Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеноструктурный анализ волокон ДНК

Рис. 28.17. Приготовление образца волокна для рентгеноструктурного анализа. Рис. 28.17. <a href="/info/128254">Приготовление образца</a> волокна для рентгеноструктурного анализа.

    Однако приведенная схема не объясняет, почему углеродистые остатки на основе целлюлозы представляют собой неграфитирующиеся при температуре 3000°С формы углерода. Рентгеноструктурный анализ показывает, что расстояние между атомами углерода в исходных звеньях сохраняется в карбонизованной структуре. Образующиеся кристаллиты полимерного углерода имеют размеры, идентичные размерам кристаллитов исходного волокна. [c.188]

    Процесс полимеризации, очевидно, был не в состоянии нарушить ориентацию и текстуру мономерной фазы. Рентгеноструктурный анализ показал, что полимер обладает смектической структурой. Это было установлено по наличию трех узких рефлексов при малых углах и одного широкого — при больших углах. Было также обнаружено, что дугообразные рефлексы получаются, если пучок рентгеновских лучей распространяется в направлении, перпендикулярном оси волокна в системе, тогда как в случае параллельного распространения наблюдаются дебаевские кольца. Этот [c.50]

    Текстура УВ изучена методом рентгеноструктурного анализа и описывается функцией В а) распределения осей микрофибрилл относительно оси волокна, где а — угол отклонения оси микрофибриллы от оси волокна. Если считать, что распределение осей фибрилл в волокне перпендикулярно оси волокна случайно, но в первом приближении подчиняется правилам цилиндрической симметрии, то функция [c.591]

    Резкие изменения структуры целлюлозных материалов, интенсивности взаимодействия между макромолекулами или элементами надмолекулярной структуры и, соответственно, реакционной способности этих материалов в различных реакциях этерификации или 0-алкилирования происходят в результате обработки аминами (стр. 142). Амины образуют с целлюлозой молекулярные соединения. В результате возникновения водородных связей ОН-групп целлюлозы с молекулами аминов разрушаются межмолекулярные водородные связи, резко снижается степень кристалличности целлюлозы, изменяется рентгенограмма (появляется рентгенограмма аморфной целлюлозы, характеризуемая отсутствием отчетливых рефлексов). Так, в результате обработки хлопковой целлюлозы этиламином (4 ч при 4°С) и последующей сушки волокна при нормальной температуре (во избежание значительной рекристаллизации целлюлозы) степень кристалличности целлюлозы, определяемая методом рентгеноструктурного анализа з снижается с 86 до 30%- Чем меньше молекулярный вес первичного амина, применяемого для обработки, тем больше достигаемый эффект. После обработки метиламином, например, происходит почти полная аморфизация целлюлозы. При переходе от первичных к вторичным и, особенно, к третичным аминам, для которых образование водородных связей с ОН-группами целлюлозы затруднено, эффект резко снижается. [c.83]


    Физические методы дают для целлюлозы значения молекулярных весов от 250 ООО до 1 ООО ООО и более по-видимому, молекула состоит не менее чем из 1500 остатков глюкозы. Определение концевых групп методом метилирования и окисления йодной кислотой показывает, что цепь целлюлозы содержит 1000 или более звеньев. По данным рентгеноструктурного анализа и электронной микроскопии, эти длинные цепи вытянуты и уложены пучками, причем они удерживаются друг возле друга межмолекулярными водородными связями между многочисленными соседними ОН-группами. Эти пучки сплетены так, что образуют структуры, подобные веревкам, которые в свою очередь группируются, образуя те самые волокна, которые видит наш глаз. В древесине эти целлюлозные веревки окружены лигнином, что дает структуры, которые можно сравнить с армированным бетоном. [c.979]

