Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация комбинационного рассеяния света

    ПОЛЯРИЗАЦИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА [c.293]

    В дополнение к определениям температуры пара и показателя преломления, которые обычно применяются для того, чтобы следить за течением разгонки и как средство интерпретации результатов разгонки, применяются также исследования других физических свойств, которые позволяют получить более полную картину исследуемой смеси. Так, иногда определяются плотности, вязкости, вращение плоскости поляризации света и температуры плавления. Обычно эти методы применяются лишь тогда, когда показатель преломления или точки кипения или обе величины вместе не дают точного ответа. Исследование вращения поляризованного света применяется к таким природным продуктам, как терпены и их производные. Температуры плавления и застывания имеют более широкое применение, в частности как критерий чистоты. Применение температур плавления получило значительное распространение в недавних исследованиях углеводородов, плавящихся при низких температурах [157]. Методы таких физических измерений могут быть найдены в книгах, посвященных физико-химическим методам [130], или в оригинальной литературе. Более широко применяются анализы с помощью ультрафиолетовых, инфракрасных спектров, спектров комбинационного рассеяния и масс-спектрального метода как для качественных, так и для количественных определений. [c.264]


    ДОВ определяется измерением зависимости оптического вращений от длины волны при использовании плоскополяризованного света КД определяется измерением зависимости разности поглощения света с правой и левой круговой поляризацией от длины волны. Почти все такие измерения проведены в УФ- и видимой областях спектра. В последнее время измерения КД стали проводиться в ИК-области при использовании комбинационного рассеяния света 38]. Появились также сообщения о наблюдении спектров кругового дихроизма, индуцированного жидкими кристаллами у ахиральных веществ, растворенных в холестерических фазах [371, [c.246]

    Для изучения поляризации комбинационного рассеяния света можно использовать как неполяризованный и Ехф ), [c.293]

    В тех же областях спектра обнаруживают полосы, отвечающие комбинационному рассеянию света (спектр Рамана). Их возникновение основано на поляризации молекул при колебаниях и вращении. Эффект Рамана обнаруживается в спектре рассеянного света [c.198]

    Оптические методы идентификации полимеров особенно удобны, поскольку они, как правило, требуют лишь небольшого количества вещества и не ведут к его деструкции. Для этой цели обычно используют следующие оптические свойства поглощение света в ультрафиолетовой, видимой и инфракрасной областях, спектры комбинационного рассеяния, рассеяние света и показатель преломления. Плеохроизм, т. е. различное поглощение по разным направлениям, имеет значение главным образом в инфракрасной области. Вращение плоскости поляризации было обнаружено только в нескольких случаях. [c.95]

    Теоретический анализ комбинационного рассеяния света несколько сложнее, чем инфракрасного поглощения, поскольку здесь приходится учитывать продольные волны поляризации которые не играют никакой роли в формулах дисперсии показателя преломления. Но если воспользоваться тем, что при комбинационном рассеянии то формула (10.15) при- [c.180]

    В случае комбинационного рассеяния света мы должны подставить в (4.63) для квадратов матричных элементов их значения (5.46), (5.47). Рассмотрим вначале спонтанное излучение, описываемое вторым членом формулы (5.47). При учете только этого члена возникает обычное комбинационное рассеяние. Распределение по частотам и углам и поляризация этой части рассеянного излучения описываются функцией п (ш, О, е ), которая в соответствии с 2—4 зависит от распределения по частотам и углам и поляризации возбуждающего излучения (т. е. от вида функций р(со) и р(Й)). Если величина п достаточно велика, то становится существенным также первый член в (5.47), описывающий индуцированное излучение. При этом необходимо учесть, что комбинационное рассеяние света не сводится к последовательно происходящим независимым процессам поглощения и испускания света. Поэтому законы сохранения энергии и импульса связывают лишь начальное и конечное состояния, устанавливая зависимость между величинами , О, е и со, 2, е. Например, закон сохранения энергии дает корреляционный множитель б(о) -Ьш,-—со). Соответственно возникает корреляция свойств индуцируемого и падающего излучений, которая описывается функцией п. Исходя из этого, будем считать п =п (со, О, е со, О, е). Для упрощения вычислений будем предполагать, что зависимость п от частот со, со может быть выделена в виде отдельного множителя  [c.78]


