Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия каталитическая

    На многих предприятиях в качестве топлива используют заводские газы — побочные продукты технологических установок. Ресурсы заводских газов зависят от глубины переработки углеводородного сырья. В производствах, процессы которых протекают под давлением водорода (риформинг, гидроочистка, изомеризация), образуются газы, не содержащие непредельных углеводородов, п их применение для сжигания в печах не вызывает затруднений. В то же время, состав побочных газов термических и некоторых каталитических процессов характеризуется заметным содержанием непредельных углеводородов. Их концентрация зависит, главным образом, от жесткости режима и в определенной степени от состава сырья и применяемых катализаторов. Входящая в состав заводских газов жирная часть (изобутан, этилены) является ценным исходным сырьем для получения высокооктанового бензина, а сухая часть (водород, метан п этан- -этилен) применяется в качестве технологического топлива. Заводские топливные газы, особенно с установок пиролиза бензина, необходимо подвергать очистке от непредельных углеводородов (фракций С4, С5 и диеновых соединений). Указанные непредельные углеводороды легко полимери-зуются и сополимеризуются с продуктами сероводородной коррозии и образуют плотные отложения в арматуре трубопроводов, в узлах газовых горелок и в капиллярах КИП. Это нарушает работу горелок или совсем выводит их из строя. [c.48]


    Торкрет-бетонные футеровки предназначены для того, чтобы при максимальных температурах процесса в реакторах каталитического риформинга и гидроочистки снизить температуру стенок до 200—230 °С, обеспечить стойкость металла к водородной коррозии, снизить металлоемкость аппаратов и уменьшить теплопотери. [c.86]

    Метод обработки внешней среды пригоден для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация) или в добавлении к этому раствору веществ, замедляющих коррозию, — ингибиторов. В зависимости от природы металла и раствора применяются различные ингибиторы нитрит натрия, хромат и дихромат калия, фосфаты натрия, некоторые высокомолекулярные органические соединения и другие. Защитное действие этих веществ обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (например, хроматы и дихроматы) переводят металл в пассивное состояние. [c.559]

    Особенность и повышенная опасность работы оборудования в процессах каталитического риформинга и гидроочистки состоят в том, что в результате длительного воздействия водорода при повышенных температурах и давлениях может произойти водородная коррозия металла. Водородная коррозия — особый вид разрушения металлов она не обнаруживается при обычном визуальном осмотре. Для выявления водородной коррозии необходима вырезка из аппаратов образцов с последующим исследованием структуры и механических свойств металла. Проникая в сталь, водород может вызвать ее обезуглероживание, снижение пластичности и длительной прочности. Интенсивность водородной коррозии зависит от состава стали, температуры и парциального давления водорода. Поэтому, например, опыт эксплуатации оборудования установок гидроформинга (35-1) с парциальным давлением водорода в системе не более 1,2—1,4 МПа не может быть распространен на установки каталитического риформинга и гидроочистки, в которых парциальное давление водорода колеблется в пределах от 3,0 до 4,4 МПа (установки типа 35-5, 35-11/300, 24-5, 24-6) и от 1,7 до 2,0 МПа (установки типа 35-6). [c.85]

    Углеводородные газы (природные, попутные, коксовый) содержат примеси — сернистые соединения, способные отравлять катализаторы, вызывать коррозию и загрязнение аппаратуры. Одной из первых стадий переработки газов для синтеза аммиака является очистка от сернистых соединений. В промышленности применяют несколько способов очистки газа от сернистых соединений абсорбционный, мышьяково-содовый, сухой очистки активным углем, каталитический, очистки поглотителями на основе окиси цинка. [c.46]


    Азотистые основания используются как дезинфицирующие средства, антисептики, ингибиторы коррозии, как добавки к смазочным маслам и битумам, антиокислители и т. д. Однако наряду с положительным влиянием азотистых соединений они обладают и нежелательными свойствами — снижают активность катализаторов в процессах деструктивной переработки нефти, вызывают осмоление и потемнение нефтепродуктов. Высокая концентрация азотистых соединений в бензинах (1- Ю вес. %) приводит к усиленному коксо-и газообразованию при их каталитическом риформинге. Даже небольшое количество азотистых соединений в бензине способствует усилению лакообразования в поршневой группе двигателя и отложению смол в карбюраторе. Наиболее полно удаляются азотистые соединения из нефтяных фракций 25%-ным раствором серной кислоты. [c.30]

