Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки структурные, мутации

    Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов — белков. Любая мутация гена ведет к изменению структуры или количества белка. [c.198]

    Биологическая специализация устанавливается в процессе случайных мутаций и последуюш,его отбора. Наиболее важны мутации, возникающие в ДНК- В табл. 9.1 даны ориентировочные частоты мутаций ДНК высших организмов. В этих организмах частоты допустимых мутаций на уровне ДНК существенно не влияют на отбор белков, поскольку структурные зоны [78, 475], кодирующие белок, составляют менее 10% ДНК (разд. 4.1). Тем не менее, как было установлено, ДНК гомогенна в пределах одного вида [476, 477], что указывает на существование некоторого отбора и на уровне ДНК. Вопрос о том, определяется ли эта гомогенность малой популяцией предшественников и малым генетическим дрейфом (недарвиновская гипотеза, поддерживаемая нейтралистами [144, 478—480]) [c.199]


    Белки-мутанты можно привлекать к интерпретации структурных принципов. Все фиксированные мутации белков можно рассматривать как эксперименты природы, которые указывают нам, какие вариации мало влияют на стабильность белка и на динамику свертывания. С другой стороны, случайные и, по-видимому, нефиксирую-ш иеся мутации, как в аномальном гемоглобине, дают примеры вариаций, заметно понижающих стабильность белковой структуры. Оба типа мутаций можно использовать для совершенствования наших представлений о невалентных силах в белках. Для этой цели можно использовать процедуры минимизации энергии исходных и мутировавших полипептидных цепей на основе известных трехмерных структур [501]. Определенные таким образом разности энергий и геометрические отклонения можно сравнить с экспериментальными данными, полученными соответственно из термодинамических измерений [413, 417[ и рентгеноструктурных исследований с высоким разрешением. Аналогичные сопоставления можно провести с помощью моделирования свертывания цепи (разд. 8.6), которое позволяет получить дополнительную информацию о некоторых аспектах процесса свертывания. [c.207]

    Но есть и другая точка зрения. Согласно ей, коды митохондрий не более древние, а наоборот, более молодые, чем основной код, и возникли, когда ббльшая часть митохондриальных генов уже перешла в ядро. В митохондриальной ДНК осталось так мало генов, что изменение кода перестало быть обязательно смертельным событием для митохондрии и клетки в целом. После того, как такое изменение произошло из-за мутации в аппарате синтеза белка, в структурных генах произошли мутации, компенсирующие эти изменения кода. После этого процесс перехода генов из митохондрий в ядро прекратился, так как аппарат синтеза белка митохондрий не мог уже быть подменен аппаратом клетки. Эта гипотеза привлекательна тем, что объясняет, почему передача генов из митохондрий в ядро остановилась на полдороге. [c.75]

    Полярность. Некоторые мутации в структурных генах оперона оказывают двоякое влияние на синтез белка они не только приводят к изменению структуры соответствующего полипептида, но и обусловливают уменьшение скорости синтеза тех ферментов, которые кодируются генами, расположен- [c.537]

    Модель Уотсона — Крика не только дает приемлемое объяснение своеобразия каждого гена и его точного воспроизведения, но, кроме того, она хорошо согласуется с нашими представлениями о мутациях. Вероятно, мутации происходят в результате изменения последовательности пар оснований в молекулах нуклеиновых кислот. Эти изменения, которые в свою очередь вызывают образование измененных белков, могут, например, состоять в замене одной пары оснований другой парой. Речь может идти также о структурных изменениях положения (инверсии или транслокации) или, наконец, о делециях или дупликациях пар оснований. [c.274]


    Различия между сортами злаков по белкам эндосперма возникли несколько тысячелетий назад в результате мутаций структурных генов, а также мутаций генов, регулирующих синтез этих белков. Дальнейшие изменения регуляторных генов можно вызвать с помощью облучения или химических соединений. Мутации в единичных структурных генах мало изменяют состав запасных белков семян, поскольку почти всегда эти гены образуют большие семейства, однако в случае хромосомных мутаций этот эффект оказывается заметным. [c.385]