    Вследствие неоднородности микрофибрилл и других более крупных элементов надмолекулярной структуры волокнообразующих полимеров текстильные волокна характеризуются наличием кристаллических и аморфных областей. Кристаллические области характеризуются высокой степенью упорядоченности расположения макромолекул, аморфные—более хаотическим расположением макромолекул. Кристаллические и аморфные области в волокнах обнаруживаются методами рентгеноструктурного анализа и ИК-спектроскопии. [c.9]

    Первоначально утверждалось, что БОБ-форма дает такую же рентгенограмму, как и В-форма. Когда выяснилось, что это не так, стали говорить, что, мол, в волокнах и кристаллах, где изучают ДНК методом рентгеноструктурного анализа, она может быть и находится в В-форме, а в растворе, и уж подавно — в клетке, она в БОБ-форме. Большим преимуществом модели считалось отсутствие топологических проблем при репликации (не нужно раскручивать спираль). [c.130]

    В принципе рентгеноструктурный анализ способен дать полную информацию о структуре любого сахара, который можно получить в кристаллической форме [5], Даже в случае некоторых полисахаридов (ср. разд. 3.6) натуральные или модифицированные волокна содержат упорядоченные зоны, называемые кристаллитами, которые поддаются рентгеноструктурному анализу [3]. Межмолекулярные силы в кристаллической решетке будут, очевидно, влиять на конформации, принимаемые молекулами в твердом состоянии. При этом зачастую (но не всегда) соблюдается правило, согласно которому конформация структуры твердого состояния соответствует конформеру, преобладающему в жидком состоянии или в растворе. И действительно, ряд примеров подобного соответствия уже приводился в гл. 3. [c.159]

    Целлюлоза состоит из цепочек -D-глюкозы со степенью полимеризации около 14000 (разд. 2.2.3). Физические свойства целлюлозных фибрилл (особенно их механическая прочность и нерастворимость) зависят не от структуры отдельных цепочек. Цепочки должны быть связаны между собой таким образом, чтобы гидрофильные группы были скрыты (это повышает стабильность). По данным рентгеноструктурного анализа, участки, имеющие кристаллическое строение, чередуются в целлюлозе с некристаллическими участками. Целлюлозные волокна представляют собой пучки фибрилл, одетые общей оболочкой, которая содержит воск и пектин. [c.404]

    Дезоксирибонуклеиновая кислота (ДНК) из различных источников была получена в фибриллярной форме и исследована методами рентгеноструктурного анализа. Как отмечено на стр. 20, нуклеиновые кислоты в обычных условиях существуют в виде анионов и в исследованных волокнах ДНК всегда находилась в виде натриевой соли. При исследовании ДНК наблюдали два типа рентгенограмм > рентгенограммы первого типа, полученные при низкой относительной влажности, представляют собой резкие картины, указывающие на наличие дальнего порядка рентгенограммы другого типа, полученные при высокой относительной влажности (одна из них показана на рис. П,ы), представляют собой расплывчатые картины, что говорит о наличии кристаллических областей чрезвычайно малых размеров. Структуры, соответствующие этим типам рентгенограмм, можно обратимо превращать одну в другую просто меняя относительную влажность. [c.85]

    Рентгеноструктурный анализ коллагена показал, что его структура отличается от структуры кератина или фиброина. Короткие промежутки вдоль оси коллагенового волокна соответствуют периодам идентичности в 2,86 А [12, 39]. Ввиду того что эта величина меньше протяженности одного аминокислотного [c.212]