    В высокотемпературных процессах с использованием водорода (гидроочистка, каталитический риформинг, производство жирных спиртов и т. п.) серьезную опасность представляет водородная коррозия. [c.72]

    Другие признаки износа масла, такие как образование нерастворимого шлама, продуктов коррозии каталитической спирали или понижение величины pH указывают на окисление масла, но эти показатели не отражаются при расчете долговечности жидкости в условиях эксплуатации по [c.415]

    Еще в 1919 — 20 гг. акад. Зелинским Н.Д. была предложена и eя по осуществлению низкотемпературного каталитического крекинга (я 200 С) нефтяного сырья Нй хлориде алюминия. На основе этих работ была создана и испытана опытная установка по получению бензина. Однако в силу существенных недостатков хлорида алюминия как катализатора (сильная коррозия аппаратуры, большой расход катализатора вследствие образования комплексных соединений с углеводородами, периодичность процесса и др.) эта идея не нашла промышленного внедрения. [c.102]

    Высокотемпературная сероводородная коррозия в нефтяной промышленности представляет особую опасность для углеродистых сталей в связи с тем, что оборудование каталитического и термического крекинга подвергается воздействию также и водорода в условиях повышенных давлений. В этих условиях является весьма эффективным применение высокохромистых или хромоникелевых сталей. [c.156]

    Улучшив четкость ректификации в вакуумной колонне АВТ, отбор широкого вакуумного отгона из арланской нефти (фракции 325—460 °С), пригодного в качестве сырья каталитического крекинга, можно увеличить до 16—19% на нефть. В результате вакуумной перегонки мазута на промышленной АВТ при остаточном давлении 14—30 мм рт. ст. и определенном температурном режиме можно получить отдельные вакуумные дистилляты (фракции 350— 500, 350—525 °С) в количестве 24—29% на нефть. По мере увеличения отбора верхнего продукта вакуумной колонны (вакуумного газойля из арланской нефти) его коксуемость и содержание в нем азота значительно возрастают, а содержание тяжелых металлов и серы не изменяется. Необходимо лишь выбрать технологический режим, обеспечивающий четкое погоноразделение. Следует также учесть возможность коррозии и уделить внимание выбору материалов для изготовления аппаратуры, оборудования, арматуры и др. [c.125]

    Процесс разработан с целью получения высококачественных дизельных топлив [137. 138] и был реализован на дооборудованной типовой установке гидроочистки дизельного топлива Л-24н6 Рязанского НПЗ. В качестве катализатора использован сероустойчивый модифицированный галогеном катализатор гидроочистки. Эта особенность катализатора обусловила наличие в технологической схеме установки (рис. 4.12) узлов осушки сырья и циркулирующего газа, а также обработки катализатора галогенсодержащими соединениями с целью поддержания его каталитической активности на постоянном уровне. Унос галогена из катализатора связан с наличием в системе паров воды, попадающих преимущественно с сырьем. Жесткие условия процесса гидроизомеризации температура проведения процесса 420 °С и проведение периодической окислительной регенерации катализатора при 550 °С способствуют удалению галогена из катализатора в виде НС1, в результате чего снижается изомеризующая активность и усиливается коррозия технологического оборудования. [c.125]

    На установках каталитического крекинга с циркуляцией катализатора перерабатывают не только малосернистые соляровые дестиллаты, но и сернистые дестиллаты с содержанием серы до 2% вес. Аппараты и оборудование установок, на которых перерабатывается сернистое сырье, защищают от коррозии. [c.28]

    На установках каталитического крекинга с циркуляцией катализатора перерабатывают не только малосернистое сырье, но и дистилляты с содержанием серы до 2% вес., а на некоторых установках и с более высоким содержанием серы. В этом случае особое внимание уделяется защите аппаратов и оборудования от коррозии. [c.29]


