Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация вещества и диэлектрическая постоянная

    ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — условное название многих количественных методов анализа, основанных на измерении различных физических свойств соединений или простых веществ с использованием соответствующих приборов. Измеряют плотность, поверхностное натяжение, вязкость, поглощение лучистой энергии, помутнение, поляризацию света, показатель преломления, ядерный и электронно-магнитный резонансы, потенциалы разложения, диэлектрическую постоянную, температуру фазовых превращений и др. Более правильное название — инструментальные методы анализа. [c.262]


    Поляризация вещества и диэлектрическая постоянная [c.85]

    Электролитическая ионизация вызывается взаимодействием полярных молекул растворителя с частицами растворяемого вещества. Это взаимодействие приводит к поляризации даже преимущественно ковалентных связей, как, например, в хлороводороде. При растворении этого газа в воде происходит образование ионов водорода и хлора за счет ослабления связи Н С1 в среде с большой диэлектрической постоянной. Переход ионов в раствор сопровождается их гидрата-, цией  [c.152]

    На ионизацию и поляризацию молекул на поверхности твердых кислот и оснований должна влиять диэлектрическая постоянная твердых веществ [23]. По формуле Кирквуда [24], учитывающей облегчение взаимодействия ионов или диполей в среде с диэлектрической постоянной D, можно ожидать линейной зависимости логарифма константы скорости реакции на поверхности твердых тел изоляторов от величины 1/D или D—1) / 2D+1). Попытки автора доклада провести такие сопоставления для реакций, в которых весьма вероятно образование ионов или диполей (например, отщепление НС1 от алкилхлоридов на твердых поверхностях [25]), не привели к положительным результатам. Не было обнаружено не только симбатности, но и вообще какой-либо закономерности. Вероятно это вызвано тем, что в поверхностном слое диэлектрическая проницаемость существенно отличается от объемной. [c.276]

    Определение дипольных моментов обычно основано на измерениях молекулярной поляризации и молекулярной рефракции, т. е. в конечном счете на измерениях диэлектрической постоянной и показателя преломления исследуемого вещества. [c.17]

    Исследуя диэлектрические постоянные растворенных веществ при разных температурах, Дебай нашел, что диэлектрические постоянные некоторых веществ не изменяются при изменениях температуры, тогда как для других веществ в растворах и в газообразном состоянии они зависят от температуры. Изменение поляризации с температурой Дебай объяснил тем, что молекулы этих веществ электрически полярны и что поэтому в электрическом поле, кроме обычной поляризации (в результате деформации молекул), происходит также поляризация вследствие определенной ориентации молекул-диполей по отношению к силам электрического поля. Если вещество находится в газообразном или растворенном состоянии, эта ориентация молекул-диполей нарушается вследствие теплового движения молекул. Поэтому слагающая поляризации, зависящая от ориентации молекул-диполей, уменьшается с повышением температуры. [c.744]


    При смещении электрона из положения равновесия центры тяжести положительных и отрицательных зарядов в молекуле уже не совпадают. В результате возникает поляризация, величина которой пропорциональна амплитуде смещения электрона п, следовательно, электрическому полю волны . Способность молекулы деформироваться под действием электромагнитной волны характеризуется диэлектрической постоянной вещества е. Из электромагнитной теории Максвелла следует, что показатель преломления п вещества связан с е уравнением п = е , и поэтому в основном он определяется амплитудой смещения электронов в молекуле. [c.26]

    Отличие показателя преломления среды от 1 обусловлено тем, что под действием падающего излучения меняется распределение зарядов в веществе — происходит поляризация, оказывающая, в свою очередь, влияние на параметры излучения. Способность среды к поляризации характеризуется значением ее диэлектрической постоянной 6 и магнитной восприимчивости р,, которые определяют комплексный показатель преломления  [c.39]

    Различное поведение электронов и дырок в кристаллах с ковалентной и ионной химической связью обусловлено различным характером взаимодействия избыточного электрона с окружающей средой кристалла. В любом веществе избыточный электрон, находящийся в зоне проводимости, или дырка в валентной зоне поляризуют окружающую среду. В телах, состоящих из нейтральных атомов, таких, как валентные полупроводники, поляризация сводится к образованию электрических диполей на каждом из окружающих атомов благодаря смещению их внешних электронных оболочек относительно положительного ионного остатка. Такой вид поляризации соответствует высокочастотной (оптической) диэлектрической постоянной и характеризуется очень малым временем релаксации, при котором поляризационное искажение среды успевает следовать за вызвавшим его избыточным электроном при движении последнего по кристаллу. Поэтому энергетическое состояние кристалла не изменяется при переходе электрона от одного узла к соседнему, и движение электронных носителей по кристаллу не требует затрат энергии, т. е. электроны проводимости и дырки являются квазисвободными частицами. [c.197]

