Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механическая устойчивость молекул

    Механическая устойчивость молекул [c.194]

    Механическая устойчивость молекулы характеризуется тем, что при смещении ее составных частей (ядро, электроны) от равновесных положений р. молекуле возникают силы притяжения, возвращающие частицы в их первоначальное положение. Если бы это было справедливо для всех смещений [c.194]

    В пенах газовые пузырьки разделены тончайшими пленками жидкости, образующими в своей совокупности пленочный каркас, который является основой пены. Устойчивость пен зависит от прочности этих пленочных каркасов. Устойчивые пены образуются в присутствии пенообразователей (или стабилизаторов пен), которые располагаются на поверхности пленок с ориентацией неполярных участков молекул в газовую среду, а полярных —в жидкость. Газообразная фаза не оказывает большого влияния на углеводородные радикалы и не препятствует им в структурообразовании прочных и эластичных пленок. Поэтому пенообразователи сообщают пенам структурно-механическую устойчивость. [c.102]


    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    Если бы во взаимодействии электрона с ядрами отсутствовал квантово-механический эффект обмена электрона между ядрами, обменный интеграл р был бы равен О, откуда следовало бы Д О и, тем самым, невозможность образования устойчивой молекулы из атомов. [c.101]

    Квантово-механическая трактовка этого вопроса должна следовать совсем другому пути и состоит в следующем. Поскольку число валентности введено в классической теории для решения вопроса о том, какие молекулы вообще могут существовать как устойчивые образования, нужно исходить из квантово-механического критерия устойчивости молекул. Если, исходя из квантово-механического условия устойчивости молекул, удастся установить аналоги основных понятий классической теории строения, и в частности ввести некоторые числа, совпадающие (или близкие) с числом валентности атомов в молекуле и имеющие содержание, аналогичное их содержанию в классической теории, определить область значимости таких понятий и чисел, то это и будет являться квантово-механической трактовкой чисел валентности классической теории, причем определится квантово-механическое содержание этих чисел, их значение и круг соединений, в котором они приложимы. Эти вопросы будут подробнее рассмотрены в гл. V. [c.48]

    До сих пор мы имели дело с атакой радикала па молекулу мономера или растворителя. Активные радикалы, например, полученные из поливинилацетата [25] или полиэтилена [26], при высоких температурах и степенях превращения способны атаковать устойчивые молекулы полимера, делая их реактивированными. Это приводит к образованию разветвленных структур и сильно влияет на распределение молекулярного веса [26, 27], свойства раствора [26] и механические свойства полимера [26]. Разветвленный полимер может образоваться несколькими путями. Можно показать, что поливинилацетат, который обычно является сильно разветвленным, становится преимущественно линейным, когда он образуется при —30° [28]. [c.176]


    Ковалентная связь. Метод валентных связей. Мы уже знаем, что устойчивая молекула может образоваться только при условии уменьшения потенциальной энергии системы взаимодействующих атомов. Для описания состояния электронов в молекуле следовало бы составить уравнение Шредингера для соответствующей систе.мы электронов и атомных ядер и найти его решение, отвечающее минимальной энергии системы. Но, как указывалось, в 31, для многоэлектронных систем точное решение уравнения Шредингера получить не удалось. Поэтому квантово-механическое описание строения молекул получают, как и в случае многоэлектронных а-то-мов, лишь на основе приближенных решений уравнения Шредингера. [c.119]

    Логика и смысл возникновения и развития квантовой биохимии состоят в том, что от простейших представлений об элементарном составе, порядке расположения и пространственной локализации атомов в молекулах органических соединений (имеющих, естественно, биологическое значение) она обеспечивает переход посредством квантово-механических расчетов к данным о распределении в них электронной плотности и подвижности электронного облака, а также к энергетическим характеристикам, говорящим об устойчивости молекул и их способности отдавать и принимать электроны, т. е. в конечном счете [c.482]

    И механической прочности, а также обеспечить устойчивость против роста кристаллов и спекания и оптимальную ориентацию молекул поверхности. [c.304]

    Выделение каучука из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе стабилизующего барьера [28—30]. [c.255]

