Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристалличность и свойства механически

    При переходе чистого гомополимера из кристаллического (или частично кристаллического) в аморфное состояние его физические и механические свойства, морфологические и структурные характеристики и термодинамические параметры претерпевают соответствующие изменения. Так, например, в кристаллическом состоянии гомополимер представляет собой твердое высокопрочное вещество, в то время как в расплавленном состоянии он может уже приобрести свойства жидкости с низкой текучестью. Однако, если молекулярный вес образца достаточно высок, расплав приобретает каучукоподобные свойства (высокую эластичность). Влияние кристалличности на механические свойства выражается в понижении модуля упругости после плавления в 10 —10 раз в частности, механическую прочность волокон можно объяснить наличием в них ориентированных кристаллических участков. [c.31]


    Ряд авторов публикует работы по изучению физических, химических и механических свойств полиэтилена, определению кристалличности полиэтилена и температур плавления [208—211 ], кинетике кристаллизации [212], фракционированию и определению молекулярных весов [213, 214], статистической механике разбавленных растворов [215], плотности растворов полиэтилена [216],ориентации в полиэтилене [217—219] и влиянию ориентации на сорбционную способность полимеров [220] и на теплопроводность [221], ядерной магнитной релаксации в полиэтилене [222], зависимости сжимаемости от температуры при больших давлениях [223], влиянию на аутогезию молекулярного веса, формы молекулы и наличия полярных групп [224], фрикционных свойств полиэтилена [225], скорости ультразвуковых волн в полиэтилене [226], реологического поведения полиэтилена при непрерывном сдвиге [227], инфракрасного дихроизма полиэтилена [228], плотности упаковки высокополимерных соединений [229], кристалличности и механического затухания полиэтилена [230], межкристаллической ассоциации в полиэтилене [231], принципа конгруэнтности Бренстеда и набухания поли- [c.188]

    С увеличением степени кристалличности физико-механические свойства полимеров улучшаются. Повышается прочность на разрыв, теплостойкость и т. д. При этом на механические свойства полимеров оказывает значительное влияние тип кристаллической структуры. Под нагрузкой легче разрушаются крупные структурные элементы и труднее микрокристаллические. [c.35]

    Окисление является сложным процессом не только с химической, но и физико-химической точки зрения, что обусловлено неравномерным течением процесса в объеме полиэтилена. Показано, в частности, что сначала окисляются аморфные участки полиэтилена, которые более доступны для молекул кислорода по сравнению с плотноупакованными кристаллическими областями. Аморфные участки полиэтилена выступают при термоокислительной деструкции в качестве буфера, защищающего кристаллические области от разрушения. Поэтому с увеличением кристалличности чувствительность механических свойств полиэтилена к окислению возрастает, хотя скорость его окисления ниже [2]. [c.15]

    Физические свойства регулярно построенных и атактических полимеров заметно отличаются [кристалличность, повышенная механическая прочность, более высокая, отчетливая температура плавления и другие свойства у стереорегулярных полимеров, например изотакти-ческий полистирол т. пл. 220°С, атактический т. пл. (размягч.) 80—90 С]. [c.208]


    Механические свойства политетрафторэтилена в значительной степени зависят от его молекулярной массы и степени кристалличности. Большинство механических свойств (в том числе прочность при ударе и изгибе) ухудшается с увеличением степени кристалличности политетрафторэтилена и, напротив, улучшается с увеличением молекулярной массы. Обычно для достижения оптимальных эксплуатационных характеристик стремятся использовать политетрафторэтилен с максимально большой молекулярной массой и низкой степенью кристалличности, причем последнюю можно регулировать в процессе формирования лакокрасочных покрытий. [c.333]

    Полагая, что особенности механических свойств полимеров определяются в основном аморфным пространством и что кристаллиты в силовом поле только поворачиваются или разрушаются, некоторые исследователи пытаются связать механические характеристики полимеров непосредственно со степенью кристалличности. Однако во многих случаях однозначного соответствия между степенью кристалличности и механическими свойствами не наблюдается . Например, по данным рентгеноструктурного анализа было установлено что после термической обработки кристаллического полиамида 68 никаких заметных изменений в нем не произошло. Но при этом существенно изменилась сферолитная структура, что сильно отразилось на износостойкости полимера. [c.330]