    Синтетические алюмосиликатные катализаторы более устойчивы при переработке сернистого сырья. Как правило, процессы формирования структуры этих катализаторов проводят при температуре прокаливания 700—800° С. Вследствие этого при регенерации катализатора при температурах, не превышающих 650° С, заметной дегидратации поверхности не происходит. Однако при переработке сернистого сырья происходит так называемое вторичное отравление катализатора продуктами коррозии аппаратуры. В процессе каталитического крекинга при переработке сернистого сырья или сырья, содержащего минеральные соли, в связи с большой подачей пара происходит интенсивная коррозия стенок аппаратов (реакторов и регенераторов). Продукты коррозии в виде сернистого железа, окислов железа и других соединений в мелкодисперсном состоянии захватываются потоком паров или газов и переносятся на катализатор. Они прочно удерживаются на внешней поверхности гранул катализатора, проникают в его поры и препятствуют доступу паров и газов к внутренней новерхности катализатора, т. е. снижают его дегидрирующую активность. Происходит необратимая потеря активности катализатора, так как простыми физическими методами эти отложения не удается удалить. [c.19]

    Металлы, содержащиеся в нефти, при ее перегонке концентрируются в остаточных продуктах — мазутах и гудронах, из которых часть металлсодержащих соединений при вакуумной перегонке попадает в газойль — сырье каталитического крекинга. В сырье крекинга попадают и продукты коррозии аппаратов и трубопроводов. При контакте с водяным паром металлы накапливаются на внешней поверхности катализатора, активность и избирательность которого по мере увеличения их концентрации ухудшаются — уменьшается выход бензина, а выход побочных продуктов, легких газов и кокса возрастает. Увеличение выхода водорода и снижение плотности газа являются одними из первых признаков отравления катализатора. [c.21]

    Очевидно, что тонкая очистка нефтяных масел только в местах их потребления (непосредственно перед заправкой техники) связана со значительными техническими трудностями и материальными затратами, так как многочисленные загрязнения, накопившиеся в масле в процессе его производства, транспортирования и хранения, будут в короткий срок забивать дорогостоящее оборудование для тонкой очистки масла и выводить его нз строя, а перебои в работе этого оборудования могут привести к задержкам в заправке соответствующей техники. Одноступенчатая очистка масел только в местах их применения неприемлема еще и из-за того, что загрязнения (в первую очередь соединения металлов и вода), попадающие в масло при транспортировании и хранении, оказывают каталитическое действие на происходящие в масле окислительные процессы это ухудшает его вязкость, снижает химическую и термическую стабильность, повышает кислотное число и увеличивает содержание в масле продуктов коррозии металла. [c.86]

    Определение степени науглероживания труб. Для профилактического ремонта трубчатого змеевика печи нужно систематически производить его ревизию и устранять возникающие дефекты. В ФРГ создан прибор магнитного типа, позволяющий на месте находить участки труб, подверженных науглероживанию по внутренней поверхности на глубине 0,5 мм. Измерение степени насыщения этой поверхности углеродом важно не только для правильного определения срока службы труб и своевременного их ремонта, но и для улучшения технологии процесса пиролиза, поскольку замечено, что при осуществлении его в науглероженных трубах в присутствии продуктов коррозии коксообразование каталитически ускоряется. [c.172]

    Коррозионные процессы неразрывно связаны с технологическими процессами переработки сырья. Если в обычных процессах перегонки и термического крекинга нефтяного сырья сера и сернистые соединения в значительных количествах переходят в продукты переработки, то в каталитических процессах гидроочисткн и риформинга почти вся сера и сернистые соединения в виде сульфидов, дисульфидов, тиофенов и других менее агрессивных соединений при наличии водородсодержащего газа превращаются в сероводород. Поэтому на установках гидроочисткн дизельных топлив и каталитического риформинга имеется большая опасность возникновения интенсивной коррозии. [c.148]