    Определение поляризации чистой полярной жидкости, как вода или ширт, не дает необходимых сведений, так как здесь имеется слишком большое притяжение между молекулами. Поэтому - изучение полярных молекул производится следующим образом мало е количество вещества растворяется в неполярном растворителе, т. е. в таком растворителе как четыреххлористый углерод, бензол или диоксан, молекулярная поляризация которых исчезающе мала. Затем измеряется диэлектрическая постоянная разбавленного раствора как функция концентрации растворенного вещества. Поляризация растворен- [c.84]

    ТОЙ воде. —диэлектрическая постоянная раствора при такой высокой частоте, при которой уже ни молекулы растворителя, ни молекулы растворенного вещества не успевают реагировать на колебания знака заряда. При этой частоте действуют только атомный и электрон-нмй факторы поляризации.  [c.91]

    Ионная поляризация в результате накапливания свободных ионов на границе между веществами с различной проводимостью и диэлектрическими постоянными. [c.40]

    Главные физические константы, которые определяют для органических веществ, следующие температура кипения (т. кип.), температура плавления (т.пл.), показатель преломления п) для монохроматического излучения определенной длины волны, удельный вес [d), растворимость в различных растворителях, теплота сгорания. В специальных случаях определяют вращение плоскости поляризации света (у оптически активных веществ), поглощение света в ультрафиолетовой, видимой или инфракрасной области, диэлектрическую постоянную, поверхностное натяжение, вязкость, электропроводность и т. д. Разумеется, эти свойства полезны не только для характеристики вещества они могут представлять определенный теоретический илп практический интерес как таковые (см. главу Физические свойства органических соединений ). [c.15]

    Измеренные величины (длины, углы, веса, объемы, температуры и др.) не служат непосредственно для установления строения они подвергаются теоретической обработке, которая, разумеется, отличается в каждом отдельном случае. Некоторые физические методы приводят к познанию геометрии молекул (например, определяются межатомные расстояния и валентные углы методом интерференции рентгеновских лучей или дифракции электронов) иные дают указания на энергетические состояния молекул (спектроскопические и термодинамические методы) наконец, другие ведут к установлению молекулярных функций, объединяющих в математическом выражении две или несколько физических величин, характерных для данного вещества. Такие молекулярные функции (например, электрическая поляризация, магнитная восприимчивость, молекулярная рефракция, свободная энергия образования и т.д.) находятся в количественных соотношениях со строением вещества. Непосредственно измеренные характерные физические константы вещества являются так называемыми интенсивными свойствами, т.е. величинами, не зависящими от количества вещества (как, например, плотность, показатель преломления, диэлектрическая постоянная, поверхностное натяжение, температура фазовых превращений и т.д.) молекулярные функции, выведенные из этих величин, являются экстенсивными свойствами вещества, т.е. величинами, пропорциональными количеству вещества (точно так же, как объем, вес или теплоемкость). В качестве единицы количества вещества применяется обычно моль. При этом становится возможным сопоставлять физические свойства веществ и, обобщая, установить зависимости между свойствами и строением. [c.83]


    Электрические моменты молекул определяют на основании характеристики, называемой диэлектрической постоянной. Ковалентные молекулы плохо проводят электрический ток, т. е. являются изоляторами или диэлектриками. Диэлектрическую постоянную е, характерную для каждого вещества, измеряют следующим образом. Вещество помещают между пластинами электрического конденсатора и измеряют увеличение емкости конденсатора по сравнению с его емкостью в вакууме. Это явление объясняется так. Под влиянием электрического поля в каждой молекуле происходит сдвиг положительных зарядов по отношению к отрицательным зарядам. Таким образом, молекула становится временным или наведенным диполем и поэтому стремится ориентироваться своими полюсами в электрическом поле в направлении полюсов конденсатора противоположного знака. На этот процесс расходуется энергия, напряженность электрического поля падает, а емкость конденсатора возрастает. Явление в целом, т. е. образование временных диполей и их ориентация в электрическом поле, называется поляризацией. Согласно теории поляризации (Мосотти, 1850 Клаузиус, 1874), наведение диполей не зависит от температуры. Молекулы, которые обладают электрическим моментом [c.104]

    При растворении веществ, обладающих сильно полярными молекулами (например, H2SO4), происходит ослабление и поляризация связи между противоположно заряженными частями молекулы, приводящее к образованию ионов. Объяснить это можно тем, что в среде с высокой диэлектрической проницаемостью (диэлектрической постоянной) е ослабляется сила электростатического притяжения между ионами, равная, согласно закону Кулона  [c.383]