    Можно привести много примеров, когда отсутствует непосредственная связь между степенью кристалличности и механическими свойствами. Одним из наиболее ярких примеров является механическое поведение изотактического полистирола. [c.330]

    Известно, что при окислении из-за деструкции полимера снижаются ориентация, степень кристалличности и механические свойства волокна. Поэто.му окисленное волокно должно обладать достаточно высокими физико-механическими показателями, обеспе- [c.218]

    Наблюдаемое на практике при хранении или эксплуатации изменение свойств полимерного изделия может быть обусловлено как процессами чисто химической природы (окисление), так и процессами в основе которых лежат физические явления (кристаллизация, рекристаллизация и т. п.). Можно думать, что последние в боль-щей степени оказывают влияние на тип и степень совершенства надмолекулярных образований, а следовательно, и на комплекс эксплуатационных свойств. Рис. 3.2 иллюстрирует наличие связи между степенью кристалличности и механическими свойствами образцов полипропилена в процессе термостарения [10, 26—29]. Как следует из этого рисунка, изменение механических свойств полипропилена при тепловом старении согласуется с изменением степени его кристалличности. В начальный период теплового старения увеличивается разрушающее напряжение и несколько уменьшается отно- [c.70]

    При термическом воздействии на полимерную пленку независимо от того, исходит это воздействие от подложки или с внешней стороны, возможно протекание обратимых и необратимых процессов. Обратимый термический процесс изменения свойств (механических, электрических и др.) характеризует теплостойкость. В случае кристалличных полимеров мерой теплостойкости может служить температура плавления Т ц. [c.174]

    Кристалличность. Знание степени кристалличности важно для оценки проницаемости и селективности таких полимерных мембран, как сплошные пленки (включая тонкие поверхностные слои асимметричных ацетатцеллюлозных мембран), диализные мембраны и мембраны для разделения газов. Кроме влияния на перенос вещества кристалличность воздействует на различные параметры, влияющие на химические и механические свойства, что приводит к изменению свойств мембраны со временем. [c.71]

    Механические свойства полиэтилена улучшаются с повышением молекулярного веса и степени кристалличности. [c.10]

    Таким образом, ПЭНД отличается от ПЭВД большей плотностью, более высокой степенью кристалличности, лучшими температурными характеристиками и физико-механическими свойствами. [c.389]

    Полиэтилен Циглера отличается высокой степенью кристалличности и рядом важных преимуществ перед полиэтиленом, получаемым при высоком давлении механической прочностью, гибкостью, высокой температурой размягчения, способностью давать прочные нити, прекрасными электроизоляционными и антикоррозионными свойствами. [c.597]

    Зависимость физико-химических и механических свойств полиэтиленовых покрытий от скорости охлаждения. Исследовались три технологических режима охлаждения естественное со скоростью 15—20 °С/мин, быстрое (закалка в воде при - -10 °С) и медленное со скоростью 1 °С/мин. С увеличением скорости охлаждения уменьшается степень кристалличности (табл. 5.5). [c.125]

    Свойства полимера заметно изменяются с переходом его из аморфного в кристаллическое состояние. С увеличением степени кристалличности возрастают плотность, твердость и жесткость полимера, заметно увеличивается механическая прочность, но одновременно уменьшается упругость и эластичность. Присутствие кристаллических образований вызывает снижение хладотекучести полимера,так как [c.52]


