Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы распределительная

    Описание аппаратуры для серийных анализов. Схема прибора приведена на рис. 7. Он изготовлен целиком из латуни, за исключением самой трубки колонки, и все соединения выполнены при помощи припоя с высокой точкой плавления. Рубашка для детектора колонки и кипятильника состоит из отрезка латунной трубки диаметром 75 см, привинченной болтами к фланцу, несущему кожух детектора. Распределительная колонка состоит из медной и-образной трубки длиной 15 см с наружным диаметром 6 мм, один конец которой присоединен к основанию кожуха детектора при помощи латунного соединения. Другой конец колонки входит в другое латунное соединение, припаянное к фланцу. Это устройство дает возможность легко снимать и вновь набивать колонку, если это требуется. [c.154]


    Подвижная фаза (растворитель) является одной из составляющих системы жидкость — жидкость, ответственной за процесс разделения в распределительной хроматографии. Поэтому, кроме обычных требований, предъявляемых к растворителям в других видах жидкостной хроматографии (химической инертности по отношению к используемым неподвижным фазам, носителям и компонентам разделяемых смесей, низкой вязкости, чистоты, совместимости с детекторами, доступности и дешевизны), в распределительной хроматографии к подвижной фазе предъявляются и некоторые специфические требования. [c.66]

    Этот простейший вид аналитической реакционно газовой хроматографии не требует каких-либо переделок или изменений стандартной газовой схемы хроматографа при работе с детектором по теплопроводности . Следует только предусмотреть подключение к линии сброса газового потока в атмосферу специальной распределительной гребенки, связанной с серией стеклянных микрореакторов — небольшого размера пробирок или пенициллиновых склянок. В каждую пробирку (склянку) перед началом опыта помещают свежеприготовленный раствор специфического группового реагента. Пробирки соединяют с распределительной гребенкой с помощью стальных капилляров (медицинских игл) таким образом, чтобы при выполнении анализа поток газа из [c.190]

    УФ-детектирование в случае использования элюентов с хорошим пропусканием не позволяет установить действительное уравновешивание колонки. Рефрактометрические детекторы намного более чувствительны к небольшому дрейфу в составе растворителя и поэтому могут дать лучшую информацию о состоянии разделительной системы в процессе уравновешивания колонки. Сигнал рефрактометрического детектора может быть обусловлен не только элюированием образцов, но и также изменением состава в распределительной системе жидкость — жидкость (ср. разд. 1.4.4.2), происходящим в результате элюирования образца. В таких случаях рекомендуется собирать весь элюат во фракции нужного размера. Соответствующие фракции могут быть объединены после дальнейшего анализа методом офф-лайн (вне потока) ьа присутствие компонентов образца. Фракции, содержащие только растворитель, могут быть отброшены или подвергнуты соответствующей регенерации. [c.100]

    Отфильтрованная вода направляется в резервуар чистой воды или может подаваться насосами непосредственно в распределительную систему. Хлор вводят перед поступлением воды в фильтры или на выходе насосов. Уровни вводимого и остаточного хлора можно фиксировать иа центральной сигнальной панели. В процессе обработки постоянно отбирают и анализируют пробы воды, а также регулируют содержание остаточного хлора до заданного значения. Хлораторы и испарители находятся в отдельном помещении, оснащенном детектором и автоматической вентиляционной системой на случай ава- [c.228]


    Интересно отметить, что уже в 1941 г. в статье Мартина и Син-джа [37], посвященной их работе по жидкостной распределительной хроматографии, удостоенной Нобелевской премии, была изложена достаточно ясно и общая концепция газо-жидкостной распределительной хроматографии. Тем не менее, эта идея не получила в литературе дальнейшего развития в течение почти целого десятилетия, до 1949 г., когда она была осуществлена Мартином и Джеймсом. Далее в 1952 г. Джеймс и Мартин опубликовали ряд статей [24, 25], содержащих описание прибора, снабженного бюреткой с самописцем, для разделения смесей органических кислот и оснований методом газо-жидкостной хроматографии. Детектор, описанный в этих первоначальных публикациях, был годен для анализа только двух указанных выше категорий веществ. Когда же Рей [44] опубликовал серию газо-жидкостных [c.26]

    После разделения компонентов пробы в колонке поток газа обычно делится на две неравные части главная часть потока направляется в распределительный патрубок ловушки, а меньшая — в детектор. Распределитель направляет поток в отдельную ловушку-сборник, а детектор показывает, когда выходят компоненты. [c.372]

