Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофорез гель Гель-электрофорез

    В настоящее время разработано значительное число методов изучения электрофореза и определения с его помощью электрокинетического потенциала метод непосредственного изучения движения границы между дисперсной системой и свободной дисперсионной средой под действием внешней разности потенциалов (метод подвижной границы), метод микроэлектрофореза — наблюдение с помощью микроскопа или ультрамикроскопа за перемещением отдельных частиц,, электрофорез в гелях, бумажный электрофорез и др. Эти методы,, подробно описанные в практикумах по коллоидной химии широко применяются для изучения электрофореза как дисперсных систем, образованных низкомолекулярными веществами, так и дисперсий ВМС, особенно природного происхождения. Методы электрофореза позволяют анализировать и разделять смеси белков, что эффективно используется в исследовательской работе и лечебно-диагностической практике. [c.194]


    ПААГ-электрофорез - полиакриламидный гель-электрофорез [c.111]

    Из-за молекулярно-ситовых эффектов электрофорез на гелях крахмала обычно дает больше фракций, чем соответствующий электрофорез на агаровых студнях. Электрофорез на тонкослойных гелях крахмала предпочтителен по сравнению с электрофорезом на обычных гелях крахмала [190]. В некоторых случаях в тонкослойных гелях крахмала удается обнаружить фракции, которые нельзя выявить, работая с обычными гелями крахмала. Кроме того, если электрофорез проводится на тонких слоях, их не нужно разрезать после электрофореза. [c.516]

    Одно из серьезных ограничений гель-электрофореза как метода выделения специфических фрагментов ДНК заключается в том, что молекулы, имеющие примерно одинаковую массу, но различную нуклеотидную последовательность, обладают, как правило, одинаковой электрофоретической подвижностью. Один из возможных подходов к решению этой проблемы основан на использовании предложенного в работе Фишера и Лермана [115] метода двумерного гель-электрофореза фрагментов ДНК. Сначала смесь фрагментов ДНК разделяют в соответствии с их размерами с помощью обычного гель-электрофореза, а затем в перпендикулярном направлении проводят электрофорез в 4%-ном полиакриламидном геле в градиенте концентрации формамида (от 4 до 30%) и мочевины (от 0,7 до 5,25 М). Разделение проводят при повышенной температуре. В этой методике использован эффект резкого уменьшения электрофоретической подвижности в результате денатурации или плавления части нативной молекулы ДНК. В ходе электрофореза во втором направлении фрагменты ДНК подвергаются воздействию все более жестких денатурирующих условий, и плавление части молекулы двухцепочечной ДНК сопровождается скачкообразным изменением ее подвижности. Связь между подвижностью фрагментов ДНК и их нуклеотидной последовательностью носит сложный характер и до сих пор окончательно не выяснена [115], [c.185]

    После окончания электрофореза гели выталкивают при помощи шприца на 2. мл с навинчивающейся конической насадкой, на которую надета трубочка с внутренним диаметром 1 мм. Капилляр присоединяют к кончику этой трубочки и, осторожно нажимая на шприц, извлекают гель. Можно также выдавить гель куском проволоки, плотно входящей внутрь капилляра [602]. Гели окрашивают в течение примерно 5 мин, затем отмывают от избытка красителя (около 30 мин) и хранят в соответствующем растворе, как обычно. [c.110]

    В простом варианте электрофореза желательно наносить белковую смесь на гель в минимальном объеме, чтобы высота исходного слоя препарата была не более 2—3 мм. Выполнить это условие нередко бывает затруднительно ввиду недостаточной концентрации исходного препарата. На основании приведенных выше цифр легко рассчитать, что концентрация белка в препарате должна составлять 3—5 мг/мл. Ряд мер позволяет обойти эту трудность они направлены на концентрирование белкового препарата в узкую зону в момент вступления его в рабочий гель. Основной прием заключается в том, чтобы создать перед гелем область с повышенной напряженностью поля, где белки мигрируют намного быстрее, чем в рабочем геле. В момент перехода из этой области в рабочий гель они будут стягиваться в узкую полосу, так как находившиеся первоначально далеко позади [c.44]