    Полимеризация этилена может быть проведена под влиянием -облучения. При дозе облучения 36 мегарентген ст( пень пре-вращения этилена в полимер достигает 12,5% уже при давлении 84 ат. Одновременно с процессом полимеризации под влиянием 7-облучения происходит частичная деструкция образовавшегося полимера с последующим соединением продуктов деструкции в новые макромолекулы преимущественно сетчатой формы. Такой полиэтилен размягчается при более высокой температуре, чем полиэтилен высокого давления, имеет меньшую текучесть в размягченном состоянии и не растворяется даже при нагревании. При более высоких давлениях (100 ат и выше) и обычной температуре, а также при значительно меньших дозах облучения (4,5 мегарентген) можно получить твердый полиэтилен с удовлетворительными механическими свойствами. С пони>кением температуры полимеризации возрастает плотность полиэтилена (до 0,95 г см ) и степень его кристалличности. [c.195]

    Поляризуемость полимерной молекулы по направлению главной оси и поперек ее различна. Поскольку главные оси полимерных молекул ориентированы перпендикулярно радиусу сферолита, такие агрегаты обладают способностью к двулучепреломлению и рассеивают лучи света, если их размер оказывается соизмерим с длиной волны видимого света (в то же время аморфные полимеры, например полистирол, оптически прозрачны). Размеры сферолитов влияют не только на оптические свойства полимеров, но также и на их механические характеристики. Степень кристалличности, число и размеры кристаллитов так же, как и скорость кристаллизации, существенно зависят как от температуры кристаллизации (отжига), так и от величины молекулярной ориентации (степени ориентации) в момент кристаллизации, вызванной воздействием внешнего поля механических напряжений. [c.40]

    Механические свойства частично-кристаллических полимеров ниже температуры Т, сильно зависят от их степени кристалличности. Чем выше кристалличность полимера, тем больше его хрупкость. Модуль сдвига высококристаллических полимеров достигает 10- МПа и практически не зависит от времени. При температуре выше Т,п модули частично-кр1 сталлических полимеров измерить трудно, потому что в отличие от аморфных полимеров они превращаются в жидкости, обладающие практически постоянной энергией активации вязкого течения. Только при очень большой молекулярной массе их поведение напоминает поведение резин. [c.258]

    Кристаллизация полимеров приводит к повышению их модуля упругости, твердости, прочности и других механических характеристик. Многие исследователи пытаются связать это со степенью кристалличности. При этом предполагают, что особенности механических свойств определяются главным образом аморфными участками, а кристаллиты в силовом поле или поворачиваются, или разрушаются. Установлено, что своеобразный характер деформации полимеров связан с фазовым превращением, происходящим в силовом поле, т. е. с процессом рекристаллизации. [c.23]

    Очень важно установить, как изменяются свойства полимеров в тех случаях, в которых они эксплуатируются или сохраняются. Самопроизвольное изменение технически ценных свойств (прочности, эластичности и др.), происходящее в обычных условиях эксплуатации или хранения данного полимера или пластмассы, называют старением. Этим термином объединяются различные эффекты, вызываемые процессами, происходящими в полимере под действием кислорода воздуха, света, нагревания, радиации, механических факторов и пр. В пластифицированных полимерах такие эффекты могут вызываться, например, постепенным испарением пластификатора. В искусственно ориентированных полимерах они могут обусловливаться релаксационными изменениями строения, уменьшением степени ориентированности цепей и их кристалличности. [c.232]

    В стереорегулярных полимерах, благодаря упорядоченному расположению боковых групп, достигается очень близкое расположение как главных цепей, так и боковых групп. Все это способствует проявлению действия межмолекулярных сил. В результате этого стереорегулярные полимеры характеризуются высокой степенью кристалличности, обладают более высокими молекулярными массами, меньшей растворимостью, повышенными механическими свойствами, олее высокой температурой плавления (размягчения), чем это имеет место у атактических полимеров. Последние — обычно аморфные массы, легче растворяются", обладают низкой механической прочностью, теплостойкостью. Понятно, почему в промышленности главное внимание обращается на получение именно стереорегулярных полимеров (стереоспецифическая полимеризация). [c.250]

