Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы, конформационные

    В этой главе приведены в наиболее простой форме достижения статистической физики полимеров, которая является разделом статистической физики вообще и поэтому использует идеи и методы этого раздела теоретической физики. Вначале рассматривается статистика линейных макромолекул в приближении модели свободно сочлененных сегментов и в приближении к реальным макромолекулам (конформационная статистика, поворотные изомеры). Выводится распределение свободной макромолекулы по ее длинам (свернутости) в процессе теплового движения. Это распределение подчиняется нормальному (гауссову) закону распределения аналогич- [c.122]


    II. Полиморфизм, связанный с различными конформациями макромолекул (конформационный полиморфизм). [c.84]

    В приводимых далее примерах расчета конформаций макромолекул конформационные карты займут центральное место, поскольку они обладают большой наглядностью. В то же время будет продемонстрировано преимущество метода оврагов, позволяющего отыскивать минимумы более точно и не столь дорогой ценой [c.327]

    Однако в отличие от спинового зонда жесткость чувствует конформационное состояние не всей аморфной фазы, а только проходных цепей, конформационный набор которых зависит от соотношения длины контура макромолекулы, заключенного между двумя кристаллитами, и расстояния между ними. Увеличение жесткости с повышением степени ориентации означает, что возрастает доля тех макромолекул, конформационный набор которых ограничен, поскольку их конформации близки к конформации предельно вытянутых молекулярных цепей. Естественно, что эти частично вытянутые макромолекулы обладают ограниченной коя-формационной подвижностью и именно они ответственны за механическую прочность и упругость ориентированных образцов, [c.269]

    Повышение индекса вязкости масел при добавлении вязкостных присадок можно объяснить следующим образом. Под влиянием колебательно-вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. В разбавленных растворах макромолекулы менее зависят друг от друга в своем тепловом движении, поэтому конформационный набор их весьма разнообразен. При этом вязкость разбавленных растворов вязкостных присадок мало зависит от температуры, и загущенные масла имеют высокий индекс вязкости. С увеличением концентрации вязкостных присадок в маслах расстояние между макромолекулами быстро сокращается, появляется межмолекулярное взаимодействие и набор конформаций, принимаемых макромолекулами, обедняется. Поэтому максимум значения индекса вязкости соответствует определенному значению концентрации вязкостной присадки. Дальнейшее увеличение концентрации вязкостной присадки приводит к снижению индекса вязкости загущенных масел. [c.144]

    Небольшие изменения температуры обычно не отражаются на спектрах поглощения. При спектрофотометрическом изучении кинетики и равновесия некоторых химических процессов, при исследовании конформационных переходов в макромолекулах и некоторых других физико-химических процессов необходимо термостати- [c.17]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    По всей видимости, следует считать, что собственно высокомолекулярное соединение начинается только с того момента, когда отчетливо проявляется способность макромолекул к разнообразным обратимым конформационным переходам, причем эти переходы могут быть описаны вероятностными функциями. [c.80]

    Возможность конформационных переходов макромолекул предопределяется их гибкостью. Различают понятия термодинамической и кинетической гибкости полимерной цепи. [c.80]

    Возможность конформационных переходов изолированной макромолекулы определяется высотой потенциального энергетического барьера Щ, препятствующего свободному вращению звеньев, атомных групп вокруг направления соединяющих их валентных связей. [c.81]

    Связь Уф с термодинамикой конформационных переходов макромолекул будет рассмотрена в разд. 2.4. [c.88]

    Термодинамическая гибкость макромолекул может быть оценена как для изолированной цепи, так и для цепи, находящейся в окружении других молекул (молекул растворителя, соседних цепей). Проявление способности к конформационным переходам в первом случае обусловлено только внутрицепным взаимодействием, т.е. величиной потенциального энергетического барьера В этом случае гибкость макромолекул определяется как скелетная . [c.88]

    Сольватационное взаимодействие макромолекул и молекул растворителя существенно изменяет способность полимерных цепей к конформационным переходам, т.е. влияет на их равновесную гибкость. По величине термодинамического сродства к полимеру все растворители делятся на хорошие и плохие . Для термодинамически хороших растворителей характерно образование достаточно мощных сольватных оболочек вокруг макромолекул, что существенно уменьшает возможность их конформационных переходов, т.е. обусловливает снижение равновесной гибкости. [c.92]

    Растворы полимеров, в которых взаимодействием сольвати-рованных полимерных цепей можно пренебречь, называются разбавленными. На рис. 2.4 приведена схема, иллюстрирующая возможность конформационных переходов макромолекул в растворе размеры звеньев и молекул растворителя условно приняты одинаковыми. Изменение конформации полимерной цепи становится возможным в том случае, когда имеется соответствующая дырка в структуре растворителя, находящаяся в пределах досягаемости звена полимера. [c.101]

