Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Понятие о структурно-механических свойствах

    Ребиндер [235] впервые ввел понятие структурно-механического барьера. Этот барьер обусловлен адсорбционно-сольватными слоями, обладающими вязко-эластичными свойствами, и препятствует коалесценции при соударении двух частиц его существование возможно как в полярных, так и в неполярных дисперсионных средах. [c.116]

    В качестве характеристик структурно-механических свойств адсорбционных слоев в двусторонних пленках принимают поверхностную вязкость и поверхностное напряжение сдвига. Термин поверхностная вязкость является распространением понятия обычной вязкости на двухмерные системы. Поверхностная вязкость выражается в дн-сек-см , обычная же вязкость объемных систем — в дн-сек-см . Поверхностное напряжение сдвига выражается в дн слг -. Структурно-механические свойства поверхностных слоев подобны свойствам объемных систем. Например, как установил А. А. Трапезников с сотрудниками, адсорбционные слои лаурилсульфата в водных растворах с добавкой лаурилового спирта имеют два участка постоянной вязкости. Изучение структурно-механических свойств адсорбционных слоев в пленках пены важно для понимания природы устойчивости пен. [c.175]


    При изучении и оценке структурно-механических свойств смазок приходится оперировать с терминами, широко используемыми в реологии пластичных тел. Рассмотрим более подробно сущность и физический смысл таких понятий, как деформация, напряжение, сдвиг и т. д. [c.82]

    Понятие о кинетически стабильных элементах структуры в полимерах не имеет строгого количественного критерия, но чем больше т при прочих равных условиях, тем больше кинетическая стабильность данного элемента структуры. Практически же под кинетически стабильными понимаются те флуктуационные структурные элементы, время жизни которых превышает длительность исследуемого процесса. К образованию флуктуационных структур, характеризуемых большей или меньшей кинетической стабильностью, способны все гибкоцепные полимеры, в том числе эластомеры. С точки зрения структурных особенностей эластомеров их можно считать высокомолекулярными жидкостями с более сложной структурой, чем простые жидкости. Эластомеры находятся в жидком агрегатном состоянии, но отличаются очень высокой вязкостью, поэтому их можно назвать полимерными высоковязкими жидкостями. С другой стороны, эластомеры из-за их высокой вязкости при недлительных нагружениях по своим механическим свойствам подобны упругим твердым телам. К твердым телам относятся как кристаллические, так и аморфные тела (стекла). Жидкости характеризуются непрерывно изменяющейся структурой, которая зависит от температуры Т и давления р. Для твердых же тел характерна неизменность структуры в области существования твердого состояния с данным типом структуры. Таким образо , твердое состояние ве-и ества отличается от жидкого не только структурой, но и ее постоянством при изменении внешних условий. При этом для кристаллов характерны наличие дальнего порядка и термодинамическая стабильность, а для стекол — наличие ближнего порядка и кинетическая стабильность (время жизни структурных элементов в стекле обычно существенно выше времени наблюдения). [c.25]

    При изучении свойств этих структур следует прежде всего иметь в виду единство и в то же время глубокое различие между понятиями вещества и материала, состоящего из этого вещества. Вещество характеризуется набором химических и физических свойств, материал — теми свойствами, которые определяют практическое его использование. Важнейшим в этом смысле является совокупность механических свойств — прочности, упругости, эластичности, пластичности и др. Поскольку эти свойства теснейшим образом связаны со структурой, они называются структурно-механическими. Среди них наибольшее для практики значение имеют упругопластические свойства, характеризующие способность тел сопротивляться деформациям, возникающим в результате внешних воздействий. Эти свойства определяют возможность использования тех или иных структурированных систем в качестве строительных и конструкционных материалов. [c.289]