    Мы можем отличить структурные гены от регуляторных по эффекту мутаций. Мутация в структурном гене ведет к отсутствию в клетке определенного белка, кодируемого этим геном. Мутация же в регуляторном гене влияет на выражение всех структурных генов, которые он контролирует. Природа такого влияния зависит от типа регуляции. [c.178]

    Выражение /ас-генов контролируется по типу негативной регуляции. Из этого следует, что гены транскрибируются при условии, что они не выключены регуляторным белком. Следовательно, при мутации, инактивирующей репрессор, гены остаются в активном состоянии. Поскольку функция регулятора сводится к предотвращению выражения структурных генов, он был назван бел-ком-репрессором. [c.178]

    Наследование простых признаков по Менделю предполагает существование в гаплоидном геноме единственной копии каждого детерминирующего фактора. Фактор может располагаться в определенном локусе, и самое простое предположение состоит в том, что каждый такой локус представляет собой последовательность ДНК, кодирующую единственный белок примером этого служит определение гена, данное в гл. 2. Вот классический взгляд на структурный ген уникальный компонент генома-единственная последовательность, кодирующая свой белковый продукт, которую поэтому можно идентифицировать с помощью мутаций, нарушающих функцию белка. [c.230]

    Следует особо подчеркнуть, что само по себе изменение эффективности процесса переноса электрона при замене путем точечной мутации одной аминокислоты на другую не всегда говорит о непосредственном участии данного аминокислотного остатка в механизме изучаемой реакции. Обнаруживаемая при этом корреляция может иметь и опосредованный характер в силу изменения общих структурных особенностей белков РЦ при их модификации. Уместно провести в этих случаях аналогию с аллостерическим эффектом ингибирования ферментов, который достигается вследствие взаимодействия ингибитора с белковой глобулой в месте, удаленном от активного центра. Причина этого состоит в кооперативных свойствах белка, в результате чего локальные структурные изменения могут распространяться по всей глобуле, влияя на функциональные свойства белка. [c.338]

    Мутации, вызываемые путем сайт-специфичного воздействия,, используют сегодня для проверки адекватности результатов структурных исследований. В некоторых случаях с их помощью-удалось показать, что структурная стабильность белка и его каталитическая активность могут быть разобщены. Накопив достаточное количество информации о взаимосвязи между стабильностью структуры белка и его функцией, мы, возможно, сумеем осуществлять тонкую регуляцию активности биологических катализаторов и создавать полностью синтетические их аналоги. Недавно появилась работа, в которой сообщалось о клонировании первого синтетического гена фермента, кодирующего активный фрагмент молекулы рибонуклеазы. [c.184]

    Так же как и пуфы политенных хромосом (которые, возможно, имеют сходное строение), хромосомы типа ламповых щеток активно участвуют в транскрипции. Считают, что приблизительно 3% ДНК участвует в образовании мРНК, накапливающейся в ооците и функционирующей на ранних этапах эмбрионального развития [272]. Было бы логично предположить, что одна петля в хромосоме типа ламповых щеток,, подобно одному диску политенной хромосомы, играет роль транскрипционной единицы. Однако здесь мы сталкиваемся со следующим парадоксом количество ДНК, содержащееся в одном диске или в одной, петле, достаточно для детерминирования 30—35 белков среднего размера. Тем не менее при анализе тонкой генетической структуры хромосомы дрозофилы в каждом диске удается обнаружить не более одной единицы комплементации [273]. Из этого следует, что всего лишь 3% ДНК дрозофилы содержат структурные гены для синтеза белков. Что же делает остальная ДНК и почему мутации в ней не приносят вреда организму Ответы на эти вопросы до сих пор, к сожалению, не получены. [c.297]

    Наоборот, в отнощении ячменя нет столь четких результатов. Если и были получены мутанты, имеющие количественные и качественные отличия по содержанию их запасного белка, то один Riso 56 (или Ног-2са) соответствует мутации структурного локуса Ног-2 [154]. У фасоли также было обнаружено существование доминантного гена, действие которого значительно уменьшает количество продуцируемого фазеолина [16]. Вероятно, что будут выявлены и другие типы модели регуляции. Однако и эти упомянутые результаты обнадеживают и ясно показывают, на какие новые пути ориентированы исследования. [c.61]