    Ранее отмечалось, что расчетные размеры молекулярных клубков меньше реальных. Это связано с фактическими ограничениями свободы конформационных переходов потенциальным барьером i/q- Дополнительные ограничения в изменении формы макромолекул возникают в результате взаимодействия полимера с растворителем. [c.107]

    Специфичность четвертичной структуры белков проявляется в определенной конформационной автономии полипептидных фрагментов, входящих в состав макромолекулы белка. [c.349]

    Четкие различия в химических и физико-химических свойствах фиброина и серицина отсутствуют. Фиброин имеет М = (2,5+3,8) 10 , а серицин - 1,6 10 + 3,1 10 Макромолекулы фиброина и серицина характеризуются конформационной неоднородностью полимерная цепь может последовательно включать а-спиральные и -структурные участки, причем их соотношение определяется наличием воды. В условиях высокой подвижности макромолекул (в растворе, в набухшем состоянии) возможны обратимые конформационные переходы а-спираль клубок -структура. а-Спираль построена из повторяющихся аминокислотных звеньев, отличающихся боковыми заместителями. Линейное расстояние вдоль оси спирали между двумя однородными атомами (шаг спирали) составляет 1,5 А. Угол между перпендикуляром к оси спирали и плоскостью, занимаемой аминокислотными звеньями, равен 26°. Один виток спирали включает 3,6 аминокислотных остатка. Это соответствует линейному расстоянию вдоль оси спирали, равному 5,4 А.  [c.375]


    Конформационные переходы макромолекул коллагена (или желатины) приводят к изменению величины оптической активности растворов  [c.382]

    Равновесная гибкость макромолекул - способность к конформационным переходам цепи, окруженной другими молекулами (соседние макромолекулы, молекулы растворителя и т. п.). [c.404]

    Сегмент макромолекулы - статистический элемент гипотетической цепи, адекватно моделирующий способность реальной макромолекулы к конформационным переходам в результате теплового движения (статистический сегмент) или под,влиянием внешних энергетических полей (кинетический сегмент). [c.404]

    Скелетная гибкость макромолекул - способность к конформационным переходам изолированной цепи. В изотермических условиях зависит только от химического строения макромолекулы. Определяется высотой потенциального барьера, препятствующего свободному вращению звеньев. [c.404]

    Термодинамическая гибкость - способность макромолекулы к конформационным переходам в термодинамически равновесном состоянии под влиянием бесконечно медленных тепловых воздействий. [c.406]

    В нефтяных системах в качестве зародыша (рис.3.3), содержащего минимальное количество вещества новой фазы, можно рассматривать макромолекулу или другую реакционную частицу тех же размеров, находящуюся в любом конформационном состоянии, не содержащую включения фазы растворителя и способную в условиях конкретного процесса к [c.89]

    Энтропия, определяющаяся числом конформаций макромолекулы и вычисляемая по уравнению (Х.1), называется конформационной энтропией. Она может иметь значительную величину и играет существенную роль во всех процессах с участием макромолекул, например, при растворении полимеров. [c.194]

    В других случаях, в частности при значительных деформациях макромолекул (конформационных изменениях) в потоке, возможно и обратное явление роста эффективной вязкости с увеличением скорости течения. Подобные явления не могут быть описаны рассмотренными выше простейшими реологическими моделями с постоянными парамет рами. Системы, в которых наблюдается завпсимость вязкости от скорости течения, называются аномальными, или неньютоновскими жидкостями. Впрочем, изменения вязкости, связанные с ориентацией и деформацией частиц дисперсной фазы в малоконцентрированных системах (при отсутствии взаимодействия частиц), обычно сравнительно невелики, во всяком случае не превышают порядка величины. [c.327]

    В ИК-спектроскопии для той же цели используется чувствительность некоторых полос поглош ения к длине регулярных отрезков цепи. Разработанный на этой основе метод анализа распределения по длинам регулярных блоков предполагает изхмеренне спектров полимеров в растворе при низких температурах, когда макромолекулы конформационно упорядочены. Получаемая информаций [c.256]

    При анализе растворов высокомолекулярных соединений в гепловом движегти участвуют не только молекулы как целое, но и фрагменты молекул fSOj. Кроме поступательного и вращательного движений нужно учесть колебания и относительное вращение всех звеньев макромолекулы друг относительно друга. Появляющиеся дополнительные внутренние степени свободы являются причиной отличия поведения растворов высокомолекулярных соединений от обычных растворов. Описание явлений становится существенно более сложным вследствие того, что в больших молекулах устанавливаются связи между их частями. Образуются структуры, пронизанные молекулами растворителя. Такие растворы, являясь молекулярнымя, гораздо ближе по своим свойствам к коллоидным системам, чем к истинным растворам. Вместо одного характерного времени т в случае малых молекул для описания теплового движения макромолекул в растворах используют уже спектр времен п — характерное время, за которое фрагменты макромолекулы смещаются на расстояния порядка радиуса действия мел<молекулярных сил т-2 — время распространения конформационной перестройки по молекуле то — время вращательной корреляции (или характерное время затухания корреляционной функции) и т. д. [81]. Физический смысл величины то в том, что она является средним временем, за которое макромолекула поворачивается на угол 1 радиан за счет теплового движения. [c.44]