    Аналогично случаю комбинационного рассеяния света можно получить выражения для компонент момента в направлениях х, у и г и связать их с различными направлениями поляризации падающего света. Тогда [c.36]

    В общем случае поляризуемость молекулы может быть анизотропной. Это обусловливает различное состояние поляризации линий в спектре комбинационного" рассеяния света. Если бы поляризуемость была изотропной и оставалась бы таковой при колебании, то при [c.178]

    Исследование спектров комбинационного рассеяния света состоит в определении длин волн или частот линий, их интенсивности и состояния поляризации. При структурных исследованиях нужно знать все три фактора для идентификации, анализа и т. д. степень деполяризации может не измеряться. [c.152]

    Поляризационная емкость 475 Поляризация, линий комбинационного рассеяния света 15  [c.734]

    Поскольку линии КР имеют низкую интенсивность, при применении обычных источников излучения необходимы длительные экспозиции. Однако появление лазеров позволило получить мощные источники монохроматического излучения для изучения комбинационного рассеяния. Преимуществами таких источников являются высокая интенсивность света, коллимированного в определенном направлении, малая ширина линий и поляризация луча света. Чаще всего применяют возбуждающую линию Не—Ке-лазера непрерывного действия с длиной волны [c.477]

    Полоса 37875 сж обусловлена сочетанием чисто электронного перехода с колебанием 735 см К Аналогичное колебание в спектре паров кристалла ВТМ имеет величину 751 сж . В спектрах поглощения кристаллов НТМ, как и в спектре поглощения паров и кристаллов ВТМ, не найдено обертонов этого колебания, хотя, как указывалось ранее (стр. 97), в спектре комбинационного рассеяния оно интерпретируется как полносимметричное колебание. Обращает на себя внимание также резкое ослабление полосы 37875 м- в компоненте III спектра кристалла НТМ. Как известно, сочетание чисто электронного перехода с полносимметричной колебательной частотой не изменяет правил отбора, и соответствующая полоса должна иметь ту же поляризацию, что и чисто электронный переход. Резкое различие в величинах поляризационного отношения (отношения интенсивностей поглощения в полосе для двух поляризаций падающего на кристалл света) для полосы 37875 сж и полосы чисто электронного перехода может служить основанием для интерпретации колебания 730 сж как несимметричного. Ввиду [c.99]

    В гл. I кратко рассмотрены общие вопросы разновидности люминесценции, ее связь с фотохимией, поляризация люминесценции. Уделено внимание и рассеянию света (релеевскому и комбинационному), поскольку оно может служить помехой при измерениях люминесценции. [c.5]

    Дополнительной наблюдаемой характеристикой при изучении КР-спектров является поляризация линий комбинационного рассеяния. Степень деполяризации естественного падающего света для полносимметричных колебаний находится между О и V . тогда как для всех колебаний, которые не являются полносимметричными, она равна /т. [c.96]

    Применяя методику поляризационных измерений, Д. Ф. Киселев и Л. П. Осипова [389] составили таблицы интенсивностей для линий комбинационного рассеяния а-кварца. Эти измерения, вообще говоря, могут проводиться несколькими методами. 1. Кристалл освещается линейно поляризованным светом, а на пути рассеянного света поочередно устанавливается поляроид с направлением поляризации, параллельным и перпендикулярным щели спектрометра. 2. Кристалл поочередно освещается линейно поляризованным светом с направлением поляризации, параллельным и перпендикулярным направлению наблюдения этот метод осуществляется обычно с использованием трубчатых поляроидов. 3. Кристалл освещается неполяризованным светом, а на пути рассеянного света поочередно устанавливаются поляроиды с направлением поляризации, параллельным и перпендикулярным щели прибора. Каждый из этих методов позволяет по измеренным значениям интенсивности составить таблицу интенсивностей, компоненты которой пропорциональны квадратам компонент тензора рассеяния (методы измерения, расчетов и введения необходимых поправок описаны в работах [389, 393] см. также добавление к книге [44]). Пользуясь таблицей интенсивностей, легко найти абсолютные значения компонент тензора рассеяния. Определение знаков составляющих этого тензора иногда может быть выполнено на основании простых соображений симметрии, но в ряде случаев требует дополнительных расчетов и измерений. [c.422]