    Рассказ о современных материалах и о роли химии в их разработке и получении можно существенно расширить и дополнить, если рассматривать и классифицировать их по структурному признаку. В твердофазном материаловедении понятие структуры — собирательное название характеристик материалов. Оно может означать как пространственное взаимное расположение атомов или ионов относительно друг друга (кристаллическая или рентгенографическая структура), так и взаимное расположение структурных элементов и фаз в поликристаллическом материале (микроструктура или керамическая структура). Иногда еще говорят о тонкой (реальной) кристаллической структуре, или субструктуре, имея в виду поверхностные и объемные несовершенства типа областей когерентного рассеяния, остаточных микроискажений и дефектов упаковки. Обычно твердые тела делят на две большие группы — кристаллические и некристаллические (аморфные или стеклообразные). Первые характеризуются наличием дальнего порядка в расположении атомов, ионов или молекул, а вторые — отсутствием такового. Согласно современной терминологии стеклом называют все аморфные тела, полученные путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания, обладающие в результате постоянного увеличения вязкости механическими свойствами твердых тел. При этом процесс перехода из жидкого в стеклообразное состояние обратим. Промежуточную группу образуют стеклокристаллические материалы, многие из которых уже рассматривались. Это ситаллы, в том числе и шлакоситалл. В группу некристаллических материалов, помимо хорошо всем известных стекол, в последнее время входят аморфные металлы и сплавы переходных металлов с неметаллами. Аморфные металлы можно получать различными методами, но среди них лишь способ быстрой закалки из жидкого состояния имеет пока практическое значение, В настоящее время применяют два основных метода 1) расплющивание капель 2) быстрая закалка расплава на вращающемся металлическом диске или барабане, охлаждаемом до очень низких температур (чаще всего до температуры жидкого азота—196 " С). Аморфные металлические материалы, полученные в виде ленты, называют металлическими стеклами. Для изготовления массовых изделий из аморфных металлов чаще всего применяют метод ударного сжатия при прессовании аморфных порошков. Среди металлических стекол, находящих практическое применение, в первую очередь интересны материалы, сочетающие свойства сверхпроводников с удовлетворительными механическими свойствами, в частности высокой прочностью и определенной степенью деформируемости. Интересно, что и в этой области используют приемы частичной кристаллизации металлических стекол. По сути дела так получают стеклокристаллические материалы с требуемыми меха- [c.157]

    При изучении свойств этих структур следует прежде всего иметь в виду единство и в то же время глубокое различие между понятиями вещества и материала, состоящего из этого вещества. Вещество характеризуется набором химических и физических свойств, материал — теми свойствами, которые определяют практическое его использование. Важнейшим в этом смысле является совокупность механических свойств — прочности, упругости, эластичности, пластичности и др. Поскольку эти свойства теснейшим образом связаны со структурой, они называются структурно-механи- [c.262]

    Понятие коллоид включает в себя как состояние золя, так и состояние геля. В золе коллоидные частицы движутся более или менее свободно. В геле коллоидные частицы связаны друг с другом в рыхлую пространственную сетку и перемещение отдельных частиц затруднено. Структурная сетка придает гелям механические свойства твердых тел типичные гели обладают пластичностью и некоторой эластичностью. [c.32]

    Из изложенного выше следует, что температуру стеклования можно определять по температурным зависимостям различных физических свойств полимера. При этом, принимая во внимание релаксационный характер процесса стеклования, необходимо учитывать временной фактор (скорость нагревания или охлаждения, продолжительность действия силы и т. д.). При достаточно медленном охлаждении или достаточно большом времени действия напряжения значения температур стеклования одного и того же полимера, полученные разными методами, обычно совпадают. Так, излом на кривых изменения удельного объема с температурой происходит в той же области температур, что и резкое увеличение модуля. Это свидетельствует о сходстве процессов молекулярных перегруппировок, происходящих при охлаждении и при высокоэластической деформации. Однако при этом наблюдается и некоторое различие, в связи с чем возникли понятия структурного и механического стеклования [c.167]

    Подход к проблеме деформирования с позиций физика предопределил не только содержание, но и композицию книги. В ней в первую очередь излагаются понятия о физических и фазовых состояниях полимерных систем, а затем рассматриваются процессы деформирования в каждом из этих состояний. Естественно, что наметившиеся и развитые в последние годы структурные представления нашли самое широкое отражение. Влияние надмолекулярной структуры на механические свойства, структурные превращения при деформации, регулирование и стабилизация структуры, создание полимеров с заранее заданными свойствами — это тот круг вопросов, который в настоящее время привлекает пристальное внимание исследователей. [c.3]