    Агрессивность УгОз проявляется только тогда, когда этот оксид находится в жидком состоянии. Скорость ванадиевой коррозии возрастает с ростом температуры и при наличии в газовой фазе серного и сернистого ангидридов, а также сульфата натрия. Имеется обширная информация зарубежных фирм об аналогичных коррозионных разрушениях печных деталей установок платформинга, каталитического крекинга и других, где в качестве топлива применяется мазут, содержащий 100 млн. ванадия, 2000 млн. натрия и 35% серы. В этих печах настенные опоры для труб вышли из строя после 14 месяцев работы. [c.175]

    Для сернистых дизельных топлив из нефтей Востока подбор присадок с большим антикоррозионным эффектом для подавления коррозии мотора продуктами сгорания этих топлив позволит сохранить государству значительные средства, которые потребовались бы для решения поставленной задачи различными методами обессеривания. Для ароматизированных дизельных топлив каталитического крекинга присадка может более оперативно и дешево решить задачу подавления нагарообразования и повышения цетанового числа, вместо того, чтобы подвергнуть это топливо селективной деароматизации. [c.101]

    Глубокое обессоливание нефти обеспечивает снижение коррозии и уменьшение отложений в аппаратуре, увеличение межремонтных пробегов установок (особенно АВТ, висбрекинга, термического крекинга и коксования), улучшение качества сырья для каталитических процессов, а также товарных продуктов — топлив, битума и электродного кокса. С внедрением мощных комбинированных установок возрастают требования к надежности работы оборудования и, следовательно, необходимость более глубокой очистки нефти становится весьма актуальной. [c.11]

    Стабильность структуры. Особым вопросом при разработке научных основ технологии производства катализаторов является создание структур, повышающих стабильность катализатора. Если стабильность по отношению к ядам является в основном функцией химического состава активных компонентов катализатора, то стабильность поверхности и пористой структуры определяется комплексом физико-химических свойств всех составных, частей катализатора. Эти элементы структуры меняются под влиянием температуры, специфических реагентов (например, водяного пара) или вследствие самого каталитического процесса (каталитическая коррозия). [c.199]

    В отношении таких явлений, как гидротермальная рекристаллизация и каталитическая коррозия, общие методы стабилизации структур еще не выработаны. [c.200]

    Сероводородсодержащий газ поступает в блок промывки, предназначенный для удаления из газа водорастворимых каталитических ядов (алканоламины, ингибиторы коррозии). Затем газ проходит узел предварительного подогрева, который может представлять собой печь прямого или косвенного нагрева, паровой подогреватель либо электрообогреватель, и далее с температурой 220...240 С поступает на каталитическую конверсию. В качестве окислителя используется воздух. Применение высокоэффективного катализатора в сочетании с оригинальной конструкцией реактора позволяет в одном аппарате достичь 90...95 % степени превращения. Оптимальная температура в слое катализатора 260...300°С [7]. [c.106]

    Хрупкое разрушение печных труб возможно на установках каталитического риформинга. Перерабатываемое углеводородное сырье и водород при 530—600 °С и избыточном давлении 2—5 МПа, воздействуя на печные трубы, вызывают поверхностное науглероживание. Глубина науглероживания труб из стали 15Х5М в этих условиях достигает 3,5—5,0 мм за 7— 8 лет эксплуатации. Кроме того, при длительной работе в установленном режиме в сталях происходят структурные изменения. Эти изменения, приводящие к снижению механических характеристик прочности и пластичности, получили название водородной хрупкости или водородной коррозии. [c.150]

    Характерно, что по второму методу (ГОСТ 20449-75), оценивающему химическую коррозию, коррозионная активность дистиллятов деструктивных процессов значительно выше (в 1,4...11 раз) и находится на одном уровне с гидроочищенным дизельным топливом с серой 0,50 (3,96 г/м ). Синергетический эффект при этом наблюдается для балансовой смеси керосино-газойлевых фракций каталитического крекинга и коксования коррозионная активность КГФ вторичных процессов ниже коррозионной активности каждого из составляющих ее компонентов (легкий и тяжелый газойли). [c.84]