    Сочетая эхе уравнение с уравнением (41), можно найти зависимость о Ргг однако на численные значения слишком сильно влияют ошибки при определении (а и Р. 1<1с, и поэтому эти значения не представляют начительного интереса. Результаты, полученные при некоторых исследованиях диэлектрической постоянной бензольных растворов, приведены в табл. 36. Предельные значения молекулярной поляризации растворенных веществ Р и соответствующие дипольные моменты (в дебаях) содержатся во втором и третьем столбцах. Предельные значения коэффициентов наклона (1Р 1(1с были получены графическим путем. Для вычисления длины малоР оси а было допущено, что Л = Значения а, полученные из, данных по изучению влияния диэлектрической постоянной и из уравнения (44), приведены в предпоследнем столбце. Они имеют правильный порядок величины и хорошо согласуются с двумя значениями, полученными с помощью уравнений (43) [c.196]

    По результатам измерения электрофизичес1сих характеристик остатков и битумов даже при температуре выше 250 °С в них сохраняются структурные образования. Диэлектрическая проницаемость нефтяных остатков и полученных из ешх битумов при повышении температуры увеличивается. Такое поведение обратно 1Ю-ведению обычных веществ, диэлектрическая проницаемость которых при повышении температуры уменьшается. Характер температурной зависимости диэлектрической проницаемости и тангенс угла диэлектрических потерь свидетельствует о преобладании в остатках и брпумах дипольно-релаксационной поляризации, характерной для молекул с постоянным дипольным моментом. При изменении температуры наблюдается экстремальное изменение диэлектрической проницаемости и тангенса угла диэлектрических потерь. Прохождение этих величин через экстремумы при изменении температуры связано с критическими фазовыми переходами (образованием новых фаз). Структурные образования сохраняются и при растворении нефтяных остатков даже в таком хорошем растворителе, как бензол. Исследования диэлектрических характеристик бензольных растворов компонентов нефтяных остатков и битумов показали, что между смолами и асфальтенами проявляются более сильные взаимодействия, чем между отдельными частицами только смол или асфальтенов. Мольная поляризация комплекса из смол и асфальтенов может периодически изменяться. Величина этих изменений определяется мольным соотношением между смолами и асфальтенами и является кратной 0,25 моля асфальтенов. Аналогичная картина наблюдается и при изменении концентрации асфальтенов в системе масла—смолы—асфальтены. [c.756]

    Благодаря отсутствию в диэлектриках свободных ионов и ела бо связанных с атомными ядрами электронов, способных перемещаться под влиянием электрического поля, диэлектрики не проводят постоянного тока Для прохождения переменного тока не требуется переноса заряженных частиц, для этого вполне достаточно небольших колебаний зарядов вокруг неподвижных точек. Смеще-пне электронов и атомных ядер и повороты постоянных диполей а диэлектрике под влиянием электрического поля и представляют собой подобные- -колебания зарядов, которые создают так назы-иаемые токи смещения, замыкающие электрическую цепь. Вот почему вещества, являющиеся хорошими диэлектриками для постоянного тока, способны в известной степени проводить переменный ГОК О способности лиэлектоика проводить переменный ток обычно судят по величине его диэлектрической постоянной, так как последняя тесно связана с поляризацией, от которой зависит проводимость Поэтому диэлектрическую постоянную часто называют еще диэлектрической проницаемостью, тем самым рассматривая ее как меру проницаемости диэлектрика для переменного тока. [c.561]

    Ермоленко подробно изучил зависимость адсорбируемости различных веществ от их растворимости и полярных свойств среды (Колл. Ж. 2, 179, 1936 3, 831, 1937 6, 561, 1940 7, 227, 1941, и др.) и показал, что обратная зависимость адсорбируемости и растворимости наблюдается в случае смешанных растворителей, если оба компонента растворителя близки по полярности. Если же опи сильно отличны, то адсорбируемость при увеличении полярного компонента в смеси проходит через минимум. Наличие антибат-ности между адсорбцией и растворимостью пикриновой кислоты при разной природе адсорбентов (уголь и силикагель) Ермоленко приписывает разной ориентации молекул пикриновой кислоты на поверхности разных адсорбентов к силикагелю обращены группы — ОН, к углю — группы NOj. При растворителях разной химической природы трудно установить какую либо равномерную зависимость между адсорбцией и полярными свойствами растворителя, но в случае ряда гомологов, например спиртов, оказывается, что степень адсорбции различных органических веществ иа минеральных адсорбентах и на угле находится в прямой зависимости от диэлектрической постоянной спиртов и в обратной зависимости от их молекулярной поляризации и молекулярной рефракции.—Прим. рп . [c.102]