    Пример второй. Известно, что механические свойства пластических масс в значительной степени определяются формой и размерами надмолекулярных структур, образующихся в процессе производства изделий. Наиболее интенсивно формирование надмолекулярных структур протекает в момент перехода полимера из расплава в высокоэластическое состояние. Среди многообразия факторов, влияющих на процесс формирования структур, важное значение имеют механические воздействия как на стадии образования зародышей, так и на стадии роста кристаллов. В этом случае задача смешения заключается в получении структурно-однородного материала. Не случайно для отверждения очень вязких плохо кристаллизующихся расплавов применяют кристаллизаторы смесительного типа, позволяющие получать равномерную структуру в однокомпонентных полимерах, которые также являются гетерогенными благодаря существованию границ раздела между сферолитами, фибриллами и другими элементами надмолекулярных структур. Таким образом, понятие процесса смешения должно распространяться и на получение структурно-однородного материала. [c.188]

    Следует также отметить, что применение понятия фаза к кристаллическим полимерам не может быть проведено последовательно без указания типа структурных единиц уже хотя бы потому, что одно из важнейших свойств фазы — ее механическая отделимость от других фаз — требует определения того, что должно быть отделено. Между тем в обычных микрокристаллических полимерах разде.ление кристаллической и аморфной фаз может быть проведено по отношению к малым структурным единицам, но не может быть вы- [c.90]

    Конденсационные и тиксотропные связи в структурном каркасе смазок. Понятие о тиксотропии как свойстве дисперсных систем (студней и гелей) разжижаться под влиянием механического воздействия и вновь застудневать после его прекращения было впервые введено Фрейндлихом, который открыл это явление при исследовании золей. Вначале тиксотропными считали [c.78]

    Макромолекула - основная структурная единица живого - включает большое количество атомов и атомных групп. Их тепловое движение, повороты и вращения вокруг единичных связей обусловливают большое число внутримолекулярных степеней свободы, что придает макромолекуле статистические свойства. Одновременно в той же макромолекуле между атомами существуют химические связи, ближние и дальние взаимодействия которых придают вполне определенный детерминистский характер ее конформационным перестройкам. Таким образом, биологическая макромолекула обладает своеобразными свойствами, в основе которых лежит тесное взаимодействие статистических и детерминистских (механических) степеней свободы. В простых химических процессах в растворах продукт реакции появляется вследствие активных соударений молекул реагентов. В отличие от этого результат функционирования макромолекулы в биохимических процессах достигается прежде всего вследствие взаимодействия частей единого активного макромолекулярного комплекса. В химии растворов рост температуры вызывает увеличение доли активных кинетических соударений молекул, а в макромолекулярных комплексах этот же фактор может повлиять на их структурную организацию и тем самым на механизм и эффективность внутримолекулярных взаимодействий. Для таких систем, строго говоря, неприменимо понятие химического потенциала как движущей силы процесса, зависящей от исходного числа реагентов. В случае макромолекулярных комплексов реакция определяется не их числом как таковым, а внутримолекулярными взаимодействиями в каждом из них. Это хорошо видно на примере ферментативного катализа. [c.87]

    Коллоидные растворы коагулируют пои невысокой концентрации электролитов. Однако устойчивость их может быть значительно повышена путем создания дополнительно на поверхности частиц адсорбционных слоев с повышенными структурно-механическими свойствами. Стабилизация лиофобного золя за счет добавления незначительной массы высокомолекулярных (лиофильных) соединений (желатина, казеината натрия, мыла, белков и пр.), способствующих образованию на поверхности частиц адсорбционно-сольватных слоев, полностью предотвращая коагуляцию электролитами, называется защитным действием стабилизаторов. Для количественной оценки защитных свойств различных веществ введено понятие золотого числа , под которым понимают ту минимальную массу стабилизирующего вещества (в мг), которую следует добавить, чтобы защитить 10 мл красного золя золота от коагуляции с появлением синей окраски при добавке к золю 1 мл 10%-ного раствора хлорида натрия. Например, золотое число желатины равно 0,008. Это значит, что 0,008 мг ее защищает 10 мл золя золота от коагуляции 1 мл 10%-ного раствора Na l. [c.160]