    В зависимости от размеров мелких частиц какого-либо вещества, распределенного в другом веществе (среде), двухкомпонентные системы подразделяют на истинные растворы, коллоидные растворы и механические смеси. Свойства этих систем, в первую очередь их стабильность, зависят от размеров распределенных частиц. Если распределенное вещество находится в виде отдельных молекул, системы получаются вполне устойчивые, не разделяющиеся при сколь угодно долгом стоянии. Такие системы называются истинными растворами у них растворенные частицы проходят через все фильтры, не оседают, не обнаруживаются в ультрамикроскопе. Если размеры частиц очень велики по сравнению с молекулами, дисперсные системы непрочны и распределенное вещество самопроизвольно оседает или поднимается вверх. Это — механические смеси (мути, суспензии, взвеси), они не проходят через тонкие фильтры, видимы в обычный микроскоп. Коллоидные растворы занимают промежуточную область размеры распределенных частиц средние между размерами частиц истинных растворов и механических смесей. Коллоидные растворы проходят через самые тонкие фильтры, но задерживаются в ультрафильтрах в таких растворах частицы заметно не оседают, невидимы в обычный микроскоп, но обнаруживаются при помощи ультрамикроскопа. [c.33]

    К. И. Иванов [82] отмечает, что возможно воздействие на протекание реакций окисления минеральных (зольных) составных частей остатка. Кислотный характер устойчивых кислородных соединений в остатке прослеживается при определении знака заряда поверхности кокса, полученного из окисленного остатка. Разукрупнение молекул, происходящее в результате кислородной деструкции, отражается на истинной плотности, механических и электрических свойствах получаемого кокса. [c.33]

    Как следует из данных табл. 4.2, для нефтесодержащих систем характерно наличие двойного слоя незначительной толщины, что объясняется значительной концентрацией электролитов в дисперсионной среде. Наряду с электростатическим фактором устойчивости относительно высокую агрегативную устойчивость нефтесодержащих вод можно объяснить наличием на поверхности частиц адсорбционно-сольватных слоев из молекул (в том числе дифильного строения) различных веществ, находящихся в дисперсной фазе или дисперсионной среде, и механических примесей. Наличие у частиц дисперсной фазы собственного электрического заряда объясняет их поведение во внешнем электрическом поле. [c.67]


    При обычных условиях УНС, в которой содержится около 80% асфальтенов и 20% карбенов, является пластической массой, обладающей определенной структурно-механической прочностью и устойчивостью. Такие системы ири определенных температурах могут подвергаться формованию с образованием углеродных волокон высокой гибкости. При повышенных температурах (выше 350— 400°С) физические связи между молекулами в волокнах превращаются Б химические и они переходят в твердое состояние (происходит спекание). [c.115]

    Подобное действие ПАВ наблюдается при деэмульсации нефти. Коллоидными стабилизаторами водонефтяных эмульсий являются асфальтены [17, 18, 19]. Последние образуют на поверхности раздела вода - нефть бронирующие оболочки, которые обладают структурно-механическими свойствами [20, 21, 22]. Деэмульсация нефти с помощью ПАВ и заключается в разрушении этих оболочек. В результате взаимодействия молекул ПАВ с асфальтеновыми частицами дисперсность последних возрастает. Стабилизированные частицы не могут укрупняться и образовывать прочные бронирующие оболочки. При этом резко снижается устойчивость водонефтяных эмульсий [18,19]. [c.16]

    В настоящее время объяснение этому найдено. Согласно квантово-механическим расчетам, для циклопропана предполагается особый тип углерод-углеродных связей (так называемые банановые связи ). Предполагают, что максимальная электронная плотность перекрывающихся связывающих орбиталей атомов углерода в циклопропане находится не на прямой, соединяющей центры их ядер, а за пределами треугольника, в вершинах которого находятся ядра атомов углерода. Вследствие этого при замыкании трехчленного цикла валентные углы уменьшаются не до 60°, а только до 106°, что и придает циклопропану сравнительную устойчивость. Учитывая это, молекулу циклопропана правильнее изображать следующим образом  [c.477]

    Для обеспечения возможности комплексной оценки структуры нефтяных остатков, их структурно-механической устойчивости и опре-. деления численных значений показателей по эмпирическим зависимостям (1-1)-(1-7) необходимо знание компонентного состава, распределения компонентов по размерам молекул, частиц и ассоциатов, закономерностей изменения реологических свойств и показателя дисперсности, плотности и ряда других показателей физико-химических свойств. От степени информации по указанным показателям зависит выбор эффективных и рациональных способов воздействия на сырье каталитического гидрооблагораживання с целью перевода его в активное состояние- К числу таких способов воздействия следует отнести такие технологические приемы, как испарение и осаждение, приводящие к изменению соотношения объема дисперсионной среды и дисперсной фазы- Рассмотрим основные экспериментальные методы, используемые в исследовательской практике для оценки вышеуказанных показателей. [c.30]