    Ассоциация между растворенным веществом и растворителем. Существует целый ряд работ, в которых изменения диэлектрической постоянной, дипольного момента или молекулярной поляризации приписываются ассоциации между молекулами растворенного вещества или между молекулами растворенного вещества и молекулами растворителя. Такой метод был использован Глесстоном [777], который одним из первых выдвинул предположение об образовании Н-связи с участием водородного атома группы С — Н (в системе хлороформ — ацетон). Исследование поляризации и спектров КР позволило Томеко и Хатчеру [2026] определить длину цепей и степень ассоциации в смесях ацетона с жирными кислотами. Образование комплексов было установлено в растворах простых эфиров в воде [580], а также спиртов и галогенсодержащих соединений в бензоле [1690]. Фью и Смит, а такжеСмити Уолшоу[649, 648, 1902, 1901, 1904], исследуя амины (преимущественно ароматические), пришли к выводу, что мезомерия приводит к усилению Н-связи с диоксаном. Аналогичное увеличение дипольного [c.27]

    Несмотря на существование указанных ранних работ, установление влияния Н-связи на электронные переходы сопряжено с определенными трудностями, вызванными необходимостью отличить его от влияния растворителей при отсутствии Н-связи. Например, Коггешалл и Ланг [410] наблюдали изменения в УФ-спектрах 21 фенола при растворении в различных растворителях от парафина до этанола. Основываясь на отсутствии заметной температурной зависимости, авторы пришли к выводу, что этот эффект вызывается не Н-связью, а скорее стабилизацией возбужденных полярных состояний в результате взаимодействия с молекулами спирта . Бейлисс и Мак-Рей [177] обсудили вопрос о влиянии растворения с более общей точки зрения и рассмотрели роль поляризации растворителя, диполь-дипольных, диполь-поляризационных сил и сил Н-связи. Они пришли к заключению, что основное значение имеет вопрос о том, какой тип взаимодействия — диполь-дипольное или Н-связь — играет более важную роль во влиянии растворителя на растворенное вещество ([176] см. также [676]). Полученные ими данные, представленные в виде смещения полос по отношению к стандартному растворителю (н-гептану), приведены в табл. 45 и 46. Из этих таблиц сразу видно, что доминирующее воздействие обусловлено именно Н-связью [поскольку нет заметной чувствительности к диэлектрической постоянной, дипольному моменту растворителя (ацетон) или поляризуемости (бензол, I4)]. Пиментел [1633] представил соображения в защиту той точки зрения, что в системах с Н-связью ее влияние должно, вообще говоря, преобладать над эффектами, рассмотренными Бейлиссом и МакРеем (см. также [1482]). [c.140]

    Что касается высокочастотной диэлектрической постоянной боо, то для льда I она равна 3,1 (табл. 3.7). Поскольку значение 1,7 величины Ех соответствует электронной поляризации, разность 3,1 —1,7 должна быть обусловлена атомными движениями и значительно превышать соответствующую величину, наблюдаемую для большинства веществ [333]. Такие различия обычно приписываются относительным перемещениям атомов в каждой молекуле под действием электрического поля. Но в случае льда эти смещения могут объяснить только некоторую часть указанной разности, в то время как большая ее часть обусловлена влиянием межмолекулярных колебаний молекул НаО иод действием внешнего электрического поля. Исходя из абсолютных величин интенсивностей инфракрасного поглощения Уэллей [386] нашел, что полоса Vt, связанная с заторможенными трансляциями молекул (см. подраздел 3.5), объясняет большую часть указанной разности, а полоса Тл, связанная с либрациями,— некоторую часть этой разности. Так как эти колебания очень быстры по сравнению с молекулярными переориентациями, поляризация, связанная с ними, сохраняется при частотах более высоких, чем частоты диэлектрической дисперсии. [c.116]

    Оствальд и Ортлофф наблюдали, что коллоидное набухание, во многих отношениях тесно связанное с пластическими свойствами, определяется в значительной мере диэлектрическими свойствами жидкого растворителя, главным образом диэлектрической постоянной, молекулярной поляризацией и постоянным дипольным моментом. В случае органических жидкостей зависимость молекулярного строения от этих свойств изложил Дебай в своей классической работе. Величина i /8 ( ц — дипольный момент, е — диэлектрическая постоянная) очень мала для жидкостей, не производящих набухания, — она равна 0—0,105 для растворителей, производящих набухание, эта величина больше 0,П5—0,235 для активно растворяющихся жидкостей величина jx /e наибольшая, т. е. 0,25—0,53. Последние образуют растворы с низкой вязкостью, тогда как смеси со слабоактивными средами образуют растворы с высокой вязкостью. Кроме того, согласно исследованиям Молля , для понимания набухания и растворения вещества в данной ореде следует учитывать существенное влияние поверхностного натяжения. Из данных, полученных путем изучения высокомолекулярных органических соединений, известно, что [c.338]