    Предложенное авторами работы [1] аппаратурное оформление анализа несложно. Анализируемая проба разделяется на отдельные компоненты на обычной хроматографической колонке (величина пробы 1 мкл) с катарометром в качестве детектора. Разделение проводилось на сквалане при С. После катарометра газовый поток через трехходовый кран поступал в одну из двух распределительных трубок из нержавеющей стали, концы которых были закрыты резиновыми пробками. Через каждую из этих пробок проходило до пяти игл для подкожных инъекций, что позволяло разделить поток газа-носителя вместе с элюируемой хроматографической зоной на пять приблизительно равных потоков. Каждая иголка погружалась в пробирку (3,5 X 1 см) с групповым реактивом, через раствор которого барботировал газ-носитель. Результаты качественного функционального анализа соединений, отвечающих данному хроматографическому пику, служили основанием для выбора соответствующе характеристической кривой [c.165]

    Вообще говоря, в рассматриваемых вариантах хромато-распределительного метода хроматограф можно рассматривать только как сложный и весьма информативный (число и количество анализируемых соединений) детектор. Решение задач качественного анализа может быть функцией только распределительного метода (индивидуальная и групповая идентификация хроматографических пиков). Такое распределение функций является вполне оправданным, так как оно позволяет реализовать наибольшую и воспроизводимую селективность в процессе распределения и снять обычно трудно реализуемые даже в газо-жидкостной хроматографии требования воспроизводимости и особенно межлабораторной воспроизводимости хроматографических колонок с целью получения воспроизводимых значений хроматографических характеристик удерживания. Следует отметить, что в какой-то мере подобная ситуация в настоящее время наблюдается в хромато-масс-спектро-скопии основная функция колонки в этом методе — функция разделения (т. е. ответ на вопрос, сколько соединений в анализируемой смеси), а качественный и количественный анализ проводится с помощью масс-спектрометра. [c.106]

    Описан новый метод газовой хроматографии. Сильно разбавленная проба в виде пара в инертном газе проходит с постоянной скоростью через распределительную колонку. Компоненты, появляющиеся на выходе из колонки, определяются обычным детектором и изображаются в виде серии ступеней, отделенных плоскими плато. Описана система дифференциального детектирования, которая преобразует ступени в ряд симметричных пиков, имеющих такой же вид, как в обычной проявительной хроматограмме. [c.120]

    Хотя за последние годы по вопросам газовой хроматографии опубликовано большое число работ, очень немногие из них относятся к газо-адсорбционной хроматографии, в которой применяются дифференциальные детекторы. Очевидно, это объясняется трудностями, встречающимися при применении данного метода. К ним относятся плохая воспроизводимость свойств адсорбентов, необратимость некоторых типов адсорбции и заметно выраженное образование хвостов у выходящих пиков. Всякий раз, когда это возможно, оказывают предпочтение распределительной хроматографии, детально изученной теоретически. Однако в случае анализа смесей постоянных газов, включающих [c.413]

    Распределительная хроматография парообразной фазы представляет собой ценную методику анализа смесей углеводородов или других летучих материалов [1—3]. Обычно применяются два детектора один — основанный на измерении плотности пара мост [1], и другой—прибор, основанный на принципе теплопроводности 12]. Описано также применение для этой цели инфракрасного детектора с определением двуокиси углерода [4], Прибор, основанный на измерении плотности паров, обладает превосходной чувствительностью, но сложен, тогда как прибор, основанный на теплопроводности, относительно прост, но несколько менее чувствителен. Описываемый здесь пламенный детектор обладает высокой чувствительностью и в простой форме может быть легко изготовлен в любой мастерской. Он также пригоден для использования в высокотемпературной хроматографии парообразной фазы, так как его стабильность можно поддерживать до температуры 300°. Пламенный детектор нрименяется с водородом или газовой смесью, содержащей водород, в качестве газа-носителя. [c.149]


    В качестве газа-трассера использовали Не и СО,. Трассер вводили в слой через распределительное устройство— паук на высоте 122 см от газораспределительной решетки. Кривые изменения концентрации меченого газа снимали в центре аппарата и у стенки на расстояниях 37, 60 и 95 см от сечения, в которое его подавали. Трассер вводили ступенчато. В качестве детектора использовали малоинерционный газоанализатор МИГ-1. Момент подачи трассера фиксировался на ленте записывающего прибора (электронный потенциометр ЭПП-09-М2). [c.58]