    Предлагаемый сборник составлен из докладов, обсуждавшихся на конференции. Попытка объединения различных научных направлений и оформления самого понятия физико-химическая механика пористых и волокнистых дисперсных структур и материалов предпринимается впервые. Поэтому как в содержании собранных работ, так и в характере изложения невозможно было избежать некоторых песогласованностей и разногласий. По тем же причинам оказалось трудным выбрать такое расположение материала, которое было бы гарантировано от возражений. Основными вопросами, занимающими в пастоящее время исследователей, работающих в данно [..и01Дасти, являются 1. Физико-химические методы получения пористых и волокнистых дисперсных структур, материалов и изделий. 2. Физико-химические исследования пористых и волокнистых структур и их роли в процессах тепло- и массопереноса (включая фильтрацию). 3. Структурно-механические свойства пористых и волокнистых диоперсных систем и материалов. 4. Физико-химические методы модифицирования структуры волокнистых и пористых материалов. Но и такую классификацию оказалось затруднительным провести последовательно..  [c.4]

    Принимая во внимание особенности приведенных моделей активированного комплекса, можно перейти к оценке Л-факторов сходственных радикальных реакций, делая априорное предположение о том, что однотипные реакции протекают по одинаковому механизму (и, в частности, активированный комплекс имеет сходные структурные и механические свойства в области реагирующих связей). Нет оснований считать такое предположение неверным, тем более, что имеется немало экспериментальных данных, подтверждающих постоянство механизма в реакционной серии (понятие о реакционной серии или ряде сходственных или однотипных реакций возникло в связи со стремлением подчеркнуть одинаковый механизм данной группы элементарных реакций между структурно подобными соединениями). Так, на основе полужесткой модели активированного комплекса возможна успешная интерпретация Л-факторов реакций распада радикалов, при которых происходит разрыв С—С-связи. Свободный активированный комплекс применяется для объяснения высоких значений Л-факторов реакций диссоциации молекул, а модель АК4 используется для оценки Л-факторов реакций отрыва атома Н. [c.32]

    Таким образом, в понятие стеклообразное состояние вкладывается различный физический смысл в зависимости от того, рассматриваются механические свойства или структура полимера. По механическим свойствам аморфные полимеры могут находиться в трех состояниях вязкотекучем, высокоэластическом и стеклообразном, а по структурным — в двух жидком и твердом (стеклообраз- [c.46]

    При рассмотрении процессов, происходяших в нефтяных дисперсных системах, вводится понятие сложных структурных единиц (ССЕ), позволяющих описывать макроскопические свойства, такие как структурно-механическая прочность, склонность к расслоению фаз и пр. Согласно работе ССЕ представляет собой ядро (пузырек, пора, ассоциат или кристаллит), окруженное с внутренней стороны (пора) или внешней (пузырек, ассоциат, кристаллит) стороны адсорбционно-сольватным слоем. В этом случае к нефтяным дисперсным системам независимо от состояния можно применить одинаковые методы исследования. Важным является то, что имеется возможность управлять поведением таких систем путем регулирования ССЕ. [c.163]

    Сложнее обстоит дело с физической интерпретацией этого явления. Можно, конечно, допустить, что уже в изотропных растворах образуются заготовки жидкокристаллических агрегатов [68], доля которых возрастает с увеличением концентрации и которые обладают меньшим по сравнению с изотропной частью гидродинамическим сопротивлением, благодаря чему снижается темп роста вязкости с концентрацией. Однако в этой связи неясны причины столь сильного влияния на вязкость мо лекулярной массы, поскольку трудно предположить, чтобы это был только фактор, нарушающий асимметрию цепи. Более правдоподобной представляется гипотеза об особых свойствах структурной сетки в изотропных растворах жесткоцепных полиамидов, склонных к образованию водородных связей. В этом случае понятие механические зацепления макромолекул , в общем, теряет смысл и существенно лишь энергетическое взаимодействие по функциональным группам. Возможность реализации водородных связей может быть неэквивалентной при увеличении концентрации и длины цепи полимера. [c.168]