    Актуальным является изучение механизма оссификации. Процесс минерализации возможен лишь при наличии строго ориентированных коллагеновых волокон. Как было отмечено, непосредственное образование кол-лагенового волокна происходит во внеклеточном пространстве в результате специфического соединения между собой тропоколлагеновых молекул. С помощью рентгеноструктурного анализа и электронной микроскопии показано, что коллагеновое волокно имеет поперечную исчерченность с интервалом 68 нм. Следовательно, период повторяемости структуры (исчерченности) коллагенового волокна в несколько раз меньше, чем длина составляющих волокно молекул тропоколлагена. Это доказывает, что ряды молекул тропоколлагена располжены не точно друг над другом. Иными словами, один ряд тропоколлагенов смещен по отношению к соседнему ряду примерно на /4 длины молекулы. В результате основу структурной организации коллагенового волокна составляют сдвинутые на четверть ступенчато расположенные параллельные ряды тропоколлагеновых молекул. Структурная особенность коллагенового волокна состоит также и в том, что расположенные в ряду молекулы тропоколлагена не связаны по типу конец в конец. Между концом одной молекулы и началом следующей имеется промежуток. Этот промежуток играет особую роль при формировании кости. Вполне вероятно, что промежутки вдоль ряда молекул тропоколлагена являются первоначальными центрами отложения минеральных составных частей костной ткани. [c.675]


    При установлении этих формул большой вклад внес рентгеноструктурный анализ целлюлозы (П. Шеррер, Р. О. Герцог, 1920 г., Р. Поляни, 1921 г. интерпретация О. Л. Спонслера и В. X. Дора, 1926 г., К, X. Мейер и X. Марк). Несмотря на свой аморфный вид, целлюлоза ведет себя по отношению к рентгеновским лучам, как кристаллическое веш ество. Элементарная ячейка кристаллической решетки включает атомы пяти макромолекул. Размеры элементарной ячейки приведены на рис. 14. Период идентичности в направлении длины волокна Ь) равен 10,3 А и соответствует длине остатка целлобиозы, с учетом кресловидной формы циклов глюкозных остатков (О. Хассель). [c.290]

    Из волокон поли-л-фениленизофталамида (температура плавления 427 °С, характеристическая вязкость 0,99 л/г) получают нити, состоящие из 30 моноволокон. Нить вытягивают в 3,5 раза в токе пара при атмосферном давлении, получая при этом высокоориентированное, но аморфное волокно. Последующая ориентация проводится на утюге, нагретом до 345 °С. Длина утюга 381 мм, проходя по нему, нить находится под напряжением 45 гс, скорость намотки нити 9,2 м1мин, таким образом, продолжительность контакта нити с утюгом составляет примерно 2,-5 сек. В результате такой обработки нить вытягивается на 50% и, пс данны.м рентгеноструктурного анализа, волокно имеет очень высокую степень кристалличности . [c.130]

    Авторы работы [25] считают, что в процессе формования происходит ориентация волокна, которая может сохраниться при определенных условиях проведения последующей термической обработки в углеродном волокне. По данным рентгеноструктурного анализа, волокна по структуре представляют собой стеклоуглерод и в них не обнаруживается текстура. Для тонких волокон методом трансмиссионной дифракции электронов на поверхности графити- [c.252]

    При сопоставлении результатов (рисунок) рентгеноструктурного анализа различных пеков с их физико-химическими характеристик ши и прочностью получаемых из пеков волокон обнарухивается, что при близком содеркании мальтенов, асфальтенов и карбоидов прослеживается зависимость между параметрами рентгеноструктурного анализа, процентным содержанием карбенов, нерастворимых в хлороформе( ), и прочностью волокна. Пеки с большим содержанием dt, более крис-талличны, что,по-видимо [ у, и обеспечивает большую прочность волокна. [c.75]

    МСС УВ с СиС1г, Ni и 0 I2 образуются в виде смесей I и II ступеней. Характерно, что бор в углеродном волокне, вызывая его текстурирование при графитации, не способствует этому процессу при внедрении хлоридов металлов (табл. 6-15). Значительная часть солей не образует МСС УВ, а заполняет поры, по данным рентгеноструктурного анализа. [c.316]