    Разработанный Ферштом эмпирический подход к изучению термодинамических и кинетических аспектов свертывания белковой цепи с привлечением сайт-направленного мутагенеза позволил автору и сотрудникам проанализировать все этапы формирования трехмерной структуры белка (барназы), не содержащего дисульфидных связей [31-33]. Изучение обратимой денатурации начинается с тщательного визуального анализа трехмерной структуры белка с целью выявления остатков, которые предположительно могут играть важную роль в структурной стабилизации и кинетике свертывания. Следующий этап заключается в модификации потенциально важных для сборки межостаточных взаимодействий путем специальных химических изменений белковых цепей актуальных остатков и сайт-направленного мутагенеза. Завершается этап составлением оптимального набора и его синтеза методами генной инженерии. Далее проводятся термодинамические и кинетические экспериментальные исследования механизма ренатурации (денатурации) нативного белка и мутантов, определения констант равновесия, констант скорости и величин изменений свободной энергии Гиббса стабильных структур, промежуточных и переходных состояний. Найденные значения используются для построения энергетических профилей путей свертывания белковых цепей дикого и мутантного типов. На их основе определяются разностные энергетические диаграммы, которые показывают различия в уровнях энергии всех состояний на пути свертывания белка и мутантов. Реализация описанной процедуры приводит к эмпирическим зависимостям между важными для свертывания белковой цепи взаимодействиями боковых цепей и параметрами, по мысли Фершта, характеризующими кинетику, равновесное состояние и механизм ренатурации [И]. Каждая мутация, которая в [c.87]

    Лактальбумин [517, 528] и лизоцим [518, 529—531] представляют классический пример двух белков с аналогичными последовательностями, но различными функциями и различными частотами фиксации мутаций. Предположение о структурном подобии обоих белков было впервые выдвинуто в 1958 г. и подтверждено спустя 10 лет [523, 533] путем сравнения аминокислотных последовательностей. Некоторые важные для сопоставления свойства обоих белков приведены в табл. 9.3. Трехмерную структуру бычьего лактальбумина определили, основываясь на структуре лизоцима белка куриного яйца, путем построения Л10дели [534] и последующей минимизации энергии [501, 535]. Эта процедура предполагает идентичность укладки обеих цепей, что представляется достаточно обоснованным, если учесть большое сходство аминокислотных последовательностей обоих белков (табл. 9.3). Этот пример показывает также, каким образом можно использовать данные по одному белку для структурного анализа отдаленно родственных гомологичных белков. [c.215]

    Молчащие мутации. Если под мутацией в традиционном смысле понимают внезапное изменение признака, т. е. изменение генотипа, проявляющееся в фенотипе, то на молекулярном уровне любое стабильное наследуемое изменение ДНК рассматривают как мутацию. Однако ввиду вырожденности генетического кода понятно, что не всякая мутация такого рода будет проявляться в фенотипе. Во многих триплетах изме- нение третьего основания остается без последствий ( молчапще мутации). Даже замена первого или второго основания триплета не всегда приводит к серьезным последствиям. Хотя структуры высшего порядка (третичная и четвертичная) определяются первичной структурой белка (т.е. последовательностью аминокислот), разные аминокислоты играют в этой структуре не одинаково важную роль. Например, мутация АиС->ОиС ведет к замене изолейцина валином, т.е. к замене одной липофильной группы на другую. Однако мутация Сии- ССи приведет к замене лейцина пролином, и последствием такой замены будет отклонение от нормальной пространственной конфигурадии полипептидной цепи, что может сильно изменить структуру высшего порядка. Из этого понятно, что различные мутации в одном и том же структурном гене определенного фермента могут по-разному сказываться на его активности возможны любые изменения-от едва заметного снижения каталитического действия до полной инактивации. [c.442]

    Далее, исследование структурных формул белков показало, что все молекулы данного белка математически тождественны друг другу, и только в результате генетической мутации может появиться измененная мутированная клетка, способная синтезировать измененный белок, причем все молекулы этого измененного белка также идентичны друг другу. Впервые Ингрэм на примере гемоглобина, а затем многие другие ученые показали, что простая генетическая мутация приводит к изменению одного единственного аминокислотного звена в полинентидной цепи белка. При этом свойства белка могут сильно измениться, хотя химическое повреждение и кажется весьма незначительным. Это проистекает из того, что макромолекулы белков свертываются в спиральную вторичную структуру вследствие образования огромного числа внутримолекулярных водородных связей, а спиральные з частки изгибаются и складываются в компактную третичную структуру, определяемую весьма тонким балансом различных молекулярных сил сцепления и отталкивания. Часто изменение природы одного звена цепи может вызвать катастрофические изменения третичной структуры. [c.10]