    Свойства осадков рассыпаться, растрескиваться, разжижаться или, наоборот, затвердевать при механическом воздействии называются структурно-механическими или реологическими свойствами [25]. Эти свЬйства мы будем включать также в понятие прочность структуры . Реологические свойства осадка тесно связаны с адгезионными свойствами и в основном определяют выбор конструкции съемных приспособлений На фильтре. Возможность полного механического удаления осадка с перегородки и из I фильтра во многих случаях определяет работоспособность конструкции, поэтому при экспериментальном обследовании свойств суспензий и осадков, характеру осадка, его структуре и реологическим свойствам должно быть уделено самое серьезное внимание. При выборе конструкции оборудования и его технологическом расчете немаловажную роль играет воспроизводимость фильтрационных свойств суспензии и их стабильность во времени. Под воспроизводимостью фильтрационных свойств понимается возможность получения одинаковых результатов фильтрования в одном и том же режиме для суспензий, взятых из различных производственных операций, в различное время или из различных опытов химика, синтезировавшего суспензию. Под фильтрационной стабильностью понимается воспроизводимость фильтрационных свойств одной и той же суспензии во времени. [c.21]

    Важное практическое значение для корректного мпкроспектраль-пого анализа минералов имеет величина разрушений вокруг кратера. В понятие разрушений мы включаем изменение механических свойств, химического состава, электрических свойств, структурные изменения в минерале. Для определения локальности метода имеет смысл ввести понятие коэффициентов поверхностного и объемного Ку разрушений. Коэффициент поверхностного разрушения [c.173]

    Понятия упорядоченности и ориентации не всегда срвпадают. Так же как в жидкостях, повышение упорядоченности в полимерах может не сопровождаться повышением степени ориентации, т. е. повышением структурной анизотропии и, соответственно, анизотропии механических свойств. [c.75]

    Молекулярные силы, обусловливающие явления капиллярности, тождественны с силами, вызывающими как явления адгезии и когезии, так и химическое взаимодейс вие и растворение. В большинстве случаев силы молекулярного притяжения в жидкостях принадлежат к типу ван-дер-ваальсовых сил на них, однако, нередко налагаются чисто электростатические силы притяжения и отталкивания — в особенности в тех случаях, когда в молекулах присутствуют электролитически диссоциированные группы. В случае твёрдых поверхностей, как природа, так и величина когезионных сил определяются главным образом силами типа ковалентной связи. Величина и распределение всех этих сил вокруг молекул зависят не только от формы молекул, но также и от природы и расположения различных химических групп в молекулах. И поскольку выражение форма молекул является лишь удобным условным термином для передачи, например, понятия контура поля сил отталкивания, связанных с атомами, образующими молекулы, то в конечном итоге в законченной теории химических свойств поверхности следует учитывать все виды силовых полей вокруг молекул. В настоящее время структурная тсория органической химии является источником ценных сведений по этому вопросу, так ка с можно считать установленным, что структурные фо мулы, вошедшие в употребление в течение последних рёх четвертей столетия, определяют с большой точностью не только химические свойства, но и истинную форму и механические свойства молекул. Явления, рассматриваемые в следующей главе, особенно ясно показывают связь м жду некоторыми капиллярными свойствами и химическим строением. [c.30]

    Механические свойства, механизм деформации и соответственно разрыхление структуры полимерных пленок при вытяжке во многом определяются химическим строением макромолекул, типом и размерами надмолекулярных структур, толщиной пленок, характером распределения внутренних напряжений, обусловленных режимами формования, термообработки и деформирования. Влияние перечисленных и других факторов, объединенных понятием технологическая наследственность полимерной пленки , на структурную перестройку полимера при вытяжке в жидкости исследо алась нами на примере гомо- и сополимеров трифторхлорэтилена. Выбор кристаллических фторполимеров обусловлен многообразием морфологических форм и чувствительностью структуры этих полимеров к технологическим факторам. [c.38]