    Исследование фибриллярных белков типа шелка и шерсти представляет крайне трудную задачу, так как они нерастворимы в воде. Шелк состоит из длинных фиброиновых нитей, связанных с другим белком — серицином. Имеются различные данные о молекулярном весе фиброина, однако обычно его принимают равным 84 ООО [108]. Много работ было посвящено выяснению аминокислотного состава фиброина, причем было установлено, что он состоит более чем на 50% из остатков глицина и аланина. На отдельных фракциях фиброина было проведено селективное расщепление с последующим анализом концевых групп. Применяя различные физико-химические методы, такие, как рентгеноструктурный анализ, инфракрасную и ультрафиолетовую спектроскопию, пытались сопоставить данные, полученные при исследовании различных фракций фиброина. Были сделаны также попытки расположить аминокислотные остатки таким образом, чтобы объяснить механические и химические свойства волокна [108]. [c.417]

    Фторирование углеродных волокон из полиакрилонитрильного (ПАН) волокна [6-163,178]. Исследования показали, что фторирование поверхности волокна, полученного при 1200-2100 С, вызывает привес 8-10% (масс.) и приводит к росту его плотности, модуля упругости и предела прочности при растяжении. Увеличение прочности при фторировании поверхности связано с дефторированием неупорядоченной части волокна. По данным рентгеноструктурного анализа, текстура углеродных волокон не изменяется до содержания фтора 17% (масс.). После достижения содержания фтора 20-27% (масс.) и до 54-56% (масс.) фтора наблюдается резкий переход от фибриллярной структуры углеродной матрицы к слоистой кристаллической структуре полимонофторида углерода. [c.400]

    Молекулярный вес целлюлозы лежит в пределах от 300000 до 500 000, что соответствует 3000—5000 структурных единиц Се в полимере. Данные рентгеноструктурного анализа указывают на то, что длина одной структурной ячейки вдоль оси полисахаридной цепи (период идентичности) близка к величине 10,25 А, вычисленной для длины одной целлобиозной единицы следовательно, полисахаридные цепи должны быть приблизительно прямыми, вытянутыми вдоль оси волокна целлюлозы. Тот факт, что в волокнах целлюлозы обнаруживаются кристаллические области, объясняется, по-видимому, наличием кристаллической структурной единицы, построенной из пакета (связки) параллельно ориентированных цепей (мицелл). Ширина мицеллярной единицы составляет около 60 А (100—200 целлюлозных цепей), длина—по крайней мере 200 А (200 глюкозных единиц). Значительная механическая прочность и химическая устойчивость приписыва ется мицеллярной структуре целлюлозы.  [c.565]

    Столь же часто в то время объектом рентгеноструктурного анализа был коллаген - самый распространенный в клетках и живых организмах структурный белок. Рентгеновскую дифракцию на коллагене в его нативном и аморфном (желатине) состояниях наблюдали П. Шеффер (1920 г.), Дж. Катц и О. Гернгросс (1925 г.), Г. Герцог и У. Янеке (1926 г.) и др. Период идентичности по оси волокна у коллагена, согласно Н. Су-зиху, равен 8,4 А, а у фиброина шелка, по данным О. Кратки, - 7,0 А. Значительное отличие этих величин свидетельствовало о разной пространственной структуре двух молекул, что, в свою очередь, указывало на различие в их химическом строении. К. Мейер впервые провел аналогию между свойствами коллагена и каучука. В нагретом, съежившемся состоянии белок по механическим свойствам напоминал аморфный каучук, получавшийся при нагревании, а в естественных условиях проявлял свойства растянутого каучука. Был сделан вывод о том, что белковые цепи могут существовать в полностью растянутой и свернутой формах, конкретный вид которых остался, однако, неизвестным. [c.68]