    С помощью гель-электрофореза молекулы, имеющие в иных условиях близкие электрофоретические подвижности, разделяются по их размерам. Первоначально для этой цели использовали крахмальный гель [128], который и до сих пор применяется в аналитических целях. Однако крахмальный гель никогда не удавалось успешно использовать в препаративных масштабах. Универсальным средством для анализа белков (а теперь и нуклеиновых кислот) в биохимических лабораториях стал полиакриламидный гель [129]. Он также пригоден и для препаративного электрофореза. Поскольку этот гель, представляющий собой трехмерную сетку нитей, образующих поры разных размеров [130], обладает разной эффективной вязкостью в зависимости от размеров молекул, уравнение (5.2) для электро- [c.215]

    Гель-электрофорез. Электрофорез на геле и крахмале применяют для аналитических целей. Наиболее важным применением гель-электрофореза является иммуноэлектрофорез. Для этого вида анализа используют макропористые гели, в частности гели агара и агарозы. Метод иммуноэлектрофореза основан на том, что после разделения электрофорезом происходит диффузия разделенных веществ — антигенов — в направлении, перпендикулярном направлению электрофореза. Навстречу этим соединениям диффундируют антитела. При соединении антигенов и антител образуются характерные дуги осаждения. Метод иммуноэлектрофореза очень чувствителен при обнаружении антигенов, специфических для данных антител. В настоящее время применяют метод введения радиоактивной метки в антигены, благодаря чему радиоиммуноэлектрофорез является одним из самых чувствительных методов анализа биополимеров. [c.364]

    Коагулянт, среда для электрофореза в гелях [c.200]

Рис. 91. Отпечаток на рентгеновской пленке геля после электрофореза смеси радиоактивных фрагментов РНК (транспортной рибонуклеиновой кислоты) длиной от 40 до 72 остатков Рис. 91. Отпечаток на <a href="/info/140144">рентгеновской пленке</a> <a href="/info/1382279">геля после электрофореза</a> смеси радиоактивных фрагментов РНК (<a href="/info/293585">транспортной рибонуклеиновой кислоты</a>) длиной от 40 до 72 остатков
    Согласно той же формуле (18.4) коэффициент диффузии обратно пропорционален вязкости растворителя. Поэтому особенно высокого качества разделения удается достигнуть, проводя электрофорез в гелях, вязкость которых чрезвычайно высока. Для разделения белков и нуклеиновых кислот наиболее широко используются полиакриламидные гели (см. 8.5). С помощью электрофореза в таких гелях удается в один прием разделить десятки компонентов. В качестве иллюстрации на рис. 91 приведен результат разделения смеси фрагментов нуклеиновой кислоты разной длины от 40 до 72 нуклеотидных звеньев. Электрофорезу подвергались фрагменты, меченые радиоактивным фосфором После завершения разде- [c.331]

    Популярность метода электрофореза в геле привела к созда нию методов специфического обнаружения и количественной оценки в геле белков, гликопротеинов, липопротеинов, нуклео-протеидов и многих ферментов [113, 114]. Все эти методы могут применяться и при электрофокусировании в геле при услови1 , что удалось избежать влияния амс олитов-носителей. При обнаружении некоторых ферментов может оказаться полезным [c.331]

    Гели в качестве поддерживающей среды при электрофорезе обладают рядом важных особенностей. Главная из них та, что размеры пор геля могут быть сравнимы с размерами белковых макромолекул. В этих условиях подвижность частиц очень резко зависит от их размеров. Таким образом, вводится дополнительный фактор, влияющий на разделение. Кроме того, адсорбция во многих гелях крайне мала. Но этим причинам электрофорез в гелях обладает чрезвычайно высокой разрешающей способностью по отношению к сложным белковым смесям — значительно более высокой, чем все другие методы. Это особенно выражено в крахмальном геле, предложенном Смитисом в 1955 г., и в синтетическом полиакриламидном геле, который все чаще используют в последнее время. В этих гелях, например, удается обнаружить до 30 компонентов сыворотки крови, в то время как фронтальный электрофорез дает только 5—7. Агаровый гель хотя и обладает малой адсорбцией по отношению к белкам, дает худшее разделение, так как размер пор в нем относительно велик. Но и в агаре было замечено, что отношение подвижностей больших и малых ионов уменьшается с увеличением концентрации агара (т. е. с уменьшением размера пор). [c.95]