    Газовая хроматография представляет собой процесс, в котором разделение смеси производится с помощью подвижной газовой фазы, проходящей над сорбентом. Метод подобен широко применяемой жидкостной распределительной колоночной хроматографии, за исключением того, что подвижная жидкая фаза заменена движущейся газовой фазой. Газовая хроматография (ГХ) подразделяется на газо-адсорбционную хроматографию (ГАХ), где сорбентом является твердое тело с большой поверхностью, и газожидкостную хроматографию (ГЖХ), где сорбент — нелетучая жидкость, нанесенная на инертный твердый носитель. Подвижная фаза, или газ-носитель, представляет собой инертный газ, который пропускается с постоянной скоростью через насадочную колонку — трубку небольшого диаметра, содержащую сорбент. Аналитическая к олонка длиной около 1,5 ле и внутренним диаметром 4 мм может иметь эквивалент от 700 до 4000 теоретических тарелок (смотри ниже) в зависимости от типа и равномерности заполнения насадки. То, что говорится о газо-жидкостной хроматографии, об ее аппаратуре, детекторах, взятии пробы газа и т. д., в основном применимо к газо-адсорбционной хроматографии, которая является исторически более ранним методом и применяется преимущественно в случае анализа газов или относительно неполярных веществ с высокой летучестью. Область применения газо-жидкостной хроматографии значительно шире, так как этот метод применим к более широкому многообразию веществ и вместе с тем допускает применение не только насадочных, но и капиллярных колонок. В этой главе рассматривается только газо-жидкостная хроматография. [c.43]

    В настоящее время аналитик располагает достаточно большим числом твердых неподвижных фаз для того, чтобы систематически использовать наиболее важные преимущества ГАХ. Прежде всего разработанные для ГАХ адсорбенты отличаются пренебрежимо малым давлением паров, что особенно важно при применении температурного программирования, при применении высокочувствительных детекторов для анализа микроколичеств, а также при объединении метода газовой хроматографии с масс-спектрометрией. Одно из важных достоинств ГАХ состоит в том, что при правильно выбранной температуре равновесие адсорбция — десорбция устанавливается быстрее, чем равновесие растворение — испарение при распределительной газовой хроматографии [5]. Поэтому член уравнения Ван-Деемтера, характеризующий массообмен, для ГАХ меньше, чем для ГЖХ, так что, с одной стороны, эффективность адсорбционных колонок на единицу ее длины выше, чем для распределительных, а с другой —с адсорбционными колонками можно работать при более высокой скорости газа-носителя, не снижая существенно эффективности разделения. [c.301]

    Газ-носитель из сравнительной каморы С детектора 1 поступает в дозатор 2, из которого через испаритель 3 и распределительную стойку 4 поворотом пробкового крана 5 в положение I илп II направляется соответственно в колонку с ТЗК или цеолитом, а затем поступает в рабочую камеру Р детектора /. Пробковый кран 5 кренится на внешней панели хроматографа с левой стороны ркшарителя 5. Д.чя проверки герметичности прибора lia лс( соедиигтелып.го узлы необходимо нанести [c.97]

    Условия опыта. Длина колонки 1 м, внутренний диаметр 4 мм. Скорость потока газа-носителя (аяот) 30 мл/мин. Температура комнатная (20° С). Количество образца для анализа 0,5 мл. Твердый носитель — ИНЗ-600 или сферо-хром-1, или сферохром-2, зернение 0,25—0,5 мм. Неподвижная фаза для распределительной колонки — вазелиновое масло (30% от массы носителя). Сорбент для адсорбционной колонки — силикагель МСК- Токовая нагрузка на плечи детектора по теплопроводности (катарометра) 100 ма. [c.101]

    Очень простая и практичная аппаратура для использования нескольких одновременно работающих колонок и одного детектора описана Митц-нером и Гитонеасом (1962). Схематическое изображение этой аппаратуры приведено на рис. 4. Газ-носитель подводится к отдельным дозаторам и затем к параллельно расположенным колонкам через устройство для распределения потока газа. С помощью соответствующего переключения кранов, находящихся между дозаторами и распределительным устройством и расположенных вне термостата, анализы могут проводиться на определенной колонке. Отдельные выходы из колонок соединяются затем гребенкой на входе в детектор. Такая аппаратура дает возможность применять колонки различного диаметра и — при условии раздельного термостатирования — колонки, нагреваемые до различной температуры. Так, например, в одном приборе можно проводить разделение смеси на ирепаративной колонке с последующим анализом разделенных фракций на обычных колонках. Установка двух или нескольких независимо работающих колонок в одном приборе приносит, кроме того, всегда значительную экономию во времени, так как отпадает необходимость смены колонок и связанной с этим потери времени на нагревание и охлаждение колонок. [c.223]