    Установление детальной структуры полимеров методами рентгеноструктурного анализа - достаточно сложная задача. Это связано с тем, что приходится использовать не монокристаллы, а поли-кристаплические образцы, содержащие, к тому же, аморфные области. Поскольку монокристаллы можно получить не для всех полимеров, а размеры полученных кристаллов слишком малы, то при исследовании полимеров используют ориентированные, максимально закристаллизованные полимерные пленки или волокна. Чтобы максимально облегчить образование кристаллических областей, не разрушая структуру полимера, образцы подвергают различным видам механической или термической обработки. Обычно волокна или пленки в натянутом состоянии прогревают на воздухе или в какой-либо жидкости, получая затем текстур-рентгенограммы, содержащие 50-70 рефлексов. [c.172]

    Альгиновые кислоты являются компонентами бурых водорослей и имеют промышленное значение. Эти полисахариды предотвращают обезвоживание морских водорослей при попадании их на открытый воздух, например при отливе. В промышленности альгиновые кислоты используют в качестве загустителя н стабилизатора эмульсий. Показано, что молекулы этих соединений легко образуют волокна, которые по данным рентгеноструктурного анализа в основном линейны. Вначале полагали, что альгиновые кислоты являются D-маннуронанами с р-(1 4)-связями между моносахаридными звеньями, однако в их составе обнаружены остатки маннуроновой и L-гулуроновой кислот. При частичном гидро- [c.249]

    Молекулярная масса целлюлозы составляет 50 00 тыс., что соответствует 300-2500 остаткам глюкозы на одну молекулу. Определение длины молекулы целлюлозы физическими методами даёт величину 10000 остатков. Нити целлюлозы образуют микрофибриллы благодаря внутри- и межмолекулярным водо-родньш связям микрофибриллы собраны в волокна, ось каждого из которых расположена под углом к осям микрофибрилл, а каждая молекула лежит вдоль оси микрофибриллы. Такая высокоупорядоченная структура, подтверждённая данными рентгеноструктурного анализа, и обусловливает необычайную прочность и упругость целлюлозы, равно как и отсутствие растворимости в бшьшинстве применяемых растворителей. Любопытно, что целлюлоза растворяется в реактиве, приготовленном смешением Си(ОН)2 с концентрированным водным раствором аммиака (реактиве Швейцера), а также в [c.102]

    Каковы основные черты взаимного расположения стереорегулярных макромолекул в кристаллах Одним из наиболее распространенных и важных методов, дающих информацию об этом, является метод рентгеновской дифракции. При рентгеноструктурном анализе полимеров имеют дело с агрегатом цепных молекул, в упаковке которых возможны разнообразные нарушения [19]. Полное определение кристаллической структуры возможно лишь при наличии образцов с высокой степенью упорядоченности. Самая высокая степень порядка достигаемая большинством полимеров, это кристаллические волокна, которые можно рассматривать как множество монокристалликов, причем у каждого из них кристаллическая ось совпадает (или почти совпадает) с осью волокна. [c.61]

    Основная научная область работ — молекулярная биология. Подтвердил гипотезу Ф. X. К,. Крика и Дж. Д. Уотсона о том, что молекулы ДНК представляют собой двойную спираль, Данные были получены нм методом рентгеноструктурного анализа (облучал рентгеновскими лучами волокна из ДНК, сформованные из вязкого раствора этого соединения). Разработал теорию фото- и термолю-минесцеиции (теория электронной ловушки). Занимается также биофизикой нервной системы. [c.501]

    В этом обороте 13 атомов образуют петлю, закрепленную водородной связью. Более детальное изображение а-спирали приведено на фиг. 4. Такая а-спираль характеризуется двумя повторяющимися параметрами расстоянием между последовательными витками спирали (5,55 А) и длиной последовательно соединенных аминокислотных остатков вдоль цепи (1,5 А). С помощью рентгеноструктурного анализа Перуц показал, что длина аминокислотного остатка в поли-у-бензил-Г Глутамате, лошадином волосе, мышечных волокнах и метгемоглобине составляет 1,5 А. [c.34]