    В заключение необходимо отметить, что помимо частоты и интенсивности важной характеристикой полос в спектрах комбинационного рассеяния служит так называемая степень деполяризации р. Эта величина, получаемая из измерений состояния поляризации рассеянного света, содержит важную информацию об анизотропии поляризуемости молекулы, являющейся, как правило, не скаляром, а тензором. Эта информация, в свою очередь, позволяет судить о характере распределения электрон-нбй плотности, а также о взаимном влиянии связей и групп в молекуле. [c.63]


    У спектров комбинационного рассеяния есть еще одно интересное свойство рассеянный свет обычно поляризован. Степень поляризации (или деполяризации) зависит, однако, от симметрии матрицы поляризуемости и от симметрии возбужденного колебания. Например, линии комбинационного рассеяния полносимметричных колебаний поляризованы, а линии других колебаний деполяризованы. Поэтому измерение поляризации линии комбинационного рассеяния дает возможность определить экспериментально, какие из колебаний полносимметричные. [c.172]

    Применение соответствующих источников света и кювет позволяет регистрировать вращательные и колебательные спектры комбинационного рассеяния не только фотографическим, но и фотоэлектрическими методами. Надежное измерение основных параметров линий комбинационного рассеяния — интенсивности, ширины и поляризации — открывает большие возможности не только для решения структурных задач, но и для качественного и количественного молекулярного анализа в газовой фазе. [c.348]

    Идея всякого спектроскопического эксперимента чрезвычайно проста. Электромагнитное излучение с длиной волны X (или частотой V = с/Х) направляют на образец и определяют какие-либо параметры излучения, исходящего из образца. Одним из простейших таких параметров является доля потока излучения, поглощенная или рассеянная образцом (на этом принципе основаны спектроскопические методы, некоторые методы ЯМР-спектроскопии, а также разнообразные измерения упругого рассеяния). Кроме того, можно исследовать излучение образца, характеризуемое иной частотой, чем частота падающего света (примерами могут служить флуоресценция, фосфоресценция, спектроскопия комбинационного рассеяния и неупругое рассеяние света). Помимо интенсивности излучения как таковой исследуют также ее распределение по частотам. В более сложных методах измеряют, кроме того, поляризацию излучения (КД, ДОВ и поляризационная флуоресценция). [c.10]

    Для изучения поляризации комбинационного рассеяния света можно использовать как неполяризованный ЕгфО и Е сфО), так и плоскополяризованный возбуждающий свет Ех = 0). В этом случае степень деполяризации обозначают соответственно как р и Рр. [c.293]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Внимательное рассмотрение спектра комбинационного рассеяния света привело к выводу, что линия 1400 см должна быть приписана иону N0+. Этот ион имеет 16 молекулярных электронов, и, следовательно, надо было бы ожидать, что он является линейным с единственной частотой колебания, большей 1320 смГ . Кроме того, одна линия должна быть сильно поляризована эта поляризация наблюдалась экспериментально для линии 1400 см . Линия 1050 смГ приписывается иону нитрата или иону бисульфата в присутствии серной кислоты. Следовало бы ожидать, что ионы нитрата или бисульфата должны были бы присутствовать, по-видимому, в количестве, пропорциональном таковому иона нитрониума, согласно следующим уравнениям  [c.558]

    В спектроскопических методах результат взаимодействия света с молекулярными системами регистрируется как функция отклика. Она отражает либо изменение какого-нибудь параметра воздействующей световой волны (амплитуды, частоты и направления волны, фазовых характеристик, поляризации, скорости распространения и т. д.), либо появление нового качества (например, генерацию второй гармоники излучения). Зависимость функции отклика от интенсивности световой волны определяет деление на линейную (линейная зависимость) и нелинейную (нелинейная зависимость) спектроскопии. В этой книге излагаются методы как линейной лазерной спектроскопии (абсорбционная и флуоресцентная спектроскопия комбинационное рассеяние), так и некоторые методы нелинейной оптической спектроскопии (двухфотонное поглощение, нелинейное рассеяние). Отдельно будут изложены методы фемтосекундной спектроскопии. [c.114]