    Не меньшей популярностью пользуется в настоящее время и метод электрофореза в полиакриламидном геле. Добавляя к раствору акриламида, налитому в стеклянные трубки, различные количества мономеров (например, метиленбисакриламид, этилендиакрилат), образующих в процессе полимеризации поперечные сшивки, можно получить гели с различной степенью связанности [137, 404]. Устойчивость к денатурирующим растворителям, например к 8 М раствору мочевины или 1 %-ному раствору додецилсульфата натрия, составляет еще одно важное преимущество этих гелей. При наложении разности потенциалов белки, пептиды, нуклеиновые кислоты и вирусы передвигаются в этих гелях на характерные расстояния, которые зависят главным образом от их молекулярного веса (или веса частицы), а также от степени связанности сшивок геля. Разделившиеся вещества образуют характерные полосы, которые можно выявить либо с помощью методов окрашивания или локального осаждения, либо (в случае разделения радиоактивных веществ) с помощью метода радиоавтографии (см. гл. XI, разд. Б). Разрешающая способность электрофореза в полиакриламидном геле такова, что с помощью этого метода можно обнаружить и идентифицировать приблизительно 37 видов рибосомных белков [508]. То, что разделение белка на многочисленные полосы происходит в силу действительного различия между белками, а не в результате каких-то артефактов, теперь уже не вызывает солшений. Однако известно, что разделяться на отдельные полосы могут не обязательно совершенно различные вещества, но и такие близкие между собой вещества, как, например, один и тот же белок, у которого часть молекул содержит одну лишнюю амидную (— СО — NH2 С00 ) группу, а другая часть — ацетильную (—NH+— NH — СОСН3) группу [136]. С помощью электрофореза в полиакриламидном геле [c.61]


    В геноме фХ174 есть сайты, узнаваемые многими другими ферментами, перечисленными в табл. 9.1. Количество и локализация сайтов для каждой рестриктазы строго определены. Таким образом, воздействие ка-ким-то ферментом приводит к образованию уже известного количества фрагментов ДНК фиксированного размера. Размер каждого типа фрагментов можно узнать с помощью электрофореза в геле мелкие фрагменты перемещаются в геле быстрее крупных. Так как фрагменты каждого типа характеризуются одинаковым размером и одинаковой последовательностью нуклеотидов, то нуклеотидную последовательность в каждом из них можно определять отдельно, на выделенном посредством электрофореза в геле препарате. Полную последовательность нуклеотидов в геноме можно затем собрать из последовательностей отдельных фрагментов, если знать последовательность самих фрагментов в геноме. [c.270]

    Приборы и методы, используемые при изучении генетической изменчивости в природных популяциях с помощью электрофореза в геле, изображены на рис. 22.7. Образцы тканей разных организмов гомогенизируют (измельчают) для освобождения из клеток ферментов и других белков. Пробы надосадочных жидкостей (растворимых фракций), полученных при центрифугировании гомоге-натов, наносят на гель, приготовленный из крахмала, агара, полиакриламида или какого-нибудь другого желеобразного [c.86]

    После завершения иммунодиффузии иммуноэлектрофорег-рамму можно сразу же сфотографировать без всякой обработки геля, причем лучше в рассеянном свете (при темнопольном освещении [952]). Кроме того, линии преципитации можно окрасить каким-либо белковым красителем. Перед окрашиванием непрореагировавшие белки необходимо отмыть солевым раствором. Для этого пластины геля вымачивают в течение 24—48 ч в солевом растворе, который несколько раз меняют. В последний раз гель промывают дистиллированной водой. Во время промывания слой геля может отделиться от стеклянной пластинки. Чтобы этого не произошло, стеклянную пластинку перед нанесением на нее горячего агарового золя следует покрыть тонкой. пленкой агара (на пластинку наливают разбавленный золь агара и дают ему высохнуть). После промывания гель накрывают полоской влажной фильтровальной бумаги, размеры которой на несколько сантиметров должны превышать размеры геля. Гель вместе с бумагой высушивают под вентилятором, а затем отделяют бумагу от высушенного слоя агара. Линии преципитации можно окрашивать практически любым красителем, применяемым для окрашивания белков после электрофореза в агаровом или агарозном гелях. [c.239]

    Двухмерная система электрофореза была применена также для разделения транспортных РНК [1232]. Первый этап осуществляли в 15%-ном полиакриламидном геле, содержавшем МЕ5-буфер (pH 5,8) и мочевину. В этой системе транспортные РНК, выделенные из клеток Е. соН, разделялись на 15 зон. Разделение во втором натграв-лении проводили в 16%-ном полиакриламидном геле, содержавшем трис, борную кислоту и ЭДТА [984]. Результаты двухмерного электрофореза такого типа приведены на рис. 122. Следует отметить, что после электрофореза при pH 5,8 транспортные РНК можно пометить прямо в геле радиоактив ными аминокислотами, что помогает идентифицировать разделенные зоны. [c.380]