    Проведены опытно-промышленные испытания производства битумов в колонне в присутствии хлорида железа [99]. Кристаллогидрат хлорида железа РеСЦ-бИзО предварительно расплавляли при температуре 40—80 °С в барабане, обогреваемом водяным паром. Затем расплав разбавляли водой и 80 /о-й раствор хлорида железа плунжерным насосом подавали в окислительную колонну. Расход раствора — 0,1% (масс.) на сырье температура окисления составляла 265—270 °С, расход воздуха 2700 м /ч. В качестве сырья использовали гудрон с температурой размягчения 30—31°С. Опыты показали, что при получение битума с температурой размягчения 47—50 °С производительность увеличивается с 30 до 40 м /ч, а содержание кислорода в газах окисления снижается с 8 до 7% (об.). При сохранении одинаковой производительности 35 м /ч добавка хлорида железа позволяет повысить температуру размягчения битума с 43 до 54 °С, содержание кислорода в газах при этом также снижается с 8 до 7% (об.). Таким образом, применение хлорида железа способствует повышению степени использования кислорода воздуха и ускоряет процесс окисления. Однако, поскольку проблемы коррозии не решены, положительное заключение о целесообразности каталитического окисления не может быть сделано. [c.73]

    Необходимо заметить, что коррозионная активность тяжелых остаточных компонентов (ГЗ - 0,25 г/м и КО - 0,51 г/м ) в условиях конденсации воды находится на одном уровне со вторичными газойлями коксования и несколько ниже газойлей каталитического крекинга (см.табл.2.27). Причем, чем выше плотность остатка (в скобках указана ее величина), в данном случае косвенно оценивающая концентрацию в нем асфальто-смолистых, а следовательно и коррозионно агрессивных компонентов, тем хуже его защитные свойства (табл.2.30) при данных условиях, которые по мере их убывания образуют следующую последовательность (коррозия в условиях конденсации воды в ряду возрастает) ГЗ (900 г/м ) - ВКО (1020 кг/м ) -КО (980 кг/м ) - А (1056 кг/м ). [c.87]

    Установлено, что масло, проработавшее в двигателе в течение относительно короткого времени, содержит в форме суспензии весьма активные катализаторы, уменьшающие окислительную устойчивость масла до Vio или даже до Vioo величины, характеризующей свежее масло. Поэтому очевидно, что лабораторная оценка устойчивости масел даже в присутствии катализаторов не будет соответствовать действительности, если не учитывать коррозию, каталитическое воздействие солей и многие другие факторы, которые тем или иным путем могут повлиять на стабильность масла. [c.226]

    Газы с наибольшей теплотой сгорания образуются при нагреве нефтяного сырья и в результате различных деструктивных технологических процессов. В зависимости от процесса пере- аботки углеводородного сырья состав этих газов изменяется. Так, газ установок прямой перегонки нефти содержит 7—10% )Онана и 13—30% бутана, газ установок термокрекинга богат метаном, этаном н этиленом, газ установок каталитического крекинга — бутаном, изобутиленом и пропиленом. Многие из перечисленных газов служат ценным сырьем для химической н )омышленностн. Для нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутствие его в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах газы подвергают мокрой очистке растворами этанолами-нов, фенолятов, соды и др. [c.110]

    Уксусный альдегид можно считать проингибитором или ингибитором вторичного действия, так как высоким защитным свойством обладают в основном продукты его превращения. Частичное осмоление альдегида происходит и в объеме раствора, в котором находятся галогенид-ионы. В серной кислоте альдегид не подвергается превращениям, и поэтому малоэффективен как ингибитор. Интересно отметить, что уксусный альдегид, как ингибитор, а вернее продукты его химического превращения, проявляет синергизм с азотсодержащими ПАВ катионного типа. Основания Шиффа, полученные взаимодействием различных алифатических и ароматических альдегидов и аминов, значительно активнее, чем исходные вещества, тормозят коррозию металлов [120, 121]. Не исключено, что при использовании смеси амипов с альдегидами в качестве ингибиторов коррозии каталитически активных переходных металлов на их поверхности образуются основания Шиффа, чем и объясняется отмеченный выше синергизм. [c.104]