    Явление изоморфизма в органических кристаллах наблюдается обычна в случае замены в молекуле данного атома однотипным. Так, согласно рентгеноструктурным и нашим спектроскопическим исследованиям [1, 2], изоморфными являются ряды п-дигалоид- и симм,тригалоидзамещенных бензола. В спектрах комбинационного рассеяния света малых частот изоморфных кристаллов наблюдаются определенные закономерности в расположении частот линий, их интенсивностях, состоянии поляризации, ширине. Между средними коэффициентами квазиупругих сил, вычисленных из частот вращательных качаний молекул, и температурами плавления веществ наблюдается линейная зависимость. Исследования показали, что наблюдаемая зависимость распространяется на достаточно широкий круг веществ, кристаллы которых принадлежат одной и той же пространственной группе симметрии, а молекулярные структуры являются подобными. Б слз ае совершенно изоморфных кристаллов наблюдается также линейная зависимость между средними коэффициентами квазиупругих сил ж коэффициентами плотной упаковки кристаллов. [c.227]

    На основании предыдущих исследований [1] было дано спектроскопическое определение совершенной изоморфности органических кристаллов. Спектры комбинационного рассеяния света малых частот совершенно изоморфных кристаллов органических соединений являются подобными по числу и интенсивности соответственных, т. е. относящихся к однотипным колебаниям, линий. Частоты линий 1С(пектров закономерно смещаются с изменением моментон инерции (или масс) молекул, а также с некоторым изменением квазиупругих постоянных. Состояние поляризации соответственных линий одно и то же для одинаковых ориентаций кристаллов по отношению к направлению возбуждающего света и направлению наблюдения. Определенные закономерности в ряду изоморфных кристаллов имеются и в ширине соответственных линий спектров малых частот. [c.230]

    Бурке и Джонс [26] изучили спектры комбинационного рассеяния света для жидкого нентафторида брома при комнатной температуре при длине волны линии ртути 4358 А и инфракрасные спектры газообразного BrFg в области от 400 до 700 см при помощи спектрометра с оптикой из КВг. ИК-спектры изучали при низком давлении, так как BrF5 быстро воздействует на оптику прибора. Рамановская трубка была изготовлена из фторотена. Использовавшийся в исследовании пентафторид брома получали по методу Руффа и Менцеля [1] дистилляцию его проводили в стальной аппаратуре. В спектре комбинационного рассеяния жидкого пентафторида брома найдено девять частот (684, 629, 569, 539, 480, 410, 365, 310 и 241 см ), а в инфракрасном — четыре полосы поглощения при 690, 645, 583 и 418 см . Недостаточное количество данных по инфракрасным спектрам при низких основных частотах и поляризация линий комбинационного рассеяния не дали возможности сделать определенные выводы о структуре молекул пентафторида брома. Однако из двух вероятных моделей, тетрагональной пирамиды и тригональной бипирамиды, авторы отдали предпочтение первой, поскольку симметрия С предполагает девять частот в спектре комбинационного рассеяния, а симметрия Dsh — лишь шесть частот. [c.221]

    ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — условное название большого числа колич. методов анализа, основанных на измерении различных физич. свойств соединений илп простых веществ с пспользованием соответствующих приборов. Измеряют плотность, поверхностное натяжение, вязкость, поглощение лучистой энергип (рентгеновских лучей, ультрафиолетового, видимого, инфракрасного излучений и микроволн), помутнение, излучение радиации (вследствие возбуждения), комбинационное рассеяние света, вращение плоскости поляризации света, показатель преломления, дисперсию, флуоресценцию и фосфоресценцию, дифракцию рентгеновских лучей п электронов, ядерный и электронный магнитный резонанс, полуэлектродпые потенциалы, потенциалы разложения, электрич. проводимость, диэлектрич. постоянную, магнитную восприимчивость, темп-ру фазовых превращений (темп-ра кипения, плавления и т. п.), теплоты реакцпп (горения, нейтрализации и т. д.), теплопроводность и звукопроводность (газов), радиоактивность и другпе фпзпч. свойства. В настоящее время все чаще фпзико-химич. методы анализа называют (более правильно) инструментальными методами анализа. [c.214]