    Таким образом, электрическое поле в мосте расположения молекулы растворенного вещества зависит от свойств растворителя. /Келая выразить поляризацию растворителя в виде функции его объемных свойств, т. е. в виде функции диэлектрической про-ницае.мости и показателя преломления п, мы сделаем определенные приближения, которые используются так/ке в теории Онзагера, позволяющей находить постоянные дипольные моменты из измерений диэлектрической постоянной [23, 24]. Указанные приближения состоят в следующем (1) растворитель рассматривается как однородная изотропная среда (2) молекула растворенного вещества считается помещенной в полость, вырезанную в растворителе (3) нолость считается сферической радиуса а (4) дипольный момент молекулы анпроксимируется точечным диполем, помещенным в центре сферы. [c.279]

Рис. 19 [РО]. Влияние диэлектрической постоянной р.чствори-теля на поляризацию растворенного вещества. Рис. 19 [РО]. <a href="/info/9169">Влияние диэлектрической постоянной</a> р.чствори-теля на <a href="/info/602639">поляризацию растворенного</a> вещества.
    Примесь к воде органических веществ обычно понижает степень набухания гидрофильных студней, особенно в том случае, если прибавленные вещества сильно гидратируются. Здесь, наверное, имеют большое значение дипольное строение молекулы и величина диэлектрической постоянной. Основываясь на диполь-ном строении молекул, пытаются объяснить многие коллоиднохимические процессы, исследуя для этого диэлектрическую поляризацию растворов С этой точки зрения изучено набухание некоторых лиофильных студней в органических жидкостях. Закурада 5, изучая набухание ацетилцеллю-тозы, вывел заключение, что ацетилцеллюлоза хорошо набухает в жидкостях, имеющих сравнительно большой дипольный момент (табл. 84). [c.388]

    Диэлектрометрия, как метод исследования электронной структуры, динамики молекул и межмолекулярных взаимодействий в растворах и чистых жидкостях, основан на изучении процессов поляризации веществ под воздействием внешнего электрического поля. Своми корнями диэлектрометрия уходит в конец прошлого столетия к работам Фарадея, который обнаружил, что отношение емкостей заполненного и пустого конденсатора является постоянной характеристикой заполняющего конденсатор вещества, которая получила название диэлектрической проницаемости (е ), а само вещество - название диэлектрика. Примерно в то же время, изменяя диэлектрическую проницаемость в переменном электрическом поле, Друдэ обнаружил, что для ряда веществ в определенной области частот / переменного поля наблюдается зависимость е от/, получившая название "аномальной дисперсии" диэлектрической проницаемости. Как было показано позднее, дисперсия диэлектрической проницаемости обусловлена инерционностью процессов поляризации жидких диэлектриков и сопровождается потерей электрической энергии, выделяющейся в виде Джоулева тепла, или "диэлектрическими потерями". В качестве меры способности вещества поглощать электрическую энергию используют так называемый коэффициент диэлектрических потерь е". Непосредственно измеряемыми в диэлектрометрии являются макроскопические характеристики е и е" исследуемых жидкостей, которые отражают их способность поляризоваться или индуцировать в себе заряды под воздействием внешнего электрического поля. [c.141]

    Дипольные моменты и сопряжение. Дипольные моменты яв ляются важными для цветности органических соединений, особеннс для интенсивности полос поглощения. Если вещества помещены е электрическое поле, полная молярная поляризация (Р), измеряемая диэлектрической постоянной (s), представляет сумму наведенноь поляризации Р,) и поляризации (PJ, связанной с полярным характером молекулы (т. е. с постоянно существующим диполем в молекуле). Их связь представлена уравнением (I) [c.390]


Смотреть страницы где упоминается термин Поляризация вещества и диэлектрическая постоянная: [c.26]    [c.140]    [c.347]    [c.104]    [c.51]    [c.171]    [c.249]    [c.252]    [c.450]   
Смотреть главы в:

Физическая химия -> Поляризация вещества и диэлектрическая постоянная

Физическая химия 1990 -> Поляризация вещества и диэлектрическая постоянная




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая постоянная



© 2024 chem21.info Реклама на сайте