    Фермент, подвергающийся отравлению ядом, проявляет недостаток селективности. Его способность узнавать структуру субстрата, приспособленность его активного центра к структуре субстрата пеидеальны. Поэтому он может присоединить к себе и антиметаболит, блокирующий его активный центр. В результате мутации активный центр белка может измениться в направлении большей структурной избирательности. В этом случае фермент по-прежнему будет узнавать и присоединять субстрат. [c.298]

    Теория лизогении была подтверждена генетическими экспериментами, т. е. нахождением особого типа мутантов и их локализацией на генетической карте. Область хромосомы X содержит центральный сегмент С, управляющий лизогенизацией вируса и рядом цистронов, являющихся структурными генами, управляющими синтезом белков фага. Способность к лизогенизации полностью утрачивается в результате точечных мутаций С+ Ср. Исследование рекомбинантов показывает, что все эти мутации расположены в маленьком сегменте внутри С. Этот сегмент обозначается символом ira (иммунитет). Локус im и есть ген-регулятор, управляющий синтезом специфического репрессора белков фага. Изучая гетерозиготы, содержащие обе аллели С+ и j, мы убеждаемся в том, что мутант j рецессивен.. [c.500]

    Полиморфизм белков — это существование одного и того же белка в нескольких молекулярных формах, отличающихся по первичной структуре, физико-химическим свойствам и проявлениям биологической активности. Причинами полиморфизма белков являются рекомбинации и мутации генов. Изобелки — это множественные молекулярные формы белка, обнаруживаемые в пределах организмов одного биологического вида как результат наличия более чем одного структурного гена в генофонде вида. Множественные гены могут быть представлены как множественные аллели или как множественные генные локусы. [c.34]

    За 15 лет, прошедших с тех пор, как впервые удалось выделить мутантные фаги ruh, было идентифицировано много других мутантов Т-четных фагов. С помощью этого набора мутантов оказалось возможным настолько повысить разрешающую способность генетического анализа, что в конце концов удалось заполнить разрыв между химией ДНК и структурой гена (гл. XIII). Тем не менее стало ясно, что все эти мутации затрагивают только относительно малую часть всего генома фага. Причина этого совершенно очевидна большинство генов фага, несомненно, кодируют белки, осуществляющие жизненно важные функции, так что мутации по этим генам неизбежно должны быть летальными. Несмотря на очевидность этого обстоятельства, долгое время никому не приходило в голову применить к Т-четным фагам остроумный метод, разработанный Горовицем и Лейпольдом для нолучения мутантов по жизненно важным генам Е. oli. Этот метод состоит в отборе чувствительных к температуре мутантов (см. гл. V). Наконец, в 1960 г. Эдгар и Эпштейн выделили /s-мутанты фага Т4, которые совершенно не образуют стерильных пятен при 42 °С, но образуют их при 25 °С. В то же время штамм дикого типа T4/s образует стерильные пятна при обеих температурах одинаково хорошо. Изучение физиологии размножения /х-мутантов при повышенной, запрещающей температуре показало, что у разных мутантов блокированы разные стадии развития фага. Так, у /s-мутантов одного класса при запрещающей температуре репликация фаговой ДНК не может начаться вследствие того, что при 42 °С у них не могут функционировать те или иные ранние ферменты, участвующие в метаболизме нуклеотидов — предшественников ДНК у /s-мутантов другого класса при запрещающей температуре синтез ДНК начинается, блокируются же более поздние стадии. Возникают, например, мутации в гене, кодирующем фаговый лизоцим. Бактерии, зараженные такими мутантами, не лизируют при 42 °С, хотя и содержат инфекционные частицы потомства фага. Были также найдены мутации во многих генах, кодирующих структурные компоненты фага в бактериях, зараженных любым из таких мутантов, при 42 °С не происходит сборки целых частиц зрелого фага. В этом случае лизаты содержат различные типы недостроенных компонентов фага. Если мутация затрагивает ген, кодирующий белок головки фага, лизат, полученный при высокой температуре, содержит целые фаговые отростки, но не содержит головок. Когда мутация затрагивает ген, кодирующий фибриллы отростка, у почти завершенных фаговых частиц имеется головка и присоединенный к ней отросток, но отсутствуют фибриллы, необходимые для присоединения к клетке-хозяину. [c.283]