    Полученные формулы показывают, что угловая зависимость интенсивности и степени деполяризации линий комбинационного рассеяния света определяется величиной всего одного параметра р. Все три инварианта тензора рассеяния рс, И ра входят в этот общий параметр. Вследствие этого изучение зависимости интенсивности и степени деполяризации от угла 0 не дает возможности определить раздельно величину указанных инвариантов. Если из теоретических соображений один из инвариантов можно считать известным, то измерение р позволяет найти отношение двух других параметров, а измерение интенсивности при 0=я/2 в принципе позволяет установить их абсолютную величину. Однако в общем случае, когда все три инварианта неизвестны, измерения с использованием линейно поляризованного возбуждающего излучения не дают возможности найти величину этих инвариантов. В связи со сказанным выше представляет большой интерес предложенный Плачеком [7] метод независимого определения всех трех инвариантов тензора рассеяния, основанный на использовании при измерениях, кроме линейно поляризованного света, также возбуждающего излучения с круговой поляризацией. [c.28]

    Эффект комбинационного рассеяния света наблюдается при облучении молекулы светом с частотой v, когда часть света излучается с измененной частотой Sv. Изменение частоты связано с колебательными частотами молекулы. Нормальное колебание в молекуле активно в КР-спектре, если оно сопровождается изменением электрической поляризации. Комбинационное рассе-яние широко не используется при изучении полимеров большей частью из-за экспериментальных трудностей, хотя этот метод и дал важную информацию о колебаниях в полиэтилене и некоторых других полимерах. Важность этого метода состоит в том, что колебания, которые не активны в инфракрасных спектрах, часто бывают активны в КР-спектрах. Метод комбинационного рассеяния в этой главе детально не рассматривается. Проявлению комбинационного рассеяния в полимерах посвящена работа Нильсена [100] и более поздняя — Мацуи и сотр. [87]. [c.68]

    Исследование спектров комбинационного рассеяния света малых частот изоморфных кристалловп-дигалоидозамещенных бензола показало большое подобие этих спектров по числу линий, их расположению в спектре, а также по интенсивности и состоянию поляризации соответственных линий [1]. Закономерное изменение частот линий нри переходе от спектра одного кристалла к спектру другого в основном определялось изменением масс или моментов инерции молекул. При этом, как видно из табл. 1, коэффициенты [c.137]

    Комбинационное рассеяние света. Эффект комбинационного рассеяния, открытый., независимо друг от друга Раманом, Мандельштамом и Ландсбергом, часто применяется для исследования соединений с ковалентной связью. Сущность эффекта заключается в том, что когда свет достаточной интенсивности проходит через вещество, то часть света рассеивается перпендикулярно направлению исходного луча, содержит и большие и меньшие частоты, чем были в исходном луче при обычном рассеянии света (релеевское рассеяние) частота вообще не изменяется. При комбинационном рассеянии наряду с нормальной частотой в спектре обнаруживаются дополнительные линии — спутники . Те линии, частота которых меньше, чем в исходном колебании, называют стоксовыми линиями, а те, у которых частота больше,— антистоксовыми. Физическая картина этого явления представляет собой взаимодействие падающего кванта света с молекулой вещества (неупругое соударение). При этом или часть энергии кванта поглощается молекулой и рассеивается меньший квант, или, если молекула находится в возбужденном состоянии, падающий квант получает от нее дополнительную энергию и рассеивается больший квант. Молекула, следовательно, может находиться в двух состояниях, отличающихся по запасу энергии на А . В первом случае квант рассеянного излучения должен иметь величину (Яг—АЕ), а во втором — величину (/гг+АЯ). Это соответствует частотам стоксовой линии V—(АЕ/Н) и антистоксовой - - АЕ/Н), причем интенсивность стоксовой линии будет выше, так как большинство молекул находится в основном состоянии, а число возбужденных молекул обычно очень мало. Энергетические уровни в комбинационном рассеянии представляют собой уровн , возникающие вследствие изменения поляризуемости молекулы. Свет, т, е. электромагнитные волны, вызывает поляризацию люлекулы и индуцирует в ней переменный диполь. Между напряженностью Е поля и дипольным моментом .I существует прямая пропорциональная зависимость Е= а х., где а — поляризуе- [c.206]

    Так как эта книга посвящена только колебательным спектрам, в ней опущено описание электронных и вращательных спектров. Несмотря на то что колебательные спектры экспериментально наблюдаются как инфракрасные спектры пли как спектры комбинационного рассеяния, физическая природа этих двух типов спектров различна. Инфракрасные спектры возникают в результате переходов между двумя колебательными уровнями молекулы, находящейся в основном электронном состоянии, и обычно наблюдаются как спектры поглощения в инфракрасной области. С другой стороны, спектры-ком-бинационного рассеяния возникают при электронной поляризации, вызванной ультрафиолетовым или видимым -излучением. Когда молекула облучается монохроматическим светом с частотой V , то вследствие электронной поляризации молекулы, вызванной падающим светом, последняя излучает свет с частотой V (релеевское рассеяние), а также у у,- (комбинационнное рассеяние), где — колебательная частота. Таким образом, колеба- [c.18]