    Пик 7 наиболее часто встречается при использовании рефрактометрического детектора в жидко-жидкостной распределительной хроматографии, В этом случае компонент, элюируемый в виде относительно узкого пика с указанной формой фронта имеет заднюю часть, замаскированную продолжительным дрейфом нулевой линии. Это связано с тем, что компонент образца нарушает равновесие между подвижной и неподвижной жидкими фазами, существовавшее до его появления в колонке. Детекторы на основе дифференциальных рефрактомеров очень чувствительны к малейшим изменениям в составе растворителя [c.55]

    Чистота растворителя. Ни один из используемых сегодня растворителей не имеет 100% чистоты. Наиболее общей примесью во многих органических растворителях является вода. В дополнение к этому каждый растворитель в зависимости от источника его получения и химической стабильности может содержать различные типы других загрязнений. Например, алифатический углеводород гексан может содержать кроме воды различные количества изомеров Се (таких, как метилциклопен-тан или триметилпентан), ненасыщенные соединения (такге, как 1-ге ксен или 2- метил-2-пентен), С5- и Ст-алифатические углеводороды и олефины, ароматические углеводороды (такие, как бензол и толуол) и даже более тяжелые ароматические-углеводороды (такие, как нафталин) и т.д. [147]. Эти различные соединения, хотя они присутствуют в небольших количествах, могут значительно влиять на некоторые применения ЖХ. Наличие олефинов и ароматических углеводородов в гексане-З величивает как поглощение в УФ-области, так и показатель, преломления и поэтому влияет на характеристики детектора. Более высокие концентрации изомеров С5 и Се могут изменить-значение к для неполярных соединений, разделяемых на неподвижных фазах, таких, как оксид алюминия или силикагель. Аналогичным образом вода будет влиять на удерживание, не только дезактивируя неподвижную фазу, но и также изменяя природу двух распределительных фаз в ЖХ-системе. [c.93]

    За открытие распределительного варианта хроматографии Мартин и Синг в 1952 г. получили Нобелевскую премию. В 1952—53 гг. Мартин и Джеймс осуществили вариант газовой распределительной хроматографии, разделив смеси на смешанном сорбенте из силикона ДС-550 и стеариновой кислоты. С этого времени наиболее интенсивное развитие получил метод газовой хроматографии Метод привлекал внимание своей экспрессностью и простотой и быстро завоевал признание исследователей. После этого развитием хроматографических методов разделения и анализа занялась большая группа талантливых ученых и инженеров, которые развили теорию метода, создали постепенно усложнявшиеся приборы, нашли оригинальные и часто остроумные приемы и комбинации хроматографических вариантов, колонок, детекторов, систем включения и переключения колонок и детекторов. Стали регулярно проводиться хроматографические конференции и симпозиумы, первый из которых состоялся в 1956 г. в Лондоне. Хроматография стала не только интересным полем реализадИи творческих замыслов, но и весьма полезным аналитическим мето-дом. Часть блестящих ученых занимались развитием самого метода, другие — его применением. Например, Сиборг осуществил разделение нескольких десятков атймов трансурановых элементов. Исключительное значение имело создание в 1956 г. Голеем капиллярного варианта хроматографии, а в 1962 г. Порат и Фло-дин создали вариант ситовой хроматографии и применили его для разделения высокомолекулярных соединений. С середины 70-х годов начинается период интенсивного развития жидкостной хроматографии, с середины 80-х годов практическое использование флюидной хроматографии и полная компьютеризация всего хроматографического процесса. [c.15]

    Для определения коэффициента распределения в системах жидкость—пар в качестве растворителя можно использовать многие жидкости, которые, однако, не должны перекрывать при хроматографическом анализе зоны выхода определяемых компонентов. В случае слабополярных и полярных соединений предпочтение обычно целесообразно отдать полярным селективным растворителям, например, таким, как вода. Выбор воды в качестве растворителя для проведения хромато-распределительных опытов в системе жидкость—пар имеет также то преимущество, что вода не дает сигнала при использовании пламенно-ионизацион-ного детектора. Вода является очень полярным и селективным растворителем. Полярность воды, определенная нами по методу Роршнейдера, оказалась равной 115 единицам, т. е. вода значительно полярнее, чем р,Р -оксидинропионитрил, полярность которого равна 100 единицам (определение проводилось в статических условиях при 50° С для бензола и циклогексана). [c.58]