    Вывод о том, что одна и та же макромолекула целлюлозы может находиться кСак в упорядоченных, так и в неупорядоченных участках волокна, может быть сделан только исходя из представлений о сгибаемости макромолекул. Понятие о коэффициенте ассоциации как об определенной характеристике величины мицелл, отпадает, так же как и представление о реальной поверхности раздела между мицеллами. Значительные расхождения между различными исследователями по вопросу о макромолеку-лярном или мицеллярном строении целлюлозы, имевшие место в период 1936—1940 гг., в настоящее время потеряли сво " значение, так как ошибочность первоначальной мицеллярной теории строения целлюлозы в настоящее время очевидна. В твердой фазе или в концентрированных растворах имеет место ассоциация макромолекул, т. е. взаимодействие между макромолекулами, осуществляемое межмолекулярными силами. В разбавленных растворах находятся в основном не ассоциированные группы молекул, а отдельные макромолекулы. Также бесспорно наличие в препаратах как природной целлюлозы, так и гидратцеллюлозы участков, в которых структурная анизотропия, а в ряде случаев и анизотропия механических свойств волокон, различна, что и обусловливает различные скорости протекания реакций. Представление о существовании поверхности раздела между участками с различной степенью ассоциации макромолекул и о коэффициенте ассоциации, с которым соединяли обычно понятие о мицеллярном строении целлюлозы, полностью оставлено почти всеми исследователями еще 10—15 лет назад. [c.72]

    Вообще понятия сложная система и большая система несколько условны с точки зрения определения их границ и параметров. В широком смысле под системой можно понимать совокупность элементов, находящихся во взаимодействии. Это, видимо, в известной мере справедливо но отношению к системам любой п]эироды (механической, биологической, социально-экономической). Под сложной системой производственно-хозяйственного характера (предприятие, объединение, министерство) будем подразумевать систему, в которой в силу свойств и специфики задач, возникающих ири ее исследовании, необходимо принимать во внимание большое количество взаимосвязанных и взаимодействующих между собой элементов, обеспечивающих выполнение системой некоторой достаточно сложгюй функции Исходя из вышеприведенного определения, даже самое общее представление о предприятиях химической и нефтехимической промышленности позволяет делать заключение об отнесении их к классу сложных систем производственно-хозяйственного характера. Это является следствием большой сложности структурных, организационных, технико-технологических, экономических, правовых элементов предприятия. [c.380]

    Как показывают электронномикроскопические и рентгенографические наблюдения, наибольшим структурным элементом в ориентированных полимерах является фибрилла — протяженный агрегат параллельно упакованных цепей с размытой, но вполне реальной границей. Фибриллы обладают достаточно сложной внутренней структурой, которая и схематизирована на рис. 1. Основные механические и термомеха-иические свойства ориентированных полимеров могут быть поняты при рассмотрении этого фибриллярного порядка следует, однако, помнить, что межфибриллярное взаимодействие вносит определенный вклад также в прочностные и эластические характеристики. [c.49]

    Основные характеристики поведения могут быть качественно объяснены с помощью понятия о таких структурных или термодинамических параметрах, как, например, температура стеклования, точка плавления кристаллитов, в то время как для установления количественных законов было бы необходимо приложить непропорционально большие усилия. Кроме того, эти законы оказываются непригодными при решении многих практических проблем, прямо и явно не определяемых этими характеристиками. Примером служит изменение некоторых свойств, которое иногда имеет место из-за небольших модификаций процессов полимеризации или переработки, или небольшого различия между двумя конкурирующими видами пластмасс, которым отдают предпочтение в определенных практических ситуациях. В таких случаях связь структуры и свойства еще более туманна, а почти безграничная варьируемость этих связей только гарантирует, что на смену современному множеству механических и электрических испытаний придет аналогичное множество структурных исследований. То, что могло быть достигнуто за счет научной стройности, было бы утрачено иным путем. А раз так, то связи между свойствами, структурой и варьируемостью изготовления образцов значительны и сложны. В дальнейшем они соответственно усложняют весь комплекс испытания выпускаемой продукции. Экспериментальные методы не должны неограниченно совершенствоваться и увеличивать себестоимость только ради получения лучшего представления об этих связях, так как это было бы большой роскошью. Сдерживающим элементом здесь служит производственная необходимость. [c.150]


Смотреть страницы где упоминается термин Понятие о структурно-механических свойствах: [c.157]    [c.92]    [c.173]   
Смотреть главы в:

Основы физико-химической механики -> Понятие о структурно-механических свойствах




ПОИСК





Смотрите так же термины и статьи:

Структурно-механические свойства



© 2025 chem21.info Реклама на сайте