    Таким образом, несостоятельность теории спин-валентности с точки зрения квантовой механики является следствием того, что эта теория вместо того чтобы вывести числа валент-нооти классической теории для атомов в молекулах и установить их квантово-механическое содержание и область приложимости из квантово-механических условий устойчивости молекул как единственного критерия возможности существования химических частиц, пытается определить числа валентности не для атомов в молекулах, а для свободных атомов, вводя понятие валентности для свободных атомов, которое, само по себе, без дополнительных постулатов, с понятием [c.46]

    В своем определении Бутлеров не случайно подчеркивает, что у него речь идет о химических атомах. Под химическими атомами он подразумевал наименьшие количества элементов, входяш,ие в состав молекул, т. е. количества лишь химически неделимые [28]. В противоположность этому под физическими атомами он подразумевал действительно неделимые частички вещества [ср. 21, стр. 414]. Вопрос этот оставался в то время открытым, и Бутлеров даже считал, что гипотеза о существовании физических атомов пока еще не имеет важного значения для химии [там же, стр. 102Понятие о химических атомах более абстрактно, чем понятие о физических атомах. Говоря о химических атомах, приходилось абстрагироваться также от величины, формы, размещения атомов в пространстве, а следовательно, казалось, отпадал вопрос и о пространственном ( механическом ) строении молекул. Между тем, как мы уже отмечали выше, в химии существовала устойчивая традиция связывать химические свойства молекул с их пространственным строением. Бутлеров порывает с этой традицией. Он, правда, не отрицает возможности познания механического строения молекул, но, по его мнению, химия без помощи физических исследований [там же, стр. 70] не способна сама решить эту проблему. [c.85]

    Роль гидратных оболочек белков. Д/к. Бернал (1956) отмечает, что вода, занимающая пространство между белковыми молекулами, монмет передавать силы, действующие между частицами, даже если она находится в жидком состоянии. Отсюда делается вывод о роли воды как стабилизирующего молекулу фактора, скорее, механического свойства. Молекула НаО может насыщать избыточные положительные и отрицательные заряды па остатках аминокислот, что приводит к повышению молекулярной стабильности, устойчивости конфигураций аминокислот и предупреждает незапланированное скручивание цепей вследствие образования дополнительных внутримолекулярных водородных связей. Наконец, вода как растворитель обеспечивает транспорт ионов, а структурная организация воды в гидратированных белках по адсорбционной теории — ионную селективность клеток. [c.103]

    Жидкости, предназначенные для изделий в северном исполнении , должны иметь, согласно ГОСТ 14892—69 (приложение 8), вязкость при 50 °С не менее 10 мм /с, при —40°С не более 2300 ммV , температуру застывания не выше —60 °С. Для изготовления таких гидравлических жидкостей используют преимущественно маловязкие очищенные нефтяные фракции из низкозастывающих или других нефтей после депарафинизации. Вязкость основы и индекс вязкости жидкости повышают добавлением механически устойчивой полимерной присадки (загустителя). При низких температурах молекулы полимеров диспергируются в жидкости в виде коллоидных частиц, вязкость при этом понижается при высоких температурах молекулы полимеров растворяются, повышая вязкость жидкости. [c.143]

    Механическая модель молекулы идейно базируется на приближении Борна — Оппенгеймера, согласно которому энергия молекулы с достаточно хорошей точностью может быть представлена как непрерывная функция координат ядер. Теорема Борна— Оппенгеймера [1] утверждает, что разделение электронного и ядерного движений возможно с точностью до для волновых функций и до (т1МУ для энергий (т — масса электронов, М — масса ядер). На основе этого приближения строится вся квантовая химия, поскольку уравнение Шредингера можно решать для электронов при фиксированных ядрах. При этом координаты ядер не произвольны, а должны удовлетворять минимуму электронной энергии, т. е. устойчивому положению ядер. С другой стороны, если удастся подобрать эмпирические потенциальные функции, описывающие положения ядер, то эти функции можно использовать для предсказания геометрии и свойств молекул. Разумеется, в них неявно будет присутствовать электронная энергия, однако, рассчитывая конформации, мы можем забыть об электронах и вернуться к привычным представлениям об атомах. [c.66]