    Показано, что выход полимеров р-пропиолактона и 3,3-бис-хлорметилциклоксабутана имеет предельную величину—15% для триоксана выход проходит через максимум при — 35% Дальнейшее уменьшение выхода связано с деструкцией полимера. Тот факт, что процесс полимеризации протекает лишь в твердой фазе, указывает на большую инициирующую активность ионов, образованных в твердой фазе для процесса полимеризации в данном случае существенно также упорядоченное расположение молекул мономера в кристаллической решетке. Во всех случаях молекулы полимера линейны. Полимеры, полученные из больших кристаллов, имеют более высокую температуру плавления. Рентгеноструктурный анализ показывает, что молекулы полимеров, полученных из больших кристаллов, имеют лучшую ориентацию по сравнению с полимерами, полученными из малых кристаллов. В случае полиоксиметилена эта ориентированность выше, чем для растянутой пленки или волокна полимера, полученного из формальдегида. Это показывает, что полимеризация идет в направлении кристаллической оси. Дикетен дает моноклинный кристалл полимера полимер р-про-пиолактона имеет плоскую зигзагообразную структуру. Микрофотографии поверхности полимеров также показывают, что степень упорядоченности полимера определяется совершенством кристаллической решетки мономера. Наблюдение процесса полимеризации 3,3-бис-хлорметилциклоксабутана с помощью поляризационного микроскопа показывает, что молекулы полимера образуют прямые нити, которые затем соединяются друг с другом, вытесняя из промежутка мономер, теряющий кристаллическую упорядоченность. Сополимер р-пропиолактона и акрилонитрила нерастворим в горячем диметилформамиде и является, по-видимому, блочным сополимером. Сополимер р-пропиолакто-на и дикетена имеет температуру плавления, уменьшающуюся с ростом содержания дикетена, откуда сделан вывод о гомогенной структуре полимера. [c.92]

    С помощью рентгеноструктурного анализа было показано, что обычный линейный поливинилхлорид при комнатной температуре частично кристалличен . Одноосно ориентированные образцы поливинилхлорида дают в основном два новых отражения (й = 5,15 А) и 1( = 4,69А) на меридиане рентгенограммы 549. Авторы объяснили возникновение меридиального отражения как результат отражения рентгеновских лучей от ряда плоскостей, перпендикулярных оси ориентации, а — от слоев. На основании данных рентгеноструктурных исследований были определены параметры кристаллической ячейки для образцов волокон поливинилхлорида 5 °, ориентированных в направлении оси, которые равны а= 10,65 А 6 = 5,15 А (ось волокна) с = 5,20 А р = 90°. Указанная элементарная ячейка содержит четыре мономерных звена. Вычисленная на основании основных параметров ячейки плотность поливинилхлорида составляет 1,455 г/ел , что несколько отличается от фактически наблюдаемой, которая лежит в пределах 1,38—1,42 г/сл . По [c.494]

    Коллагеновые волокна дают рентгенограмму, отличающуюся от рентгенограмм а- и Р-кератинов. На основе данных рентгеноструктурного анализа был сделан вывод, что тропоколлаге-новые субъединицы состоят из трех полипептидных цепей, плотно скрученных в виде трехжильного каната. [c.178]

    В одном из исследований полиамидов методами инфракрасной спектроскопии и рентгеноструктурного анализа Сандеман и Келлер 1104] обсуждают ряд практических и теоретических вопросов, связанных с измерениями кристалличности полимеров. Они указывают, что истинная оптическая плотность для какой-либо полосы волокнистого образца с осевой ориентацией должна определяться по измерениям поглощения в поляризованном излучении при направлениях электрического вектора, перпендикулярном или параллельном оси волокна, в зависимости от выбранной полосы. Оптическая плотность в случае беспорядочно ориентированного полимера при однородной толщине слоя равна 1/3 [(lg/o//) 2(lg/o//)l]. [c.325]