    Экспериментальные определения и расчеты стандартных термодинамических функций мицеллообразования по полученным соотношениям позволяют оценить энергетику взаимодействия ПАВ с растворителем (растворения) и непосредственно мицеллообразования. Вклад стадий растворения является превалирующим, вследствие чего суммарная движущая сила процесса определяется в осиовиом ростом энтропии. Например, для бромида -додецилт1)иметиламмония в воде ДС° = — 17,8 кДж/моль, = —1,38 кДж/моль, —7Д5 = —16,5 кДж/моль для м-но-децилсульфата натрия соответственно —21,1 кДж/моль, +0,38 кДж/моль и —21,5 кДж/моль. В то же время стадия непосредственно мицеллообразования сопровождается ростом упорядочения, т. е. уменьшением энтропии системы. Однако нельзя не учитывать некоторого роста конформационной энтропии с увеличением размеров ассоциатов (образование мицелл), подобно тому, как это наблюдается для макромолекул в растворах полимеров. Можно заключить, что экспериментально определяемые значения стандартных термодинамических функций отвечают не столько мпцеллообразованию (из истинного раствора), сколько самопроизвольному диспергированию ПАВ. [c.296]

    Гибкость макромолекул, для которых к < Ю нм, проявляется преимушественно как поворотная изомерия (ротамерия). Для полимеров с к > 40 нм конформационные переходы реализуются в результате суммирования малых колебаний валентных углов и углов внутреннего врашения. [c.88]

    В присутствии соседних молекул гибкость макромолекул Офаничивается межмолекулярными и межцепными взаимодействиями. В этом случае способность макромолекул к конформационным переходам определяется как равновесная . [c.88]

    Макромолекулы целлюлозы относятся к полужесткоцепным образованиям. Способность к конформационным переходам обусловливается возможность вращения пиранозных циклов вокруг глюкозидных связей. Скелетная гибкость полимерных [c.290]

    Планарность этой связи и возможность возникновения диполя обусловливают ее жесткость. Жесткая пептидная связь существенно офаничивает возможность конформационных переходов в макромолекуле. Боковые радикалы аминокислотных звеньев создают дополнительные стерические затруднения для конформационных переходов. Звенья Gly лищены бокового радикала и не проявляют асимметрии при С -атоме. В связи с этим данные звенья в полипептидной цепи ифают роль своеобразного шарнира, позволяя остаткам Gly обеспечивать возможность конформационных переходов. Однако содержание Gly в полимерных цепях офаничено его избыток привел бы к резкому возрастанию гибкости макромолекул. Важной особенностью строения полипептидной цепи является тот факт, что все полярные и неполярные боковые радикалы отделены от С -атома Фуппой СН2, что обеспечивает увеличение конформационных возможностей полимерной цепи. Остов полимерной цепи образует цепочка атомов [c.341]

    Боковые заместители аминокислотных звеньев направлены либо внутрь, либо к поверхности белковой молекулы. Неполярные боковые радикалы Val, Пе и Leu разветвлены (см. табл 6.7), что Офаничивает их внутреннюю подвижность. Подвижность ароматических циклов в Phe незначительна. Неполярный Pro является специфическим остатком, образующим циклическое звено в полимерной цепи, в результате чего конформационные возможности макромолекулы белка офаничиваются. К тому же Pro фиксирует двухфанный угол Ф, между N и С в узком интервале 20 фад. Try характерен самым объемным боковым радикалом. Его небольшая полярность обусловлена индольным гетероциклом. Следует отметить, что все самые крупные боковые радикалы Val, Ile, Leu, Phe, Pro, Try, a также Met располагаются преимущественно внутри глобулизированной белковой молекулы. [c.341]

    Гидрофобные взаимодействия проявляются только в водных средах и обусловливаются способностью неполярных молекул образовывать между собой прочные ассоциаты в процессе мицелл ообразования. Этим предопределяются возможность возникновения би- и многослойных биологических мембран, а также реализация конформационных переходов макромолекул белков и др. [c.347]