    Большинство фосфонитрилхлоридов PN lj — твердые вещества. Они обладают высокой химической устойчивостью, но разлагаются водой. Высокомолекулярные фосфонитрилхлориды с молекулами в виде бесконечных изогнутых цепей по механическим свойствам напоминают каучук. [c.379]

    Нефтяные остатки относятся к структурированным нефтепродуктам и обладают определенной механической прочностью и устойчивостью против расслоения. Увеличение молекулярной массы, связанное с усложнением струтстуры молекул, ведет к увеличению степени объемного наполнения системы и соответственному возрастанию структурномеханической прочности и снижению показателя устойчивости. На эти показатели влияют и физико-химические свойства дисперсионной среды, компонентный состав и, в частности, межмолекулярные взаимодействия. При малых значениях сил взаимодействия (алканы, алкано-циклоалканы с низкой молекулярной массой) показатели прочности и устойчивости изменяются по экстремальным зависимостям. При увеличении сил взаимодействия в дисперсионной среде (арены с высокой молекулярной массой) также происходят экстремальные изменения указанных показателей [14]. [c.30]

    Гидрофильно гидрофобный баланс НПАВ определяется соотношением длин углеводородных и полиоксиэтиленовых цепей и сильно меняется с температурой. С понижением степени оксиэти-лирования температура помутнения и солюбилизующая способность НПАВ понижаются (рис. 11) [67]. Поэтому температуру полимеризации при прочих одинаковых условиях следует выбирать в зависимости от степени оксиэтилнрования эмульгатора. Ввиду отсутствия электростатического отталкивания между частицами, стабилизованными молекулами НПАВ [22, 68], устойчивость таких латексов определяется в основном структурно-механическими свойствами защитных слоев. Эти слои, как правило, адсорбцион-но-насыщенны и характеризуются высокой поверхностной вязкостью [69, 70]. Иногда высокую устойчивость латексов, стабилизованных НПАВ, связывают с тем, что защитные слои в этом случае образованы структурированными многослойными пленками. [c.600]

    Известно, что в механических системах устойчивое равновесие соответствует минимуму потенциальной энергии системы. Так, шарик самопроизвольно скатывается из положения а на наююнной поверхности (рис. 69), причем его потенциальная энергия переходит сначала в кинетическую энергию движения шарика как целого, а затем в энергию теплового движения молекул. В положении б шарик находится в равновесии. [c.190]

    По мере насыщения адсорбционных слоев их прочность возрастает, при этом стабилизирующее действие адсорбционных слоев достигает мак-С1у 1ума. Способность молекул мигрировать в пределах насыщенного адсорбционного слоя обеспечивает восстановление дефектов, возникающих по тем или иным причинам в адсорбционном слое, что приводит к их большей устойчивости. Для разрушения препятствующих коагуляции частиц оболочек (адсорбционных слоев) необходимо внешнее механическое вмешательство или применение химических веществ - деэму-п ьторов. [c.9]

    Некоторыми исследователями сделан вывод о возможности стабилизации эмульсий ненасыщенными слоями стабилизатора, представляющими собой подобие двумерного газа из ориентированных дифильных молекул. Ненасыиденность таких слоев, имеющая место и в латексных системах дала повод в данном случае усомниться в стабилизирующем действии структурно-механического фактора, тем более, что проведенные измерения не показали наличия структурной и даже просто повышенной вязкости оболочек из поверхностно-активных веществ на межфазной границе. Кроме того, показано, что стабильные эмульсии могут быть получены при помощи эмульгаторов (некаль, триэтаноламин), заведомо не способных давать механически прочные адсорбционные пленки. И, наконец, если бы устойчивость эмульсий обуславливалась только структурно-механическим фактором, невозможно было бы наблюдаемое в ряде экспериментов соблюдение известного правила электролитной коагуляции Шульце—Гарди. С. М. Леви и О. К. Смирновым обнаружено отсутствие в широких пределах связи между длиной углеводородного радикала молекулы эмульгатора и стабильностью коллоидной системы, что также говорит против объяснения устойчивости эмульсий только образованием на поверхности глобул механически прочного адсорбционного слоя. [c.12]