    Наиболее эффективно анализ газовой фазы может быть осуществлен методами газовой хроматографии. В основу разработанного нами прибора положена принципиальная схема хроматографа ХТХГ-1 [2], предназначенного для анализа горючих газов, сильно разбавленных воздухом. В нашем приборе применено сочетание адсорбционной и распределительной хроматографии при обычной температуре и термохимический детектор [3]. Запись показаний осуществляется на самописце ЭПП-09. [c.254]

    По-видимому, не случайно, что в приведенных в гл. II примерах гель-хроматографического разделения с использованием температурного детектора речь идет исключительно о низкомолекулярных соединениях (деление в воде на сефадексе 0-10). Благодаря высокому содержанию полимера в геле здесь также вполне возможно взаимодействие матрицы с небольшими молекулами (олигосахаридами и этиленгликолямн), что сопровождается изменением температуры. Напротив, как уже здесь подчеркивалось, принцип распределительной хроматографии требует, чтобы объем выхода зависел от температуры, так как последняя входит в уравнение (15). Однако хорошо известно, что практически объем выхода не зависит от температуры (см. выше). [c.124]

    Газоанализатор Фрактовап вьшускается итальянской фирмой Карло Эрбе в Милане [42]. Прибор (рис. 74) предназначен для анализа жидкостей в паровой фазе и основан на методе распределительной хроматографии. Хроматографическая колонка наполнена инертным носителем (целит 545), пропитанным жидкостью с высокой Т0ЧК011 кипения. В качестве регистрирующего устройства использован детектор по теплопроводности. Газом-носителем служит гелий. Хроматографическая колонка и камера теплопроводности термостатированы и могут работать в температурных пределах от О до 150° С. По данным фирмы, точность регулирования температуры в термостате 0,25° С. Камера теплопроводности (элементы моста Уитстона) смонтирована в массивном металлическом блоке с целью обеспечения хорошего термостатирования. Хроматографические колонки выполнены из нержавеющей стали (из трубок диаметром 6 мм и длиной 1—2 м) в виде буквы и. Колонки взаимозаменяемы. При надобности из них могут быть составлены колонки длиной до 6 м. [c.200]

    Опксана конструкция высокотемпературного газового хроматографа, предназначенного для качественного разделения г. анализа высококипящих смесей органических веществ. При разделении смеси углеводородов, сложных эфиров и гликолей распределительные колонки работают в интервале температур 150—350 Детекторы для излкрения теплопроводности работают при температуре на 10 — 100" выше, чем колонки, что исключает конденсацию высококипящих компонентов. [c.73]

    Описан полный анализ смеси постоянных и конденсирующихся газов методом двухстадийной газовой хроматографии на приборе с одним детектором и одним самопишущим прибором. Для разделения конденсирующихся газов применяется распределительная колонка, а для разделения постоянных газов—адсорбционная. Не разделенные постоянные газы, выходящие из распределительной колонки, улавливаются в ловушке с древесным углем, охлаждаемой жидким азотом. Затем эти газы десорбируются из ловушки и разделяются на колонке длиной 8 м с насадкой из древесного угля. Анализ опытной смеси, содержащей водород, кислород, азот, окись углерода, метан, этан и я-бутан, хроматографическим и масс-спектрометрическим методами показал хорошее совпадение результатов. [c.91]

    Некоторые исследователи2- - сообщают, что при использовании распределительной хроматографии после введения пробы давление и скорость газа-носителя изменяются. Это объясняют различием в вязкости между носителем и пробой Признано, что они влияют на точность результатов при использовании детекторов для измерения теплопроводности . [c.83]


Смотреть страницы где упоминается термин Детекторы распределительная: [c.98]    [c.217]    [c.184]    [c.283]    [c.403]    [c.307]    [c.97]    [c.652]    [c.295]    [c.213]    [c.149]    [c.123]    [c.254]    [c.539]    [c.188]   
Физическая Биохимия (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Распределительный щит



© 2025 chem21.info Реклама на сайте