    При понижении температуры политетрафторэтилена, нагретого выше температуры фазового перехода, происходит обратный процесс —кристаллизация полимера, причем скорость кристаллизации наибольшая около 300° С. Если образец охладить быстро, он не успеет закристаллизоваться. Такой полимер, который называется закаленным , мало содержит кристаллической фазы и более растяжим при низких температурах. Закаленный образец постепенно переходит в кристаллическое твердое состояние. Скорость этого перехода возрастает при приближении к 300° С. Поэтому с точки зрения стабильности механических свойств полимера температура в пределах 300°С для эксплуатации нежелательна. При температуре до 250° С этого явления ввиду малой скорости кристаллизации не наблюдается, поэтому до 250° С политетрафторэтилен можно длительно применять, не опасаясь изменения его физических свойств, связанного с изменением кристалличности. [c.145]

    Прп выборе носителей необходимо учитывать их природу и свойства, а также избирательное действие. Кроме структурной характеристики (аморфность, кристалличность, компактность поверхности), должны учитываться и следующие особенности носителей 1) химический состав и степень дисперсности 2) физические свойства поверхности (пористость, адсорбционные качества, электрические свойства, механическая прочность) 3) количество и концентрация катализатора, которые могут быть получены на носителе (толид,ииа нанесения, поглотительная емкость) 4) активная поверхность носителя и величина отношения [c.83]

    Рединг [460, 461], Клайн с сотр. [462] и Никола [463] изучали строение цепи полиэтилена и влияние разветвлений на его кристалличность, динамико-механические и диэлектрические свойства. Показано, что с ростом разветвленности кристаллич- [c.229]

    Влияние кристалличности на механические свойства полигексаметиленадипинамида исследовали Баккаредда и Бутта [9631 поверхностную пленку и другие структурные эффекты в найло-новом волокне — Симменс [964] и Швертассек [965]. [c.262]

    Разрушающее напряжение и относительное удлинение при разрыве определяются прогрессирующим окислением аморфных обла-сте11 материала, которые выступают при деструкции в качестве своеобразного буфера, защищающего кристаллические участки от разрушения. Поэтому, с увеличением степени кристалличности чувствительность механических свойств материала к окислению [c.11]

Рис. IV. 10. Зависимость степени кристалличности (- - -) и механических свойств сополимеров ТФХЭ—ВДФ от состава Рис. IV. 10. <a href="/info/1296430">Зависимость степени кристалличности</a> (- - -) и <a href="/info/700057">механических свойств сополимеров</a> ТФХЭ—ВДФ от состава
    Синтез нового вида полиолефинов основан на особого рода каталитической полимеризации, получившей сейчас название стереоспецифической полимеризации, т. е. такого процесса, в результате которого образуются макромолекулы совершенно определенной, регулярной структуры. Высокая степень кристалличности стереорегулярных полиолефинов сообш ает им ряд ценных свойств — механическую и термическую прочность, хорошую обрабатываемость и т. п. [c.102]

    За период с 1950 г. по 1960 г. в области полиыеризационных процессов с применением специально разработанных катализаторов Циглера и Натта была открыта новая глава, представляющая значительный теоретический и практический интерес. Речь идет о сте-реоспецифической полимеризации. Различные стереоизомерные полимеры, полученные на основе одного и того же мономера в зависимости от хода полимеризации могут значительно различаться по физическим свойствам (температуре плавления, кристалличности, механическим свойствам и т. д.). [c.293]

    По мере повышения содержания хлора н полиэтилене pe. к() изменяются его физико-механические свойства. При хлорировании полиэтилен постепенно начинает утрачивать присущую ему кристалличность и становится высокоэластичным н каучуко-иодобным полимером, по свойствам напоминающим поливинн. -хлорид, содержащий большое количество пластификатора. По мере увеличения содержания хлора и снижения степени криста,I-личности полимера его эластичность возрастает, достигая максимума при 15—20%-ном содержании хлора, одновременно умень-П1ается и прочность полимера. Минимальная прочность хлорированного полиэтилена соответствует. 35—38%-ному содержанию хлора (рис. 70). При еще большем содержании хлора полимер [c.220]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    При исследовании механических свойств трех образцов поли-л-ропилена с одинаковой степенью кристалличности, но с различными надмолекулярными структурами были получены различные значения прочности. В ряде случаев было замечено, что при одинаковых размерах сферолитов в разных образцах их механические свойства заметно различаются. Это свидетельствует о том, что они не определяются однозначно размерами сферолитов, а должны зависеть от морфологии и тонкой структуры сферолитов. [c.23]