    Гель-электрофорез нуклеиновых кислот [34]. Если в 60-х годах разделение нуклеиновых кислот по молекулярным массам вели в основном путем ультрацентрифугирования в сахарозном градиенте, то в 70-х годах этот метод вытесняется методом электрофореза в геле. Впервые он был широко применен болгарским исследователем Р. Цаневым и сотр., и затем быстро завоевал общее признание. Оказалось, что в геле ДНК и РНК движутся тем быстрее, чем ниже их молекулярная масса. Пройденное расстояние обратно пропорционально логарифму молекулярной массы. Особенно важно, что разрешающая способность метода благодаря низкой диффузии гораздо выше, чем у ультрацентрифугирования. Для низкомолекулярных нуклеиновых кислот электрофорез ведется в полиакриламидном геле, для высокомолекулярных — в агарозном. Чем ниже концентрация геля, тем более высокомолекулярные нуклеиновые кислоты могут в нем разделяться. Подбирая условия, можно разделить как короткие олигонуклеотиды, отличающиеся по длине всего на один нуклеотид, так и молекулы ДНК размером до нескольких миллионов пар нуклеотидов. [c.27]

    Во втором направлении белки разделяли ступенчатым электрофорезом в пластине ПААГ размером 13X14 см и толщиной 0,8 мм. В качестве рабочего геля до уровня на 2,5 см ниже верхнего края пластины полимеризовали экспоненциальный градиент (5—22,5%) ПААГ в 0,375 М Трис-НС1 (pH 8,8) с добавлением 0,1% ДДС-Na, стабилизированный глицерином. Формирующий гель представлял собой 4,75%-ный ПААГ, полимеризованный в 0,125 М Трис-НС1 (pH 6,8) с 0,1% ДДС-Na. Клиновидную полость над пластиной для помещения в нее цилиндри-, ка геля первого направления формировали так, как это принято делать при двумерном электрофорезе [Остерман, 1981]. Эту полость заполняли расплавленным 1%-ным раствором агарозы в том же буфере, а затем закладывали в нее цилиндрик геля. В качестве верхнего электродного буфера использовали, как обычно при электрофорезе по Лэммли, раствор, содержащий 0,025 М Трис, 0,192 М глицин и 0,1 % ДДС-Na (pH 8,3) с добавлением бромфенолового синего в качестве лидирующего красителя. Электрофорез длился 5 ч при силе тока 20 мА. За это время полоса красителя достигала нижнего края пластины. Для окрашивания белков после электрофореза использовали 0,1%-ный раствор СВВ R-250 в 50%-ной ТХУ. Перед авторадиографией гель высушивали и экспонировали с рентгеновской пленкой от суток до месяца в зависимости от исходной радиоактивности препарата и необходимости выявления слабых пятен. Прн этом следует иметь в виду, что при увеличении продолжительности экспозиции увеличивается и размер каждого пятна — примерно вдвое при 10-кратном удлинении экспозиции. Соответственно может ухудшаться разрешение близко лежащих пятен. [c.47]

    Первоначально для гель-электрофореза применяли крахмаль-ный гель. На рис. 9.4 изображено типичное устройство для электрофореза в крахмальном геле. Гель представляет собой пасту из картофельного крахмала, зерна которого разрушены нагреванием в буфере. При горизонтальном положении геля, как показано на рисунке, образец наносится в пхель, прорезанную лезвием бритвы, в виде раствора или смеси с зернами крахмала. Щель заливают воском или жиром, после чего прикладывают напряжение. После окончания электрофореза полутвердый гель отделяют и часто разрезают на два или три слоя, каждый из которых окрашивается различным способом. Разнообразные компоненты проявляются в геле в виде серии полос (рис. 9-5). В настояш ее время крахмальный гель используется редко, поскольку более удобным оказался полиакриламидный гель. [c.229]

    В середине 1960-х годов начались исследования нуклеотидных последовательностей РНК. Первыми были определены первичные структуры тРНК (Р. Холли и сотр., 1965 А. А. Баев и сотр., 1967). Развитие техники фракционирования фрагментов нуклеиновых кислот и прежде всего гель-электрофореза (Ф. Сэнгер и сотр.) позволило в начале 1970-х годов приступить к изучению первичной структуры высокомолекулярных РНК. В 1976—1978 гг. были созданы исключительно быстрые и эффективные методы секвени-рования ДНК и РНК (А. Максам и У. Гилберт, Ф. Сэнгер и сотр.), которые позволили за короткое время получить огромную информацию о первичной структуре генов, их регуляторных элементах, вирусных и рибосомных РНК и т. д. [c.7]

