитывать при рассмотрении взаимодействия на малых расстояниях, в частности при плотной упаковке молекул в кристаллах и жидкостях. Сама упаковка молекул в молекулярных кристаллах обусловлена анизотропными дисперсионными силами [27]. Так, плоские л-электронные системы — ароматические соединения, азотистые основания (см. стр. 83) и т. д. — сильнее всего взаимодействуют при параллельном расположении. Эти взаимодействия по существу и определяют вторичную структуру нуклеиновых кислот (см. гл. 8). [c.195]

    Оптические свойства среды характеризуются показателем преломления света, который по своей природе связан с поляризуемостью молекул и отдельных атомных групп под действием электрического вектора электромагнитной волны. В изотропной среде показатель преломления одинаков по всем направлениям, но в анизотропной среде показатель преломления зависит от направления распространения светового луча и направления электрического вектора в электромагнитной волне. В общем случае в среде с произвольными оптическими свойствами показатель преломления является тензорной величиной (ге), поскольку он зависит от выбора двух направлений [c.367]

    В табл. 1-13 в качестве примера приведены поляризуемости аь 2, 3 нескольких видов анизотропных молекул. [c.36]

    Из всех молекулярных характеристик наиболее непосредственной и чувствительной мерой осевой упорядоченности структурных элементов молекулы является ее оптическая анизотропия. Действительно, если в какой-либо системе, состоящей из Р оптически анизотропных элементов (каждый из которых характеризуется разностью двух главных поляризуемостей а —аг=Аа), возникает преимущественная ориентация этих элементов относительно некоторой оси, то такая система становится оптически анизотропной как целое и разность ее поляризуемостей в направлении оси и перпендикулярно ей равна [c.62]

    Таким образом, для анизотропных молекул различную поляризуемость в различных направлениях можно описать посредством эллипсоида поляризации . [c.92]

    Так как все направления одинаково вероятны, то в отсутствии пол эта анизотропия отдельных молекул в общей среде незаметна. Среда изотропна, отношение постоянных Ai , определяющих интенсивность поглощения, во всех направлениях одно и то же. Только при действии, внешнего электрического поля вся среда становится анизотропной. Молекулы, как обладающие дипольным моментом, так и не обладающие им, приобретают направленность не имеющие дипольного момента вследствие анизотропии поляризуемости — по оси наибольшей поляризуемости, а диполи, существовавшие заранее, — в направлении поля. Вследствие такой ориентации отношение интенсивностей поглощения становится различным в различных направлениях. На световой луч, колебания электрического вектора которого происходят параллельно полю, оказывают влияние главным образом те колебания, которые характеризуются величиной А.. На световой луч, колебания которого происходят в перпендикулярном к полю направлении, влияют частоты, определяемые Aj и Aj. Если направить линейно поляризованный световой луч перпендикулярно к наложенному однородному электрическому полю, то в зависимости от того, происходят ли колебания его электрического вектора параллельно или перпендикулярно к полю, скорость распространения света в среде будет различной. Следовательно, будут различными и соответствующие показатели преломления Пр и Пв- Мы имеем  [c.98]

    Здесь Кх есть анизотропная часть, обусловленная анизотропией оптической и электрической поляризуемости, а Кд — дипольная часть, в которую входит также и жесткий электрический момент. Обе части различным образом зависят от температуры. У дипольных веществ [c.100]

    Следует отметить, что работы [104, 75, 76, 105] представляют собой первую интересную попытку систематического исследования связи между анизотропным, или симметричным, релеевским рассеянием и строением жидкостей. Особо следует отметить предложенный в [105, 104] метод определения анизотропии поляризуемости молекул на основании данных о степени деполяризации света в разведенных растворах. Этот метод, развитый далее в работах Ле-Февра, представляет, на наш взгляд, большой интерес и заслуживает широкого применения. [c.114]

    В данном сообщении будет идти речь только о той части, которая связана с флюктуациями ориентации, или, иначе говоря, об анизотропном рассеянии света. Интенсивность этого излучения зависит прежде всего от анизотропии поляризуемости молекул. В случае газов константа анизотропного рассеяния выражается формулой [c.242]

    Если причины, определяющие образование локальной структуры жидкого кристалла, ее геометрия и конфигурация локального молекулярного поля в настоящее время далеко не изучены, то для немезогенов свойства, ведущие к анизотропному взаимодействию с окружением, более ясны. В отсутствие специфического взаимодействия (водородная и донорно-ак-цепторная связь, кулоновские силы) анизотропия взаимодействия будет определяться положением векторов дипольного момента и главной оси тензора поляризуемости, зависящими также от направления оси главного момента инерции молекулы немезогена [137]. [c.252]