    Линии комбинационного рассеяния обычно поляризованы, и степень поляризации зависит от симметрии нормального колебания. Предположим, что падающее излучение (естественный свет) проходит в направлении у, а рассеянное излучение наблюдается в направлении х. Если, используя анализатор, разложить рассеянное излучение на компоненты (/(Ц) и г( 1), то отношенне интенсивностей в этих двух направлениях [c.96]

    При рассеянии света один из осцилляторов (обозначим его цифрой 1), связанных с полем излучения, теряет квант, тогда как другой (обозначим его цифрой 2) получает квант. В том, чтобы оба фотона имели одно и то же направление распространения и одинаковую поляризацию, нет необходимости. При ре-леевском рассеянии у них одинаковые частоты, а при бриллю-эновском и комбинационном — разные. Для того чтобы поляризация падающего и рассеянного фотона не изменялась внутри кристалла и для того чтобы связанное с ними поле оставалось поперечным, будем рассматривать распространение вдоль главных осей кристалла — это третье условие. Рассмотрим начальное состояние системы кристалл + излучение, характеризуемое волновой функцией ее конечное состояние 1)8тп 1)нт и про- [c.215]

    Поляризация линий комбинационного рассеяния. Другим весьма важным параметром линии рассеяния является ее состояние поляризации. Дело в том, что, хотя пробы обычно освещают естественным (неполяри-зованным) светом, линии рассеяния вследствие процессов, связанных с рассеянием света молекулами, оказываются поляризованными и притом по-разному, в зависимости от того, какое колебание молекулы представляет та или иная линия и каков характер строения молекулы (симметрия молекул). Состояние поляризации линии рассеяния определяют так называемой степенью деполяризации р. Сильно поляризованные линии (р мало) обычно одновременно оравнительно узки и интенсивны. У широких линий степень деполяризации близка к предельному значению, равному /т. Знание степени деполяризации существенно при анализе строения молекул по их спектрам. С точки зрения количественного анализа интерес к величине р обусловлен тем, что спектрограф влияет на интенсивность спектральных линий. Именно, свет различной поляризации может быть по-разному ослаблен при прохождении через спектрограф, ибо в зависимости от поляризации он в различной степени отражается при падении на грани призм [I, в, 7 II, 12]. Следовательно, и различно поляризованные линии будут по-разному ослаблены данным спектрографом. А это может повести к тому, что если табличные интенсивности получены при помощи призменного спектрографа, то в случае перехода к дифракционному спектрографу, где условия отражения иные, чем в призменном, отношение интенсивностей у различно поляризованных линий будет отличаться от табличных. [c.150]

    Для того чтобы исключить влияние различной степени поляризации линий на их относительную интенсивность, следует принять меры к полной деполяризации ])ассеянного света раньше, чем он попадет на призмы спектрографа. В этом случае различие потерь вследствие отражения на поверхностях призм спектрографа для различно поляризованных компонент не может вызвать изменения относительной интенсивности линий комбинационного рассеяния с различной степенью поляризации. Следовательно, осветительная установка должна обеспечивать получение вполне деполяризованного рассеянного света. Это требование выполняется при возможно более всестороннем облучении исследуемого вещества [c.20]


Смотреть страницы где упоминается термин Поляризация комбинационного рассеяния света: [c.4]    [c.21]    [c.135]    [c.373]    [c.415]    [c.450]    [c.30]    [c.416]    [c.207]    [c.134]   
Смотреть главы в:

Экспериментальные методы в химии полимеров - часть 1 -> Поляризация комбинационного рассеяния света

Экспериментальные методы в химии полимеров Ч.1 -> Поляризация комбинационного рассеяния света




ПОИСК





Смотрите так же термины и статьи:

Комбинационное рассеяние

Комбинационное рассеяние света

Поляризация света

Рассеяние света

Свет, комбинационное рассеяние



© 2025 chem21.info Реклама на сайте