    Длины фрагментов определяют с помощью высокоразрешающего электрофореза в тонком слое пшиакриламидного геля. Электрофорез проводится при повышенной температуре в буферной систе.ме, содержащей 7 М мочевину, что способствует разрушению вторичной структуры фрагментов детекция зон фрагментов на электрофореграмме зависит от способа мечения его конца (если это [c.16]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]

    Кроме ферментов в ядрах содержатся негистоновые белки, имеющие, по-видимому, отношение к структуре хроматина. К ним относятся так называемые H.MG-белки, принадлежащие к двум классам HMQ 14 и 17 и H.MG 1 и 2. (Название H.MQ-белков происходит от англ. high mobility group — группа [белков с высокой подвижностью, так как в обычных системах гель-электрофореза эти белки движутся быстрее других негистоновых белков хроматина.) Эти белки содержат много положительно и отрицательно заряженных аминокислотных остатков, причем они располагаются асимметрично iV-концевая часть богата кислыми остатками, а С-концевая — основными. Возможно, HMG-белки участвуют в процессах транскрипции и репликации. [c.238]

    Один из этих подходов состоит в локализации ковалентных сшивок между нуклеосомиыми гистонами и ДНК. Принцип локализации заключается в том, что сшитые комплексы белков с ДНК разделяют в двумерных гель-электрофорезах, причем после электрофореза первого направления в геле расщепляют белковый или нуклеиновый компонент комплексов и разделяют во втором направлении только ДНК или только белки соответственно. Таким образом была получена карта линейного расположения гистонов на ДНК (рис. 125). Гистоны НЗ, Н4 располагаются в центре нук-леосомной ДНК, в то время как гистоны Н2А, Н2В локализованы на периферии. Гистон НЗ взаимодействует с центральным и концевым участками нуклеосомной ДНК. Хотя эти участки на развернутой ДНК расположены далеко друг от друга, они сближаются на свернутой в нуклеосому ДНК и, видимо, с ними взаимодействует одна и та же молекула гистона НЗ. На этой же карте видно, что не вся ДНК сплошь покрыта гистонами, а есть свободные от взаимодействия сегменты, например первые 20 нуклеотидов от 5 -концов обеих цепей нуклеосомной ДНК и участки, расположенные на расстоянии около 120 нуклеотидов от 5 -концов. Внутри нуклеосомы гистоны находятся в тесном контакте друг с другом, о чем свидетельствует образование почти всех возможных [c.240]

    Моно- и ОЛИ ногу клеосомы можно выделить, например, центрифугированием в градиенте сахарозы продуктов расщепления хроматина нуклеазой. Еще более тонкое фракционирование хро-матиновых частиц получают с помощью гель-электрофореза, при котором разделяются нуклеосомы с разной длиной линкера или различающиеся по белковому составу. [c.244]

    II тонкослойных пластинках), уступившему было своп позиции электрофорезу в гелях и ЖХВД. Наиболее интересные результаты достигаются при сочетании такого электрофореза с ТСХ в виде двумерного фракционпрования. Аналогичное сочетание с использованием электрофореза в геле возможно, но затруднительно ввиду сложности количественного переноса вещества с геля на пластинку. Впрочем, впечатляющее развитие в последнее время методов переноса веществ из гелей на фильтры ( блоттинга ) может привести к пересмотру этого утверждения. Ниже мы рассмотрим целый ряд примеров использования двумерного фракционирования с участием электрофореза, не фиксируя внимания на общих закономерностях последнего, поскольку он был подробно рассмотрен нами (для гелей) в одной из предыдущих книг серии, а отмечая лпшь те особенности, которые характерны именно для электрофореза на твердых носителях. [c.458]


Смотреть страницы где упоминается термин Электрофорез гель Гель-электрофорез: [c.108]    [c.270]    [c.187]    [c.293]    [c.127]    [c.185]    [c.215]    [c.167]    [c.167]    [c.218]    [c.237]    [c.10]    [c.17]    [c.30]    [c.80]    [c.414]    [c.448]    [c.452]   
Физическая Биохимия (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофорез



© 2025 chem21.info Реклама на сайте