    Вероятно, образование жидкокристаллического раствора связано с возможностью сохранения анизотропного молекулярного взаимодействия, определяемой размерами и конфигурацией полости локальной структуры, конфигурацией молекулярного поля в этой полости и ориентацией вектора дипольного момента и главной оси тензора поляризуемости молекулы немезогена относительно молекулярного поля. Если в растворе имеет место специфическое взаимодействие, то эти факторы следует рассматривать уже применительно к продуктам взаимодействия. [c.252]

    Электронная поляризуемость молекул — свойство анизотропное, в общем случае она описывается тремя величинами а , Oj и а , характеризующими т называемый эллипсоид поляризуемости . Для молекул, имеющих ось симметрии третьего или более высокого порядка, характерны и 02=03. Например, для молекулы Hj = 5,1210 ° м (5,12 А)и ==2,43-1 (Г(2,43А ). Это означает, что дипольный момент, вызываемый полем, параллельным оси молекулы, отличен от момента, индуцируемого полем, перпендикулярным к оси. Наконец, для молекул высокой сим усетрии T , 0 ) и сферически симметричньк атомов и ионов а=Од =02=03. В опытах 1ю рефракции определяется ве-/личина о, средняя по всем направлениям. [c.74]

    Поляризуемость двухатомной молекулы (например, Нг) анизотропна электроны, образующие связь, легче смещаются в поле, направленном вдоль молекулы, чем в поперечном. Молекулы, попадая в поле излучения частоты V, оказываются в переменном электрическом поле, и, следовательно, наведенный дипольный момент осциллирует с частотой V. Осциллирующий диполь излучает с частотой падающего излучения, что объясняет природу рэлеевского рассеяния. Если в молекуле одновременно реализуются внутренние движения, оказывающие периодическое влияние на поляризуемость, то диполь будет испытывать дополнительные осцилляции с периодичностью этих движений (vкoл), а это значит, что наряду с возбуждающей частотой V должны появиться компоненты с частотой V Vкoл. Однако следует отметить, что для проявления комбинационного рассеяния молекулярное вращение или колебание должно вызывать изменение какой-либо составляющей поляризуемости молекулы. Поэтому, если молекула имеет низкую симметрию или совсем ее не имеет, не приходится задумываться, какие типы ее колебаний будут активны в комбинационном рассеянии обычно активными считаются все колебания. Все типы колебаний в тетраэдрической молекуле приводят к изменениям и дипольного момента, и поляризуемости следовательно, все они активны как в ИК-, так и в КР-спектрах, что [c.771]

    Виды М. в. Основу М. в. составляют кулоновские силы взаимод. между электронами и ядрами одной молекулы и ядрами и электронами другой. В экспериментально определяемых св-вах в-ва проявляется усредненное взаимод., к-рое зависит от расстояния R между молекулами, их взаимной ориентации, строения и физ. характеристик дипольного момента, поляризуемости и др.). При больших R, значительно превосходящих линейные размеры / самих молекул, вследствие чего электронные оболочки молекул не перекрываются, силы М в можно достаточно обоснованно подразделить на три вида - электростатические, поляризационные (индукционные) и дисперсионные. Электростатич. силы иногда называют ориентационными, однако это неточно, поскольку взаимная ориентация молекул может обусловливаться также и поляризац. силами, если молекулы анизотропны. [c.12]

    Четвертая глава посвящена водородной связи в Н2О. На примере полиморфных форм льдов (полностью водородосвязанных структур) показывается, что большие амплитуды атомных колебаний протонов во льдах определяют большую анизотропную поляризуемость молекул Н2О, В результате чего дальнодействующее взаимодействие в водородосвязанной структуре одинаковых молекул осуществляется при помощи дисперсионных сил типа Лондона, обусловленных колебаниями атомов молекулы Н2О, Возможность дисперсионного взаимодействия водородной связи, определяемую туннельными переходами протона в растворах кислот и оснований, рассматривал Цундель (1972). Однако близость спектральных характеристик льдов с дефектами кристалла и без дефектов показывает, что процессы переходов протонов от молекулы к молекуле не определяют водородную связь во льдах и воде. [c.6]