    Переход полимера в кристаллическое состояние приводит к потере им высокоэластических свойств. Типичные термомеханические кривые кристаллических полимеров представлены на рис. V. 6. Ниже Т л деформация, развивающаяся в кристаллическом полимере под действием небольшой нагрузки, мала. В полимерах с высокой степенью кристалличности переход из стеклообразного состояния в высокоэластическое мало влияет на механические свойства материала. Существенные изменения свойств кристаллических полимеров наблюдаются в области температуры плавления. При температуре плавления кристаллическая фаза полимера исчезает, деформируемость образца резко возрастает. Если степень полимеризации полимера сравнительно невысока, так что его Гт оказывается ниже Тпл, то при плавлении он сразу переходит в вязкотекучее состояние (см. рис. V. 6, кривая 2). При достаточно высоких степенях полимеризации Тт может оказаться выше Гпл. Тогда между Тпл и Тт на термомеханической кривой появляется плато вы-сокоэластичности (см. рис. V. 6, кривая /). [c.142]

    У полиэтилена среднего давления тоже большая плотность (0,96—0,97 г1см ), высокая температура плавления (127—130° С) и значительная степень кристалличности (85—93%). Механические свойства у него такого же порядка,-как у полиэтилена низкого давления. По диэлектрическим свойствам полиэтилен среднего давления не уступает полиэтиленам, полученным другими способами. [c.99]

    Из полиэфиров ценными техническими свойствами обладает нолиэти-ленторефталат, высокие механические свойства которого обусловлены теми же причинами, что и полиамидов. Полиэфиры алифатических дикарбоновых кислот не обладают такими свойствами. В частности, низкая температура их плавления (ниже 100°) препятствует использованию их в качестве волокнообразующих материалов. В отличие от них полиэтилентерефталат обладает высокой кристалличностью, высокой температурой плавления (265°) и образует прочные волокна, что объясняется большей жесткостью цепи благодаря наличию симметричных п, и -фениленовых группировок и полярностью эфирных групп [75]. [c.671]

    Абразивные материалы. Корунд — единственная встречающаяся в природе наиболее устойчивая кристаллическая модификация глинозема (оксид алюминия, А12О3) —в настоящее время редко используется в качестве промышленного абразивного материала. В промышлеиностн применяют преимущественно искусственный корунд. Основным сырьем для получения такого корунда служит высокосортный боксит (гидроксид алюминия), более чистый, чем тот, который применяют для получения алюминия. Искусственный корунд получают следующим образом. Сначала во вращающихся печах из боксита удаляют воду при температуре около 1100°С, а затем иолучают спеченный корунд, сплавляя кальцинированный глинозем при 2000 °С с коксом (чтобы восстановить оксиды железа), железом (чтобы удалить диоксид кремния) и диоксидом титана (добавка для придания ударной вязкости) в электропечи. Далее материал охлаждают, причем скорость охлангдения определяет степень кристалличности получаемого материала. После охлаждения крупные куски корунда (2—3 т) дробят и измельчают в абразивный порошок. Имеются различные виды спеченного корунда, которые отличаются друг от друга по составу, механическим свойствам п ударной вязкости нормальный, с высоки.м содержанием диоксида титана, мелкокристаллический и белый . Свойства некоторых абразивных материалов приведены ниже  [c.228]


Смотреть страницы где упоминается термин Кристалличность и свойства механически: [c.138]    [c.375]    [c.538]    [c.14]    [c.669]   
Кристаллизация полимеров (1968) -- [ c.182 , c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалличности



© 2024 chem21.info Реклама на сайте