    Облегчение конформационных переходов при увлажнении полимерного субстрата обусловливает усиление тенденции к развертыванию глобулизирован-ных участков белковой макромолекулы вследствие ослабления (из-за гидратации) внутрицепных взаимодействий. Это приводит к самопроизвольному удлинению волокна при увеличении его влажности свыше 5-7%. Равновесное влагопоглощение кератиновых волокон при 25 °С достигается через 2-3 мин. Поэтому при изменении влажности воздуха соответственно достаточно быстро изменяется влагосодержание волоса и, как результат, происходит определенное изменение его длины (усадка или удлинение). [c.380]

    Скорость протекания конформационных переходов зависит от концентрации и молекулярной массы белка. В результате ассоциации полипептидных цепей в растворах возникают тройные спирали. Такое самоупорядочение макромолекул в растворе протекает наиболее эффективно вблизи изоэлектрической точки. [c.382]

    Измененио активности КМЦ различных марок в занисимости от величины pH среды может быть объяснена следующим. При значениях pH более 8,0 определяющими являются конформацион-ные факторы, обусловливаемые минерализацией среды, а при высоком содержании щелочных реагентов, кроме того, возможностью течения щелочного гидролиза и других процессов. При значениях pH от 8,0 до 7,0 часть препарата из хорошо растворимой натриевой формы переходит в труднорастворимую водородную форму карбоксиметилцеллюлозы. Этот процесс усиливается при снижении величины pH среды ниже 7,0, н одновременно возрастает роль кислотного гидролиза, обусловливающего деструкцию макромолекул КМЦ до низкомолекулярных фракций, не обладающих стабилизирующей способностью. С ростом температуры эти процессы значительно интенсифицируются. [c.118]

    Ме аническая прочность полимеров аморфной структуры п одном направлении может быть значительно увеличена ориентацией макромолекул. Для этого полимер нагревают выше температуры стеклования и медленно растягивают. Под влиянием растягивающего усилия способность отдельных макромолекул принимать различ1 ые формы (конформационный состав) уме ь-шается, и, постепенно выпрямляясь, они располагаются вдоль оси ориентации и сближаются друг с другом, создавая более уплотненную структуру. ДJ я 1он Л непия рочности В двух взаимно-перпендикулярнр х направлениях полимер растягивают по двум 1 аправлепиям. [c.48]

    Важное значение имеет конформационное состояние макромолекул в растворе, которое зависит от ее строения, природа дисперсионной среды, концентрации ВМС в растворе, температуры и наличия микроэлементов, которые являются причиной образования внутри- и межмолекулярных комплексов. Для нефтяных ВМС возможность образования той или иной конформации прежде всего определяется их молекулярным строением. Так, анализ данных [170] предполагает, что в состав асфальтенов могут входить ВМС, молекулы которых имеют плоскую конформацию вследствие того, что состоят из крупных конденсированных нафтено-ароматических фрагментов, соединенных непосредственно или через короткие мостики, не позволяющие молекуле сгибаться или складываться за счет вращения вокруг связей. Характерными для нефтяных систем могут бьггь макромолекулы, в которых нафтено-ароматические фрагменты с алифатическим и гетероа-томным "обрамлением" связаны между собой через несколько линейно связанных атомов углерода или гетероэлемента. В этом случае создается возможность складывания макромолекулы за счет сближения плоских фрагментов. Степень их сближения, которую можно характеризовать величиной угла пересечения плоскостей, проведенных вдоль плоских фрагментов, зависит от гибкости и длины связующего звена и стерических препятствий, создаваемых алифатическим обрамлением " плоских фрагментов, и их нафтеновой или гетероатомной частью. В результате образуется слоистая вторичная молекулярная структура с параллельной или непараллельной (зигзагообразной или спиралевидной) укладкой плоских фрагментов. Если макромолекула представляет собой разветвленную цепь плоских разнозвенных фрагментов, то слоистые структуры могут образовываться за счет складывания плоских фрагментов каждой ветви, и тогда макромолекула может рассматриваться как "гроздь" вторичных молекулярных складчатых структур, или за счет параллельной или почти параллельной укладки плоских фрагментов, входящих в состав различных ветвей макромолекулы, с образованием менее разветвленной вторичной молекулярной структуры. Образование такой конформации макромолекулы энергетически выгодно [c.82]

    А5ид>0, так как всегда при смешении (равномерном распределении веществ) энтропия увеличивается. Но этот член ири растворении полимеров невелик, так как число макромолекул, участвующих в растворении, мало в сравнении с числом молекул низкомолекулярного растворителя. Главную роль здесь играет увеличение конформационной энтропии. [c.195]


Смотреть страницы где упоминается термин Макромолекулы, конформационные: [c.5]    [c.21]    [c.192]    [c.126]    [c.21]    [c.127]    [c.345]    [c.39]    [c.83]   
Методы практической биохимии (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные



© 2025 chem21.info Реклама на сайте