    Потенциалы ( 111,14)—( 111,16) дают зависимость энергии взаимодействия ф двух силовых центров только от расстояния между ними. Силовые центры молекул и твердых тел являются анизотропными. Энергия дисперсионного взаимодействия анизотропных силовых центров зависит не только от расстояния между ними, но и от взаимной ориентации их эллипсоидов поляризуемости [27, 284]. Решетка графита, например, обладает сильной анизотропией поляризуемости [285]. Поэтому потенциал дисперсионного взаимодействия силового центра молекулы с атомом углерода графита должен сильно зависеть от взаимной ориентации их эллипсоидов поляризуемости [286—288]. Эту зависимость потенциала взаимодействия двух силовых центров необходимо учесть при объяснении различия потенциала Ф взаимодействия молекулы адсорбата с базисной и призматической гранями решетки графита [286—288]. Были проведены расчеты энергии Ф взаимодействия атомов инертных газов и СО 2 с базисной и призматической гранью графита, учитывая эффект анизотропии атом-атомного потенциала [286, 287], Однако потенциал Фдисп дисперсионного взаимодействия силового центра молекулы с базисной гранью графита, полученный на основании потенциала дисперсионного взаимодействия силового центра молекулы с атомом углерода графита [c.259]

    На рнс. 4.8 приведены зависимости от концентрации указанных выше параметров, экстраполированных по времени к своим равновесным значениям. Как видно из рис. 4.8, а (кривая 2), средний квадрат оптической анизотропии рассеивающего элемента 8 существенно возрастает с увеличением концентрации. Вместе с тем наблюдается уменьшение размеров анизотропных микрообластей ац (кривая /), указывающее на увеличение степени микроориентации единицы рассеивающего объема среды. Подобные закономерности наблюдаются для изменений параметров флуктуации поляризуемости (рис. 4.8, б, кривая 4) и размеров корреляции поляризуемости (кри- [c.84]

    Положительный знак аниз0тр0 пии молекулы сополимера у —у2 означает, что поляризуемость молекулы в направлении ее наибольшей геометрической протяженности 71 (параллельно Н) больше, чем в перпендикулярном к к направлении (рис. 25). Найденное большое положительное значение 71 —у2 невозможно объяснить аличием в макромолекуле положительно анизотропных цепей полиалкилметакрилата, так как его анизотропия слишком мала [22] и содержание в сополимере незначительно (- Ю о). Очевидно, главную роль в наблюдаемой анизотропии следует приписать полистиролу, поляризуемость которого вдоль его молекулярной цепи значительно меньше поляризуемости в перпендикулярном направлении. Но в таком случае для возникновения большей поляризуемости в продольном направлении макромолекулы сополимера /г цепи полистирола должны быть в среднем направлены поперек к. Это и соответствует гребнеобразной структуре привитого сополимера. [c.98]

    Интенсивность рассеянного когерентного релеевского излучения, согласно предыдущему, зависит, во-первых, от степени упорядоченности расположения рассеивающих моле ул, а, во-зторых, от величины индуцированных моментов в отдельной молекуле, т. е. от поляризуемости а. Временные колебания плотности, вызывающие появление рассеянного света, уже не люгут объяснить дальнейшее явление, состоящее в том, что если падающий световой луч линейно поляризован, то луч, испытавший преломление, остается полностью поляризованным, а рассеянный свет — частично деполяризован. Для объяснения такой деполяризации рассеянного света приходится отказаться от сделанного ранее (стр. 55 и 69) упрощающего предположения о том, что внутри молекулы ее поляризуемость изотропна, т. е. что поляризуемость во всех направлениях одинакова. Уже не в каждой молекуле индуцируется момент, пропорциональный силе возбуждающего поля, .. = аЕ, совпадающий с направлением поля. Если бы это было так, то колебания молекулы происходили бы только в направлении электрического поля — падающего света, и излучение, перпендикулярное к направлению колебаний, было бы полностью поляризовано. Если же поляризуемость в молекуле не во всех направлениях одинакова, т. е. анизотропна, то молекула уже не колеблется в направлении возбуждающей силы и излучение содержит также свет, у которого направление элгктрических колебаний перпендикулярно к возбуждающему полю, т. е. рассеянный свет содержит в большей или меньшей степени колебания, параллельные направлению падения возбуждающего света. Поэтому рассеянный свет является смесью поляризованного и возникшего вследствие деполяризации естественного света, как это в действительности и наблюдается. Итак, для объяснения деполяризации рассеянного света мы должны принять анизотропию поляризуемости. Это значит, что в направлениях трех взаимно перпен- [c.91]


Смотреть страницы где упоминается термин Поляризуемость анизотропная: [c.150]    [c.32]    [c.540]    [c.13]    [c.253]    [c.153]    [c.309]    [c.93]    [c.64]    [c.96]    [c.142]   
Справочник химика Издание 2 Том 1 1963 (1963) -- [ c.388 ]

Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.388 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.388 ]

Справочник химика Изд.2 Том 1 (1962) -- [ c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризуемость



© 2025 chem21.info Реклама на сайте