    Полиамиды представляют собо1Й линейные полимеры с высокой степенью кристалличности и малой полидис-першостью. Средняя молекулярная масса колеблется от 8000 до 25000. Вытянутые волокна, судя по данным рентгеноструктурного анализа, имеют в кристаллических участках слоистую структуру с большим числом межмолекулярных водородных связей. Полиамиды отличаются высокой ударной прочностью, эластичностью, хорошей масло- и бензостойкостью, не растворяются в обычных растворителях. [c.303]

    Согласно данным рентгеноструктурного анализа, структура целлюлозы I, предложенная Мейером и Мишем в 1937 г. и принятая с некоторыми незначительными изменениями в настоящее время, имеет в своей основе элементарную ячейку со следующими параметрами (рис. 17) а = 8,2 А 6 = 10,3 А (в оль оси волокна) с = 7,9А угол между осями а и с, перпендикулярными оси волокна Ь, р = 83°. При построении этой структурной модели целлюлозы I исходили из предположения о такой конфигурации цел-лобиозного остатка в полимерной цепи, при которой атомы Сь Сз и С двух соседних элементарных звеньев, имеющих [c.67]

    До сих пор не существует четкого представления о морфологии плотных мембран в стеклообразном состоянии. Последние данные, полученные для нескольких целлюлозных пленок с помощью электронной микроскопии, согласуются с представлением о плотной структуре как состоящей из беспорядочно плотно упакованных полусферических субъячеек [21]. Шен и Крстцмар впервые изучили эти глобулярные субъячейки [21] и установили, что они являются слишком маленькими, чтобы включать в себя всю молекулу, и предположили, что отдельная полимерная цепь образует ряд ячеек, сравнимый с нитью гранул. Иех и Гейл [18] обнаружили подобные структуры, названные Кейтом глобулярными кристаллитами [22], в полиэтилентерефталате их диаметр был 75 А, а среднее расстояние между центрами — 125 А. Этим глобулам приписали некий паракристаллический порядок. Когда такие мембраны отжигают при температурах, близких к температуре стеклования (65 °С), глобулы перемещаются относительно друг друга и агрегируют в кластеры диаметром от 5 до 10 глобул. В этот момент с помощью дифракции электронов и Х-лучей регистрируется наличие кристалличности. При длительной термообработке появляются первые симптомы роста сферолитов, которые затем могут быть зафиксированы. Оказывается, что в волокнах глобулы сами ориентируются в ряды, поперечные оси волокна. Отжиг при 154 °С приводит к образованию сферолитов, составленных из ламелей. Холодная вытяжка аморфных пленок (аморфных в том смысле, что они являются прозрачными и в них не обнаруживают кристалличности при рентгеноструктурном анализе) является причиной ориентации глобул. Термообработка при температуре, близкой к температуре плавления, вызывает ориентацию и приводит к образованию глобул с заметно увеличенными размерами. [c.234]

    Волосы и волокна шерсти обладают значительной эластичностью при определенных условиях они могут растягиваться и вновь возвращаться к исходной форме. Это свойство волос используется при изготовлении волосяных гигрометров — приборов, служащих для определения влажности воздуха. Рентгеноструктурный анализ нормального и растянутого волоса показал, что растягивание волоса сопровождается изменениями в рентгенограмме. Волокна кератина в нерастянутом и растянутом волосе представляют собой две различные модификации, получившие соответственно название ас- и, В-кератннов. Длина периодов идентичности вдоль цепей главных валентностей составляет для [c.206]

    Помимо периодов идентичности 5,1 и 3,4А, обнаруживаемых при помощи рентгеноструктурного анализа, кератиновые волокна имеют еще правильно повторяющиеся периоды более высокого [c.208]


Смотреть страницы где упоминается термин Рентгеноструктурный анализ волокон ДНК: [c.234]    [c.407]    [c.87]    [c.87]    [c.208]    [c.168]    [c.173]    [c.49]    [c.703]   
Биофизическая химия Т.3 (1985) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ рентгеноструктурный



© 2025 chem21.info Реклама на сайте