    Другое важное наблюдение было сделано при структурном анализе-А-белка триптофан-синтазы у обратных мутантов Тгр+, полученных из Тгр -мутанта trpA23. У части таких обратных мутантов Тгр в 210-м. положении вместо вредного аргинина мутанта irpA23 был обнаружен нормальный глицин. Это хорошо согласуется с рассмотренной в гл. XIII возможностью того, что в результате обратной мутации восстанавливается исходная последовательность нуклеотидов в мутантном гене, а следовательно, и нормальная аминокислотная последовательность в соответствующем белке. Однако у некоторых других обратных мутантов в А-белке в 210-м положении оказался не нормальный глицин, а серин. Это наблюдение является прямым доказательством существования невидимых, мутаций , в случае которых, как это было предположено в гл. VI, мутационная замена одного аминокислотного остатка на другой остается незамеченной. Действительно, как видно из приведенного примера, некоторые замены аминокислот в первичной структуре полипептида (такие,, как замена глицина на аргинин в 210-м положении) приводят к полной потере каталитической функции А-белка триптофан-синтазы, тогда как другие замены в том же положении (такие, как замена глицина на серин) не мешают каталитической функции возникшего мутантного фермента [c.366]

    Оказалось, что такие фаги содержат мутацию в гене, кодирующем полипептид длиной 320 аминокислот, необходимый для проникновения фага в клетку-хозяина в каждой частице фага Г2 содержится по одной молекуле такого полипептида. И наконец, мутанты группы III не могут образовывать нормальный белок оболочки, так как они содержат мутации в структурном гене этого белка. Более того, в ограничивающих условиях мутанты группы III синтезируют ненормально большие количества РФ и РП, так как плюс -цепи РНК, образующиеся в зараженных клетках, не инкапсулируются фаговым белком и, следовательно, могут служить матрицами для новых минус -цепей. Опыты по комплементации, в которых бактерии одновременно заражали двумя мутантами фага f2, показали, что три фенотипические группы четко совпадают с тремя группами комплементации при смешанном заражении бактерий двумя фаговыми мутантами, относящимися к разным или к одной и той же фенотипической группе, наблюдается соответственно нормальное или ненормальное развитие фагов. Эти результаты позволили заключить, что в РНК фага f2 закодировано не более трех белков. Следует отметить, что ни в одном из опытов со смешанным заражением не было обнаружено генетической рекомбинации между фагами. Значение такого результата неясно, так как большинство культур мутантов фага 12 содержит до 0,1 % ревертантов дикого типа. Столь высокая скорость мутаций генома РНК затрудняет поиски редких рекомбинантов. Конечно, возможно, также что генетическая рекомбинация тежду геномами РНК вообще не происходит и что этот процесс присущ только полидезоксирибонуклеотидам. [c.475]

    Только у небольшой части рибосомных белков идентифицированы определенные ферментативные или структурные функции, необходимые для синтеза белка. В то же время у бактерий получены мутации, затрагивающие большинство генов, кодирующих рибосомные белки. Все это дало возможность идентифицировать соответствующие гены кроме того, было показано, что функции изучаемых белков являются незаменимыми. Вероятно, многие из этих белков (а также рРНК) необходимы для формирования полной структуры рибосомы, обусловливающей правильное взаиморасположение различных активных участков и передвижение рибосом. Отнюдь не обязательно, чтобы они непосредственно участвовали в реакциях синтеза. [c.103]

    Гены, участвующие в споруляции, можно идентифицировать с помощью spo -мутаций, не оказывающих влияния на обычный вегетативный рост бактерий, но блокирующих споруляцию. Эти не способные к споруляции мутанты могут быть классифицированы на основе той стадии процесса, которую они блокируют. Соответственно мутанты обозначаются как spoO (споруляция вообще не может начаться), spol, spoil и так далее для последующих стадий. Некоторые из этих мутаций возникают в генах, кодирующих ферменты или структурные белки, необходимые для возникновения спор, но другие картируются в генах, контролирующих переключение различных фаз жизненного цикла. [c.157]