    Окончательное решение вопроса о степени нейтральности активированной глины должно бы ь принято при организации промыш пенного процесса с учетом возможной коррозии оборудования, в котором прэи н ()дится формовка таблеток из слегка кислой глины, и оборудования и материала каталитических камер крекинг-установок. С точки зрения сохранения высокой каталитической активности глины может быть допущена остаточная кислотность 1 %. [c.93]

    Низкотемпературная коррозия шеевиков и дымовых труб печей продуктами сгорания топлива. При сжигании сернистого топлива в топочных газах появляется значительное количество серного ангидрида, сероводорода, диоксида углерода, водяных паров, кислорода и других компонентов, вызывающих интенсивную низкотемпературную коррозию трубчатого змеевика И дымовой трубы. Особенной агрессивностью коррозионного воздействия отличается серный ангидрид. Его образование зависит от используемого для сжи1 ания топлива избытка воздуха. В случае неправильной эксплуатации горелок или при нарушении герметичности топки увеличивается поступление воздуха в печь, что приводит к возрастанию коэффициента избытка воздуха до очень высоких значений (1,5—2,0) и усилению коррозии. Активность влияния серного ангидрида на металл значительно увеличивается при каталитическом действии пятиоксида ванадия в присутствии водяного пара, подаваемого на распыление топлива и образуемого при его сжигании. [c.155]

    Прямая перегонка и деструктивные процессы переработки нефти сопровождаются образованием газа, в котором в зависимости от содержания и природы сернистых соединений в сырье присутствуют в различных концентрациях сероводород и другие соединения серы (табл. 5.1). При наличии сероводорода в газе создаются условия для коррозии металлов, снижается эффективность каталитических процессов из-за отравления катализаторов. Прежде чем направить заводские газы на разделение, их как правило, подвергают очистке. Проведение очистки всегда повышает стоимость газов, однако возросший во всем мире спрос на серу в корне изменил экономические показатели процессов очистки газа. К прибыли, получаемой от реализации очищенного газа, прибавилась стоимость извлекаемой из него серы. В Каиаде, например, сера при различном содержании в газе, сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы [70]. [c.280]

    Коррозионные свойства керосино-газойлевых фракций процессов каталитического крекинга и замедленного коксования в сравнении с гидроочищенным и негидроочищенным дизельным топливом прямой перегонки исследовались по ГОСТ 18597-73 (в условиях конденсации воды и по ГОСТ 20449-95(высокотемпературный метод). Из анализа результатов исследований, полученных по первому методу (рис.2.9), видно, что в присутствии воды коррозионная активность дистиллятов, расположенных по мере уменьшения содержания общей серы, немонотонно возрастает причем наименьшая величина коррозии 0,23 г/м- (в условиях конденсации воды) характерна для легкого газойля замедленного коксования (при массовом содержании серы 2,32%), наибольшая 3,25 г/м для гидроочищенного дизельного топлив с содержанием серы 0,5%, при этом легкий газойль каталитического крекинга (содержание сер" 1,1%) по коррозионной активности занимает промежуточное по.м ие (1,68 г/м ). [c.82]


Библиография для Коррозия каталитическая: [c.298]   
Смотреть страницы где упоминается термин Коррозия каталитическая: [c.199]    [c.382]    [c.126]    [c.553]    [c.557]    [c.21]    [c.89]    [c.26]    [c.26]    [c.242]    [c.63]    [c.31]   
Инженерная химия гетерогенного катализа (1971) -- [ c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная коррозия. Аппаратура для процессов гидрогенизации Каталитический синтез бензина из окиси углерода и водорода

Водородная коррозия. Коррозия сероводородом. Аппаратура. Трубчатые печи для нагрева сырья. Реакционные камеры. Затворы реакционных камер Теплообменные аппараты и холодильники. Насосы, компрессоры Каталитический синтез бензина из водорода и окиси углерода

Коррозия в реакторных блоках установок каталитического риформинга. Основное оборудование и аппаратура установок

Коррозия и защита оборудования в процессах каталитического окисления



© 2025 chem21.info Реклама на сайте