    Устойчивость нефтесодержащих вод обеспечивается главным образом за счет адсорбционно-сольватного и структурно-механического факторов стабилизации. Действие этих факторов обеспечивается присутствием молекул дифильного строения, адсорбировавишхся на поверхности частиц фазы, а также наличием твердых частиц различных загрязнений как в материале частиц дисперсной фазы, так и в дисперсионной среде. [c.40]

    С повышением молекулярной массы и усложнением структуры молекулы (масла с.молы- асфальтены) степень налолне-ипя ассоцпатами системы возрастает. В одной и той же дисперсионной среде с повышением температуры начала и конца кипения нефтяных соединений возрастает структурно-механическая прочность и антибатпо падает показатель устойчивости и однородности. [c.134]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Строение сложной структурной единицы и локальных флокул сходно с мицеллой, Однако между ними имеются существенные различия, наиболее принципиальным из которых является то, что в мицелле можно зафиксировать качество и четко определить границы ядра и некоторого переходного, граничного слоя на его поверхности, образованного, как правило, молекулами поверхностно-активных веществ. В сложной структурной единице, а тем более в локальной флокуле границы ядра, сорбционно-сольватного слоя и дисперсионной среды достаточно размыты. Дальнейшие коагуляционные взаимодействия сложных структурных единиц приводят к возникновению в системе более сложных локальных структурных образований, характеризующихся неярко выраженными центральной областью и переходным слоем. Соотношение компонентов в сложной структурной единице, возможно, оказывает решающее влияние па процессы формирования надмолекулярных структур и сольватных слоев, а следовательно, и на устойчивость и структурно-механическую прочность нефтяных дисперсных систем. [c.49]

    На участках 1-7 и 8 - 14 в системе происходят структурные превращения, обусловливающие различие конфигураций элементов пространственной структуры, и соответственно проявление системой принципиально новых физико-механических и физико-химических свойств. Изменяется прочность структурных образований, химический состав, порядок расположения молекул, межмолекулярные силы взаимодействия и т.п. Например, можно предположить, что участок 1-3 включает зону упруго-хрупких (1-2) и упруго-пластичных (2-3) гелей. На участке 3-7 могуг проявляться зоны кинетически неустойчивого состояния золя (4-6) или кинетически устойчивого состояния (6-7). На участке 1 - 7 Moiyr проявляться эффекты плавления (зона 6-7), стеклования (зона 3-4). [c.63]

    Известно, что масло с композицией присадок и частицами пыли является микрогете-рогенной дисперсной системой, в которой действуют сила тяжести и гюверхностные силы. Свободная поверх юстная энергия частиц кварцевой пыли компенсируется сорбцией молекул дисперсионной среды с образованием вокруг них сольватных слоев. Причем к сорбции склонны также растворенные в масле поверхностно-активные вещества присадки. Сольватированные частицы находятся в броуновском движении в системе, однако при сближении на определенное расстояние, а тем более при соударении, они способны слипаться с образованием агрегатов. Последние, достигнув критической величины (более 5 мкм), под действием силы тяжести выпадают в осадок. Как видно из рис. 9.10, б (линия 2) образец масла с присадкой А более устойчив к влиянию механических примесей. Фактор устойчивости Ф = 0,5 при концентрации механических примесей 0,5% мае. В то же время с присадкой В-15/41 Ф = 0,2. Это, вероятно, связано с тем, что присадка А солюбилизирует нерастворимые в масле частицы кварцевой пыли и нестабильные компоненты присадки АБЭС. Частицы пьиш включаются в гидрофильное ядро мицеллы и в таком виде сохраняются в системе, что и обусловливает более высокую устойчивость образца масла ИГС -38д с присадкой А к влиянию механических примесей. [c.276]

    Большинство PN I2 — твердые вещества. Они обладают высокой химической устойчивостью — не взаимодействуют с водой, кислотами и щелочами, растворяются только в органических растворителях. Высокомолекулярные фосфонитрилхлориды с молекулами в виде бесконечных изогнутых цепей по механическим свойствам напоминают каучук. [c.422]


Смотреть страницы где упоминается термин Механическая устойчивость молекул: [c.159]    [c.50]    [c.230]    [c.445]    [c.27]    [c.29]    [c.50]   
Смотреть главы в:

Основы химической кинетики -> Механическая устойчивость молекул

Основы химической кинетики -> Механическая устойчивость молекул




ПОИСК





Смотрите так же термины и статьи:

Молекулы устойчивые



© 2025 chem21.info Реклама на сайте