    Многие белки представляют собой олигомеры, т. е. состоят из двух или нескольких идентичных полипептидных цепей, взаимодействующих между собой с образованием функционально активной четвертичной белковой структуры. В простейшем случае это-димер (аг), состоящий из двух одинаковых субъединиц (а). Это обстоятельство может осложнять комплементационный анализ мутантных структурных генов, кодирующих такие белки. Ранее при обсуждении опытов по комплементации мы исходили из того, что комплементация невозможна при наличии в диплоиде двух гетероаллельных мутаций, вызывающих различные аминокислотные замены, каждая из которых независимо инактивирует соответствующий полипептид (см. главу 6). Для примера рассмотрим случай, когда оба мутантных аллеля, т и Ш2, в условиях гомозиготно-сти приводят к некоторому мутантному фенотипу (например, к отсутствию определенной ферментативной активности). На основании сформулированных ранее представлений следовало бы полагать, что поскольку обе мутации затрагивают один и тот же ген, то и двойные гетерозиготы типа т +1 + т также будут иметь мутантный фенотип. В большинстве случаев, в том числе и для генов, кодирующих олигомерные белки, это действительно так. В то же время известно и доста- [c.30]

    Эффективным методом, позволяющим изучать изменчивость белков в природных популяциях и определять частоты генотипов и аллелей в популяциях, служит электрофорез в гелях (см. дополнение 22.1). Маса-тоши Ней предложил удобный способ оценки генетической дифференциации популяций по данным электрофореза (дополнение 26.1). При этом используются две величины 1) генетическое сходство I, оценивающее долю структурных генов, которые идентичны в обеих популяциях, и 2) генетическое расстояние (или дистанция) )-оценка среднего числа замен аллелей в каждом локусе, произошедших за время раздельной эволюции двух популяций. Замены аллелей имеют место тогда, когда в результате мутаций аллели в отдельных локусах замещаются другими аллелями или когда сразу замещается целый набор аллелей. Этот метод учитывает то обстоятельство, что замены аллелей могут быть неполными в какой-то части популяции новый аллель может вытеснить старый , который тем не менее с большей или меньшей частотой продолжает присутствовать в популяции. [c.214]

    По мнению большинства исследователей, в основе биологического действия УФ-излучения лежат фотохимические превращения биомолекул — белков, нуклеиновых кислот и структурных липидов, участвующих в образовании биомембран эти превращения могут привести к поражению наследственного аппарата или мембранных образований. Ингибирование деления, мутации и гибель клеток в результате облучения в большинстве случаев относят за счет тех или иных повреждений ядра клетки. Описаны нару-н1ения в структуре ДНК в результате прямого (образования димеров) или опосредованного действия УФ-излучения [Копылов, Королькова, 1973 Самойлова, 1975]. Вместе с тем зти явления могут быть сопряжены и с повреждениями иных клеточных структур [Армап и др., 1971]. Основные эффекты воздействия УФ на клеточные мембранные структуры — увеличение их проницаемости для неорганических ионов и подавление активности отдельных мембранных ферментов и ферментативных комплексов [Рощупкин, 1973 Владимиров, Рощупкин, 1975]. Наиболее важным следует считать ослабление функции пассивного барьера для неорганических ионов, которое наблюдается нри небольших дозах облучения, когда фотоинактивация ферментов еще не наблюдается. Нарушение барьерной функции мембран, даже в незначительной степени, может привести к гибели клетки. Кроме эффекта отдаленной гибели клеток УФ-излучение в зависимости от дозы и спектра, а также [c.46]


Смотреть страницы где упоминается термин Белки структурные, мутации: [c.483]    [c.311]    [c.256]    [c.306]    [c.41]    [c.200]    [c.200]    [c.203]    [c.384]    [c.152]    [c.153]    [c.365]    [c.431]    [c.206]    [c.317]    [c.477]    [c.35]    [c.332]   
Генетика человека Т.3 (1990) -- [ c.119 ]




ПОИСК







© 2025 chem21.info Реклама на сайте